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1 Markov’s Theorem

These notes will continue our discussion of Markov forms as started in the notes by Tiziana
Busslinger. We will therefore assume familiarity with the content of [3].

In the following, all quadratic forms f considered are binary (i.e. in two variables) and indefinite,
that is, take positive and negative values. A form f(x, y) = αx2 + βxy + γy2 is indefinite if and
only if its discriminant

δ(f) = β2 − 4αγ

is positive. The aim is to prove the following theorem (due to Markov [5]) about quadratic forms.

Theorem 1.1. Let f(x, y) = αx2 + βxy + γy2 be a quadratic form with positive discriminant δ
and real coefficients α, β and γ. If we set

µ = inf(|f(x, y)|),

where the infimum is taken over all integers (x, y) 6= (0, 0), we obtain the following.

(a) The inequality µ > 1
3δ

1
2 holds if and only if f is equivalent to a multiple of a Markov form.

(b) There are uncountably many quadratic forms, of which none is equivalent to a multiple of any
other, such that equality µ = 1

3δ
1
2 holds.

Note that the values δ and µ depend on f . If it is clear out of the context to which quadratic
form δ and µ belong, we will refrain from writing δ(f) or µ(f), such as in the theorem.

The theorem tells us that there is a one-to-one correspondence between quadratic forms, whose
infimum over all integral (x, y) 6= (0, 0) is bounded form below by 1

3δ
1
2 , and multiples of Markov

forms.

Let us for example consider forms of discriminant one. Then the theorem says that such a form
typically takes values smaller or equal than 1

3 (in absolute value) on integer pairs. Indeed, by part
(a) there are only countably many forms of discriminant one with µ > 1

3 as there are countably
many Markov forms. The number 1

3 is sharp with this property as there are uncountably many
forms of discriminant one with µ = 1

3 by part (b).

We will briefly recall the main definition of interest. Note that this can be found more thor-
oughly explained in either [3] or in [4, Ch. II, Sec. 3-4].

Let m,m1,m2 be positive integers with

m2 +m2
1 +m2

2 = 3mm1m2, (1)

where m ≥ max(m1,m2). Such a solution is called singular if at least two of m,m1 and m2 are
equal. Else the solution is called non-singular. Recall that there exist unique integers k and l such
that

k ≡ m2

m1
≡ −m1

m2
mod m and k2 + 1 = lm (2)

hold with 0 ≤ k < m. Note that we have a similar statement for m1 and m2 in place of m, so that
we obtain integers k1, k2 and l1, l2.
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Definition 1.2. Let m be a solution of the Diophantine equation (1) as above. Then the Markov
form Fm in the variables x and y is defined through the equation

mFm(x, y) = mx2 + (3m− 2k)xy + (l − 3k)y2,

where k and l are integers as in (2).

Let us quickly look at some examples. If we consider the set of solutions (m,m1,m2) = (1, 1, 1)
of (1), we obtain the first Markov form

F1(x, y) = x2 + 3xy + y2.

One can check that in this case we have k = 0 and l = 1. For the set of solutions (m,m1,m2) =
(2, 1, 1) we get the second Markov form

F2(x, y) = x2 + 2xy − y2,

where k = 1 and l = 1 in this case. Note that (1, 1, 1) and (2, 1, 1) are the only singular solutions
of (1).

2 Preliminary Results

2.1 Compactness and Isolation

We recall here results from [4, Ch. II, Sec. 2].

Lemma 2.1 (Compactness lemma). For every integer j ≥ 1 let

fj(x, y) = αjx
2 + βjxy + γjy

2

be an indefinite quadratic form. Suppose that there are positive numbers K1,K2,K3 and j0 ≥ 1
such that

K1 ≤ |αj | ≤ K2 and |βj | ≤ K3|αj |

hold for every j ≥ j0. Furthermore, assume that the sequence of discriminants (δ(fj))j = (β2
j −

4αjγj)j converges to δ0 > 0. Then there is a subsequence (fjk)k that converges to an indefinite
quadratic form f with discriminant δ0.

By the above convergence statement, we mean that

αjk → α, βjk → β, γjk → γ

as k →∞, where f(x, y) = αx2 + βxy+ γy2. Note that the existence of a convergent subsequence
is a consequence of the fact that αj , βj and γj are bounded. The latter property follows from
the boundedness of the discriminants, the αj ’s and the βj ’s. Furthermore, any limit must have
discriminant δ0 as δ(·) is a continuous function in the coefficients of the binary forms. We refer to
[4, Ch. II, Lemma 2] for a full proof.

Theorem 2.2 (Isolation theorem). Let f(x, y) = αx2+βxy+γy2 be a quadratic form with rational
coefficients α, β, γ. Let

µ = inf{|f(x, y)| : (x, y) ∈ Z2 \ {(0, 0)}}

and suppose that the following assumptions are satisfied.

(a) The infimum µ is positive.

(b) The polynomial f(x, 1) has irrational roots φ1, φ2.

(c) There exists (x, y) ∈ Z2 with f(x, y) = µ and similarly for −µ.
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Then there exists µ′ < µ and ε0 > 0 depending on the coefficients α, β, γ only with the following
property. Suppose that f∗(x, y) is another quadratic form and that α∗ is the coefficient of x2 and
φ∗1, φ

∗
2 are the roots of f∗(x, 1). If

|α− α∗| < ε0, |φ1 − φ∗1| < ε0 and |φ2 − φ∗2| < ε0,

then there is some (x0, y0) ∈ Z2 \ {(0, 0)} such that |f∗(x0, y0)| < µ′ provided that f∗ is not a
multiple of f .

Proof. See [4, Ch. 2, Theorem 1].

Roughly speaking, the theorem says that any form f∗ which is close to f must attain strictly
smaller values on Z2 \ {(0, 0)} if f∗ is not a multiple of f . The latter assumption is crucial as
otherwise the infimum attained by f∗ = λf would simply be |λ|µ which can be arbitrarily close to
µ. We also remark that the assumption (c) rules out forms such as x2 − 3y2.

Example 2.3. Consider the quadratic form f(x, y) = x2 − 3y2. We claim that f does not satisfy
condition (c) in Theorem 2.2. Suppose by contradiction that it satisfies part (c). Then there exist
pairs (x0, y0) and (x1, y1) such that x20−3y20 = µ and x21−3y21 = −µ. But then x20+x21 = 3(y20 +y21)
so that 3 divides x20 + x21. The squares in F3 are 0 and 1 thus x20 and x21 need to be zero modulo 3.
But then x0 and x1 are divisible by 3 as F3 is an integral domain. Writing x0 = 3x̃0 and x1 = 3x̃1
we obtain 3(x̃20 + x̃21) = y20 + y21 . Proceeding analogously with reversed roles, we see that y0 and y1
are also divisible by 3. In particular, 1

3 (x0, y0) is integral and takes value µ
3 which is impossible.

However, note that f satisfies the conditions (a) and (b) in the theorem. The roots of f(x, 1)
are ±

√
3 so that (b) clearly holds. One can show that the condition in (a) follows from the fact

that
√

3 is badly approximable (see [2] for this notion).

Lemma 2.4. Let f(x, y) = αx2 + βxy + γy2 be a quadratic form. Suppose there exist coprime
integers a and b such that f(a, b) = α′ 6= 0. Then there exist integers c and d with ad − bc = 1
such that

f(ax+ cy, bx+ dy) = α′x2 + β′xy + γ′y2

holds with |β′| ≤ |α′|.
If we suppose additionally that α′>0, then f(x, y) is also equivalent to a form α′x2+β′xy+γ′y2

with 2α′ ≤ β′ ≤ 3α′.

Proof. Suppose that a and b are coprime integers. Then there exist integers c′ and d′ such that
ad′ − bc′ = 1 holds. Let us consider the form

f(ax+ c′y, bx+ d′y) = α′x2 + β′′xy + γ′′y2 =: f1(x, y)

for some coefficients β′′ and γ′′. Note that the x2 coefficient of f1 is indeed α′ as α′ = f1(1, 0) =
f(a, b). By a geometric argument one finds an integer n such that

|β′′ − 2nα′| ≤ |α′|

holds as α′ 6= 0. We set c = c′ + na and d = d′ + nb and one can check that the statement of the
first part of the lemma is satisfied. Denote by f ′(x, y) = α′x2 + β′xy + γ′y2 the so-obtained form.

Suppose now that α′ > 0. If β′ ≥ 0 we have 0 ≤ β′ ≤ α′ and hence

f ′(x+ y, y) = α′(x+ y)2 + β′(x+ y)y + γ′y2 = α′x2 + (2α′ + β′)xy + γ′′y2

for some γ′′ where 2α′ ≤ 2α′ + β′ ≤ 3α′ by assumption on β′. If β′ < 0 one can consider the form
f ′(x+ y,−y) and conclude similarly.

2.2 Properties of Markov Forms

Lemma 2.5. Let Fm(x, y) be a Markov form. Then Fm(x, y) is equivalent to −Fm(x, y).
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Proof. One can check that the result is true for the Markov forms

F1(x, y) = x2 + 3xy + y2 and F2(x, y) = x2 + 2xy − y2

by verifying the equations

F1(x+ 2y,−x− y) = −F1(x, y) and F2(y,−x) = −F2(x, y).

Hence the statement is true for all singular solutions. We now want to show that

Fm(k1x− l1y,m1x− k1y) + Fm(x, y) = 0 (3)

holds for a non-singular solution (m,m1,m2), where k1 and l1 are such that

k1 ≡
m

m2
≡ −m2

m
mod m1 and k21 + 1 = l1m2

with 0 ≤ k1 < m1. We will do this by showing that the left-hand side of equation (3) viewed as
a quadratic polynomial in the variable y

x has three distinct solutions and hence must be the zero
polynomial.

We first use [3, Lemma 0.5] to see that (x, y) = (1, 0) and (x, y) = (k1,m1) are solutions of (3).
This is indeed true, as

Fm(k1,m1) = −1 and Fm(1, 0) = 1,

where the first equation follows from [3, Lemma 0.5] and the second one always holds. This proves
that (1, 0) is a solution of (3). On the other hand, we know that

k21 − l1m1 = 1 and m1k1 − k1m1 = 0,

where the first equality holds by definition of l1. Hence, using again [3, Lemma 0.5], it follows that
(k1,m1) is also a solution of (3).

By using [3, Lemma 0.4] we obtain additionally that (x, y) = (k,m) is a solution of (3) since in
this case we have

m1x− k1y = m1k − k1m = m2

by [3, Lemma 0.4]. However, we also have

m1(k1x− l1y) = m1(k1k − l1m)

= m1k1k −m(k21 + 1)

= k1m2 −m
= m1k2 − 3m1m2

= m1(k2 − 3m2),

where the second equality follows by the definition of l1 and the following three equalities by [3,
Lemma 0.4]. Hence, we obtain k1k − l1m = k2 − 3m2. Then we use [3, Lemma 0.5] one last time
to see that (k,m) is indeed a solution of (3) and hence the lemma follows.

Lemma 2.6. Let Fm(x, y) be a Markov form. Then we have the following estimate. For all
integers (x, y) 6= (0, 0) we have

|Fm(x, y)| ≥ 1.

Proof. We set

µ = min{|Fm(x, y)| : (x, y) ∈ Z2 \ {0}}.

As mFm has integral coefficients, the minimum indeed exists. Hence, there are integers x0, y0 with
µ = |Fm(x0, y0)|. Using Lemma 2.5 we can assume that

Fm(x0, y0) = µ. (4)
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Recall from [3] that we have the relation

m2Fm(x, y) = Φm(y, z) (5)

where z = mx − ky and Φm(y, z) = y2 + 3myz + z2. Note that for any integral pair (y, z) an
integral pair (x, y) with z = mx− ky exists if and only if z ≡ −ky mod m.

Let (x0, y0) be a solution of (4) and let z0 = mx0 − ky0. If there is more than one solution of
(4), we take the solution for which |y0|+ |z0| = |y0|+ |mx0 − ky0| is minimal.

• First, suppose that y0z0 < 0 and |y0| < |z0|. Let y1 = 3my0 + z0 and z1 = −y0. Thus, we
have z1 ≡ −ky1 mod m as z0 ≡ −ky0 mod m and k2 = lm− 1 ≡ −1 mod m. Then

Φm(y1, z1) = (3my0 + z0)2 + 3m(3my0 + z0)(−y0) + y20 = y20 + 3my0z0 + z20 = Φm(y0, z0)

and hence

0 ≤ m2µ = m2Fm(x0, y0) = Φm(y0, z0) = Φm(z1, y1) = z0y1 + y20

where the last equality follows from the definition of Φm and y1, z1. In particular, (y1, z1) is
a solution of (4) and −y20 ≤ z0y1 < z20 where the second inequality follows from y0z0 < 0. So
0 < −y0

z0
≤ y1 < z0 which implies that |y1| < |z0|. Thus, we have |y1| + |z1| < |y0| + |z0| as

|z1| = |y0|. But this is a contradiction to the minimality of |y0|+ |z0|.
• Similarly, the case y0z0 < 0 and |y0| > |z0| gives a contradiction.

• Note also that the case y0 = −z0 is not possible. Indeed, as Φm(y0,−y0) = −(3m−2)y20 < 0,
but we only consider solutions of Fm(x, y) = µ which is non-negative.

Thus, we have y0z0 ≥ 0 or y0 = z0 but the former case includes the latter so we will assume
henceforth that y0z0 ≥ 0. Let now y2 = z0 and z2 = −y0. Then we must have z2 ≡ −ky2 mod m
as k2 ≡ −1 mod m and (y0, z0) satisfies the analogous equation. We then consider

|Φm(y2, z2)| = |y20 + z20 − 3my0z0| ≤ y20 + z20 + 3my0z0 = m2µ.

But since µ = min{|Fm(x, y)|} we must have equality. As the triangle inequality applied to the
absolute value of a difference of two positive numbers is always strict, we must have y0 = 0 or
z0 = 0.

If y0 = 0, then we have m2µ = Φm(0, z0) = z20 ≥ m2 where the last inequality follows from
z0 ≡ −ky0 ≡ 0 mod m which implies m|z0. Hence, µ ≥ 1 in this case.

Similarly, one can show that m2µ = y20 ≥ m2 in the case z0 = 0. Hence, we also have µ ≥ 1.
This concludes the proof.

Figure 1: Markov tree of solutions of (1). Picture taken from [4].

2.3 Further Results

Lemma 2.7. Let f(x, y) = x2 + βxy + γy2 be a quadratic form with β and γ both real numbers.
Suppose additionally that f(k1,m1) ≤ −1 and f(k2−3m2,m2) ≤ −1, where (m, k : m1, k1 : m2, k2)
is an ordered Markov set. Then we have that

δ(f) ≥ δ(Fm).
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We remark that δ(Fm) = 9− 4
m2 (which goes to 9 as m→∞).

Proof. Let ∆ = 1
4δ(f) and ∆m = 1

4δ(Fm) be such that we can write

f(x, y) =

(
x+

1

2
βy

)2

−∆y2,

F (x, y) =

(
x+

1

2
βmy

)2

−∆my
2

for every x and y. Hence, we are left to prove

∆ ≥ ∆m (6)

by definition of ∆ and ∆m. By [3, Lemma 0.5] we have the inequality

f(x, y) ≤ Fm(x, y) (7)

for (x, y) = (k1,m1) and (x, y) = (k1 − 3m2,m2). For such (x, y) we can thus rewrite equation (7)
to obtain

∆−∆m ≥
(
x

y
+
β

2

)2

−
(
x

y
+
βm
2

)2

.

We now consider two cases.

(1) If β ≥ βm, then equation (6) follows form above with (x, y) = (k1,m1). Indeed, we then have

∆−∆m ≥
(
k1
m1

+
β

2

)2

−
(
k1
m1

+
βm
2

)2

≥ 0

since k1
m1
≥ 0 and β ≥ βm.

(2) Suppose now that β ≤ βm and apply (7) for (x, y) = (k2 − 3m2,m2) to obtain

∆−∆m ≥
β2

4
+

3m2 − k2
m2

(βm − β)− β2
m

4
.

However, we have

3m2 − k2
m2

≥ 2 >
3m− k
m

=
βm
2

so that

∆−∆m ≥
β2

4
+
βm
2

(βm − β)− β2
m

4
=

1

4
(βm − β)2 ≥ 0

as βm − β ≥ 0. This concludes the proof.

Lemma 2.8. Let f(x, y) = x2 + βxy + γy2 be a quadratic form, where β and γ are real numbers.
Assume that f(k,m) ≤ −1 and f(k − 3m,m) ≤ −1. Then we obtain the estimate

δ(f) ≥ 9 +
4

m2
> 9 (8)

on the discriminant of f .

Proof. By [3, Lemma 0.5] we have that

f(x, y) ≤ Fm(x, y)− 2

for (x, y) = (k,m) and (x, y) = (k − 3m,m). Then we can proceed similarly as in the proof of
Lemma 2.7.
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Lemma 2.9. We consider again the quadratic form f(x, y) = x2 +βxy+γy2 with real coefficients
β and γ that satisfy 2 ≤ β ≤ 3 and 0 < β2 − 4γ < 9. If we suppose that |f(x, y)| ≥ 1 for all
integers (x, y) 6= (0, 0), then f(x, y) is equivalent to a Markov form Fm(x, y).

For the proof and for later use we define two properties for integral (x, y) 6= (0, 0):

Pf (x, y) :⇐⇒ x2 + βxy + γy2 ≥ 1 (9)

Nf (x, y) :⇐⇒ x2 + βxy + γy2 ≤ −1 (10)

given an indefinite form f .

Proof. By assumption, for all integral (x, y) 6= (0, 0) either property Nf (x, y) or property Pf (x, y)
holds.

First, we note that we have Nf (1,−1). Indeed, as Pf (1,−1) would mean γ ≥ β, but this would
contradict our assumptions 2 ≤ β ≤ 3 and β2− 4γ > 0. Hence, Nf (1,−1) holds, i.e. −β+ γ ≤ −2.

We now distinguish two cases:

• If Pf (0, 1) holds (meaning that γ ≥ 1), then β ≤ 3 as β ≥ γ + 2 by the previous item. But
we assumed that 2 ≤ β ≤ 3 and thus β = 3. This implies that γ ≤ β − 2 ≤ 1 so that γ = 1.
Overall, we obtain that f(x, y) = x2 + 3xy + y2 is the first Markov form.

• Otherwise, suppose that Nf (0, 1) holds (meaning that γ ≤ −1). We then consider the integer
pair (x, y) = (−5, 2) and suppose that property P (−5, 2) holds. Thus, 25 − 10β + 4γ ≥ 1
which implies that

10β ≤ 24 + 4γ ≤ 20

using Nf (0, 1). As 2 ≤ β ≤ 3, this shows that β = 2. The above displayed inequality must
thus be an equality so that 24 + 4γ = 20 or in other words γ = −1. Overall, f(x, y) =
x2 + 2xy − y2 is the second Markov form.

In the following we may thus assume that Nf (0, 1) and Nf (−5, 2) hold.

We now proceed iteratively by walking through the Markov tree and distingushing cases. The
cases treated above corresponded to the first steps of the iteration (the singular solutions). Now
let (m, k;m1, k1;m2, k2) be an ordered Markov set with

Nf (k1,m1) and Nf (k2 − 3m2,m2). (11)

We show that either f is a Markov form or (11) holds for a corresponding Markov set below
(m,m1,m2) in the Markov tree (see Figure 1). To this end, we consider values f(k,m) and
f(k − 3m,m).

• If both Pf (k,m) and Pf (k − 3m,m) hold, f(x, y) = Fm(x, y) by [3, Lemma 0.5].

• Otherwise, at least one of the following two properties hold:

– Both Nf (k,m) and Nf (k2 − 3m2,m2) are true.

– Both Nf (k1,m1) and Nf (k − 3m,m) are true.

Indeed, this follows from our assumption in (11). Both of the above cases correspond to our
assumption in (11) for (m′1, k

′
1;m, k;m:2, k2) and (m′2, k

′
2;m1, k1;m, k) respectively where

(m′1,m,m2) and (m′2,m1,m) are just the vertices below (m,m1,m2) in the Markov tree (see
Figure 1). We also note that by Lemma 2.8 not both of the above properties can hold.

We conclude from this iteration that f(x, y) is a Markov form or that there exists a unique infinite
sequence of Markov sets

M (j) = (m(j), k(j);m
(j)
1 , k

(j)
1 ;m

(j)
2 , k

(j)
2 ) (12)
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for j ∈ N with m(1) < m(2) < m(3) < . . . and with (11). If the latter were true, (11) together with
Lemma 2.8 would imply that β2 − 4γ ≥ 9 as

β2 − 4γ ≥ 9− 4(m(j))−2 → 9 (13)

for j → ∞ which would contradict our assumption on the discriminant of f . Hence, the lemma
follows.

Corollary 2.10. Let m > 2 and m̃ > 2 and suppose that (m̃, m̃1, m̃2) is on the unique path
in Figure 1 from (1, 1, 1) to (m,m1,m2). Let M̃ = (m̃, k̃; m̃1, k̃1; m̃2, k̃2) be the Markov set for
(m,m1,m2). Then the Markov form Fm satisfies (11) as in Lemma 2.9 for M̃ , i.e. NFm

(k̃1, m̃1)
and NFm

(k̃2 − 3m̃2, m̃2) hold.

Proof. Let M = (m, k;m1, k1;m2, k2) be the Markov set corresponding to (m,m1,m2) and write
f = Fm. Then f satisfies the conditions of Lemma 2.9: By Lemma 2.6 we have |Fm(x, y)| ≥ 1 for
all integral pairs (x, y) 6= (0, 0). Furthermore, δ(Fm) = 9− 4m−2 < 9 and the xy coefficient of Fm
is between 2 and 3 as 0 ≤ 2k ≤ m implies

2 =
3m−m
m

≤ 3m− 2k

m
≤ 3m

m
= 3. (14)

We are thus able to apply the iteration in the above proof of Lemma 2.9. At each vertex, the
iteration either concludes and f is the Markov form at that vertex or it continues to a unique child
of that vertex. Since δ(f) < 9 the argument contradicting (12) still applies and the iteration for f
must conclude at some vertex. This vertex must be (m,m1,m2). Hence, (11) must hold for any
vertex visited by the iteration before (m,m1,m2) which is the statement of the lemma.

Lemma 2.11. There are uncountably many forms f(x, y) = x2 + βxy + γy2 with 2 ≤ β ≤ 3 and
β2 − 4γ = 9 such that the estimate

|f(x, y)| ≥ 1

holds for all integers (x, y) 6= (0, 0).

Proof. LetM be an infinite sequence of Markov sets M (j) for j ∈ N and

M (j) =
(
m(j), k(j);m

(j)
1 , k

(j)
1 ;m

(j)
2 , k

(j)
2

)
,

where (m(j),m
(j)
1 ,m

(j)
2 ) is

(1, 1, 1) j = 1
(2, 1, 1) j = 2
(5, 1, 2) j = 3

...
...

and (m(j+1),m
(j+1)
1 ,m

(j+1)
2 ) for j ≥ 3 is a solution below (m(j),m

(j)
1 ,m

(j)
2 ) (see Figure 1). Hence,

the estimates m(1) < m(2) < m(3) < . . . hold. Note that there are uncountably many of these
sequences, since each sequence corresponds to a 0, 1-sequence (and {0, 1}N is uncountable).

We want to show: each sequence corresponds to a distinct pair β, γ with the properties as in
the lemma.

Let F (j)(x, y) = Fm(j)(x, y) = x2 + β(j)xy + γ(j)y2 for some real coefficents β(j), γ(j). Then

δ(F (j)) = (β(j))2 − 4γ(j) = 9− 4(m(j))2 → 9

when j →∞ as m(j) →∞ when j →∞.

Now we use the Compactness Lemma 2.1 for these forms F (j). The lemma is indeed applicable
as 2 ≤ β(j) ≤ 3 (see for instance (14)) and as δ(F (j)) → 9 when j → ∞. Thus, there is a
subsequence j1 < j2 < . . . and β, γ real coefficients such that βj` → β and γj` → γ for ` → ∞
and β2 − 4γ = 9. In particular, 2 ≤ β ≤ 3. We set f(x, y) = x2 + βxy + γy2. We know that
|F (j`)(x, y)| ≥ 1 for all ` and all integral (x, y) 6= (0, 0). Hence,

|f(x, y)| = lim
`→∞

|F (j`)(x, y)| ≥ 1
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for all integral (x, y) 6= (0, 0).

It remains to show that the so-obtained limit forms are uniquely determined by the sequence
they were constructed with. The following proof is largely inspired by the argument in Lemma 2.9.
So suppose that M = (M (j))j∈N and M = (M

(j)
)jN are two distinct sequences and that f, f

are the respective corresponding forms constructed as above. SinceM andM are distinct, there
exists a unique integer J with M (j) = M

(j)
for all j ≤ J and with M (J+1) 6= M

(J+1)
. Let us

write M = M (J) = (m, k;m1, k1;m2, k2) for simplicity. By the above, the properties Nf (k1,m1),
Nf (k2−3m2), Nf (k1,m1), Nf (k2−3m2) hold. As in the proof of Lemma 2.9 either of the following
two statements are true for g = Fm(j) or g = Fm(j) when j > J :

(a) Both Ng(k,m) and Ng(k2 − 3m2,m2) are true.

(b) Both Ng(k1,m1) and Ng(k − 3m,m) are true.

Which of these statements is true is determined by the child of M in the sequence M resp. M.
But the children are distinct by choice of J as M (J+1) 6= M

(J+1)
. So let us suppose without loss

of generality that (a) is true for all g = Fm(j) and j > J and that (b) is true for all g = Fm(j) and
j > J . Thus, we have

Fm(j)(k,m) ≤ −1 and Fm(j)(k2 − 3m2,m2) ≤ −1

which implies by taking limits for j →∞ that (a) holds for f . Analogously, (b) holds for f . Since
δ(f) = 9, Lemma 2.8 implies that (b) cannot hold for f and hence f and f must be distinct. This
concludes the proof.

3 Proof of Markov’s Theorem for Minima of Quadratic Forms

In this section we present a detailed proof of Theorem 1.1. However, for the sake of the reader we
shall give a quick overview of the proof.

For the sufficient condition in (a) we use that the inequality µ(f ′) > 1
3δ(f

′)
1
2 is invariant under

multiples of f ′, where f ′ is any quadratic form. The concrete shape of a Markov form Fm allows
us then to show the inequality first for Fm and hence for f .

The converse direction of (a) needs a bit more work. We will distinguish cases according to
whether the infimum µ(f) is attained or not. In both cases we will use Lemma 2.4 to obtain that
f is equivalent to a form f ′ whose coefficients are in some way better to work with.

The first case is more direct and can be found in all detail in the proof. In the case where the
infimum is not attained, we will get a sequence (fn)n of forms whose members are of the same
shape as f ′. The Compactness Lemma 2.1 then allows us to find a converging subsequence of
(fn)n. We will then apply the Isolation Theorem 2.2 to the limit to conclude.

Lastly, part (b) will be a consequence of Lemma 2.11.

Proof of Theorem 1.1. Let f(x, y) = αx2+βxy+γy2 be a quadratic form with positive discriminant
β2 − 4αγ and the fixed value µ as in Theorem 1.1.

(a) We will start by showing part (a) of the theorem. To do this, we will first prove that if f is
equivalent to a multiple of a Markov form, then µ > 1

3δ
1
2 .

Let Fm(x, y) be a Markov form such that f is equivalent to a multiple of Fm. Analogously as
in the theorem we denote by

µ(Fm) = inf(|F (x, y)|)

the infimum over the absolute value of Fm(x, y), where x and y are not both 0.
By Lemma 2.6 we have that |Fm(x, y)| ≥ 1 for all x and y that are not both 0. Thus, µ(Fm) ≥ 1
follows. On the other hand, the discriminant of Fm(x, y) given by

δ(Fm) =

(
3m− 2k

m

)2

− 4

(
l − 3k

m

)
,
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which is strictly smaller than 9 as one can check by calculating and using properties of m and k
as part of a Markov set. This yields 1 > 1

3δ(Fm)
1
2 and we can conclude that µ(Fm) > 1

3δ(Fm)
1
2 .

Note that the inequality µ(f ′) > 1
3δ(f

′)
1
2 is invariant under multiples of any quadratic form

f ′. Hence, the inequality µ(Fm) > 1
3δ(Fm)

1
2 also holds for any multiple of Fm. In particular,

for the multiple of Fm to which f is equivalent to. As the discriminant δ and the value of µ
are invariant under equivalences of forms, the inequality follows also for f .
Let us now show the converse. Suppose that f is a quadratic form with positive discriminant
δ that satisfies µ > 1

3δ
1
2 . We can assume without loss of generality that µ = 1, else we simply

replace f by µ−1f . Hence, we additionally have that 9 > δ > 0.
We have by assumption that 1 = µ = inf(|f(x, y)|). Thus, for all ε > 0 there exist integers a
and c such that

1 ≤ |f(a, c)| < 1 + ε.

Note that we can assume that a and c are coprime, else we would replace a and c by
(gcd(a, c))−1a respectively (gcd(a, c))−1c.
We then claim that for every ε > 0 either the form f(x, y) or −f(x, y) is equivalent to a form
f ′(x, y) = α′x2 + β′xy + γ′y2, so that

1 ≤ α′ < 1 + ε and 2α′ ≤ β′ ≤ 3α.

This is indeed true as the following observations show.
Since a and c are coprime, we can apply Lemma 2.4 to obtain a form f ′(x, y) = α′x2+β′xy+γ′y2

that is equivalent to either f(x, y) or −f(x, y), depending on the sign of f(a, c). On its
coefficients the form f ′ satisfies the estimates

1 ≤ α′ < 1 + ε and 2α′ ≤ β′ ≤ 3α′,

where the first inequality on α′ follows from µ(f ′) = µ(f) = 1, the second one on α′ is a
consequence of α′ = f ′(1, 0) = |f(a, c)| < 1 + ε and lastly the inequalities on β′ follow directly
from Lemma 2.4. Hence, the claim follows.
We will now distinguish two cases.

(1) Suppose that the infimum is attained, that is there exist coprime integers a and c such
that 1 = |f(a, c)|. Using the claim we obtain a form f ′(x, y) = α′x2 + βxy + γy2 that is
equivalent to either f or −f with 2α′ ≤ β′ ≤ 3α′. Note that f ′ is equivalent to f in the case
f(a, c) > 0 and to −f in the case f(a, c) < 0. Therefore, it follows that α′ = f ′(1, 0) = 1
in every of the two cases. Since f and −f have the same discriminant it follows that
δ(f ′) = δ(f) = δ(−f). Hence, all conditions of Lemma 2.9 apply to f ′(x, y). Thus f ′(x, y)
is equivalent to a Markov form Fm(x, y).
Since f ′ is equivalent to f or −f , it follows that either f(x, y) or −f(x, y) is also equivalent
to Fm(x, y). If the first case applies we are done. In the second case we use that Fm(x, y)
is equivalent to −Fm(x, y) by Lemma 2.5, and therefore we are also done in the second
case.

(2) Suppose now that the infimum is not attained. Let n ≥ 1 be an integer. Using the claim
on εn = 1

n , we obtain an infinite sequence (fn)n of quadratic forms given by

fn(x, y) = αnx
2 + βnxy + γny

2,

where fn is equivalent to either f(x, y) or −f(x, y) and satisfies 1 ≤ αn < 1 + εn, 2αn ≤
βn ≤ 3αn and β2

n−4αnγn = δ(f), where the latter equality follows from the same argument
as in (1). Since |fn(x, y)| ≥ 1 holds for all integral (x, y) 6= (0, 0) by assumption, we also
have |fn(x, y)| ≥ 1 for all non-zero integral (x, y).
We will now show that this sequence, or at least a subsequence, converges to a limit in
the sense of the Compactness Lemma 2.1. To see this, we first note that 1 ≤ αn < 1 + εn
implies that αn → 1 by our choice of εn. Using the Compactness Lemma 2.1 we can then
suppose, by passing to a subsequence if necessary, that (βn)n and (γn)n converge to limits
β0 respectively γ0. We then consider the form

f0(x, y) = x2 + β0xy + γ0y
2.
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Note that |f0(x, y)| = limn→∞ |fn(x, y)| ≥ 1 as n → ∞ for all integral (x, y) 6= (0, 0).
Hence, one can check that all conditions of Lemma 2.9 apply and thus f0(x, y) = Fm(x, y)
for a Markov form Fm(x, y). However, we might not have that f0 is equivalent to a fn for
some n. So we are not quite done yet.
Let us consider the roots Φ, θ of the polynomial f0(x, 1) and the roots Φn, θn of the poly-
nomial fn(x, 1) for a positive integer n. Then we have

Φn → Φ and θn → θ

as n→∞. This is true because the roots Φn, θn are given by

Φn, θn =
−βn ±

√
β2
n − 4γn

2
.

If we use the convention that Φn is always the root with positive sign before the square
root and θn the root with negative sign, we get the convergence of the roots since (βn)n
and (γn)n converge to β respectively γ.
We now want to apply the Isolation Theorem 2.2 to Fm = f0. For this, note that Fm
attains values −1 and 1 by [3, Lemma 0.5]. Furthermore, Fm(x, 1) = f0(x, 1) has only
irrational roots as a rational root would yield a contraciction to |f0(x, y)| ≥ 1. Then we can
apply the Isolation Theorem 2.2 to Fm and obtain µ′ < µ = 1 and ε0 as in the theorem.
Then fn for sufficiently large n will satisfy the estimates

|Φ− Φn| < ε0 and |θ − θn| < ε0

by convergence of the roots. On the other hand we have |fn(x, y)| ≥ 1 > µ′. So we must
have that fn is a multiple of Fm and thus the statement follows.

(b) It is left to prove part (b) of the theorem. This will be fairly short compared to the proof of
the first part as shows the following.

Under the assumption µ = 1, we have to show that there are uncountably many, none a
multiple of another, forms with discriminant 9. To prove the statement, note that for any
given form f there are only countably many forms f ′(x, y) = f(ax+ by, cx+ dy), where a, b, c
and d are integers. Hence, there are only countably many forms equivalent to f . Lemma 2.11
then yields the statement in part (b) and hence the theorem follows.
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