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Serret’s Theorem
We define the action
GL3(Z) x R — R;
a b 2) ar +b
c d)’ cx+d

This action will be useful to see composition of this map as matrix multiplication.

Definition 1. Let z,y € R. We say that x is equivalent to y (z ~ y) if 34 € GLy(Z) with
det(A) = £1 such that x = Ay. That is

b
T = ay + , for some a,b,c,d € Z with ad — bc = £1.
cy+d

7~” is an equivalence relation.

Proposition 1.
Proof. (i) Reflexivity: x = Idz.

(i) Simmetry: x = Ay. We apply A~! to both sides and get y = A~ 'z, where det(A~!) =
(det(A)) ! = 41,

(#i) Transitivity: © = Ay and y = Bz = & = ABz with det(AB) = det(A4) det(B) = +1.

O
Lemma 1. Any two irrational numbers are equivalent.
Proof. Let x = p/q € Q with p, ¢ € Z and ged(p,q) = 1. Then
Im,n €Z:mqg—np=1.

Hence 0

p_0-mtp (m p) 0= A0,

qg 0-n+gq noq
with det(A) = mg — np = 1. Hence x ~ 0.
Since x was arbitrary the claim follows from transitivity. O

We recall now some properties of continued fractions. We have

1
+ L
a -
! 1
a2+—

[ag; a1,as,...] =ao+

where the a;’s are called partial quotients and a,, > 1 for n > 1. We define convergents as

Dn
— = [G’O;ala v aan}'
dn
The following holds:
(i) Yn>2
Do = ao, p1 = aipo + 1, Pn = GnPn—1 + Pn—2;
9 =1, Q1 = a1qo, Gn = @nGn-1+ qn—2.
(ii) Vn > 2

0 < gn-1 < gn;
0< |pn71| < |pn|

Furthermore the p,,’s are always all positive or all negative.
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(iii) Yn > 2
_ TnPn—1 +pn72
Tndn—1+ qn—2 ’
where x = [ag; a1, ...,an—1,2,]. The x,’s are called complete quotients.
(i) Yn > 1:
Prdn—1 — @npn—1 = (1)1,
(v)
r < p—", n odd,
qn
T > ]ﬁ, n even.
qn
(vi) Vn > 0:
1
0<|x— pn‘ < .
qn dndn+1
Lemma 2. Vn > 0:
(_1)n5n
qn — Pp = ————.
dn+1

for some 0 < 6, < 1.

Proof. By property (vi) we have

0< Qn+1|xQn _pn| <L
So with &, = gni1]2gn — pnl it follows

|xQn - pn‘ = 771'
dn+1

While by property (v) we have
ZTqn — Pn S 07 n Odd7
Tqn —Pn >0, n even.
Hence the claim follows directly. O

Lemma 3. If

_ P R _Pw—|—R
“Q 5)YTQuts

for some P,Q,R,S € Z with Q@ > S > 0 and PS — QR = =1, then % and % are two
consequent convergent of x, i.e.

Q (]n7 SiCInfl’

for somen > 1; and w is a complete quotient of x, i.e.

P _pn R _paa

x = [ag;ay,...,an,w.
Proof. Let
L - [ag; aq an)
Q qn ) b) b n

Notice ged(P, Q) = 1. W.lo.g. we can assume PS — QR = (—1)""!. Otherwise we can
“adjust” the length of the continued fraction. Indeed if a,, > 2, then

[ag; a1, ..., an] = [ao; a1, ..., an — 1,1];
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and if a,, =1
[ao;alv .. '7an] = [ao;alw ey Op—2,0an—1 + ]-}

By property (iv) we get
PnS —guR=PS—QR=(=1)""" = pugn_1 = Pn_14n-

Hence

(S = gn-1) = gn(R — pn-1)-
Assume S — g, 1 # 0, then g, must divide S — ¢, _1 since p, and ¢, are coprime. So

dn S S — Qqn—1-

On the other hand ¢, = Q > S, so

dn SS_anl <(]7l_(]nfl~é

0
>

Thus S = ¢q,_1 and R = p,,_1. Now since

= Pnw + Pn—1
GnW + Gn-1

we conclude z = [ag; a1, ..., an,w]. O

Theorem 1 (Serret). Let x,y € R\Q. Then x is equivalent to y if and only if the sequences
of partial quotients of x and y are equal after some point, i.e.

T = [ao;alv"'vam7007017627'"]7
y = [bo; b1, .., bn,co,c1,C2,. -]
Proof. 7<= Let w = [¢o, ¢1, ¢, . ..]. Then

2= a0, ..., amyw] = PmEPmit (D Pt gy,
I WGm + Gm+1 dm  Gm-—1 ’

and det(A) = pmdm—1 — gmPm—1 = £1. So x is equivalent to w. Similarly y is equivalent to

w, thus by transitivity x is equivalent to y.

7’=" Suppose y ~ z, i.e. y = Az with A = (i Z

we assume cx + d > 0 (otherwise substitute every coefficient with its negative). For some
k > 2 write

>, ad —bc = £1. Soy = (clij:g W.lo.g.

TpPr—1 + Prk—2 b1 Dk—o2
x:[ao;al,...,ak,l,xk]:—: (p P ).’L‘k,

Trqr—1 + Qr—2 Qk—1 k-2
Then y = Az = ABxy, =: Cxy, with det(C) = det(A) det(B) = £1. We have
C— AB — (apk1 +bqe—1  api—2 +ka2> _. (P R) .
CPk-1 + dgr—1  CPr—2 + dgr—2 QR S
Our goal is to use lemma [3]
Claim. @ > S
Proof. By lemma 2] we have
Pk—1= Tqr—1 + i,

gk
/

DPk—2 = TQx—2 + )
qk—1
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for some [4[, 0’| < 1. Then

co
Q = cpr—1 +dgp—1 = (cx + d)qr—1 + P

cd’
S = cpr—2 + dgr—2 = (cx + d)qr—2 + .

where qx_1 > qr—2 and the sequence of the g;’s is increasing. Hence we can choose k big
enough such that the second term in the above equations become irrelevant, thus showing
that Q > S. O

We can now apply lemma [3| finding
y = [bo; b1, b, i)
L]

Remark. In the last part of the proof we found some k "big enough” to show the theorem
but we don’t say anything about how big this k actually is. So what we want to do now is
to improve Serret’s Theorem finding a bound for k.

Bound to Serret’s Theorem

a b x_ax—&—b
c d)”  cx+d

Definition 2. We define I" to be the set of all transformation v = (CCL
’y =

Recall our action

that induce the action above. Note that for every v € ' we have —.
0 1 . 1 . . 11 .
Let ¢ = 10 with ez = -, the inverse transformation; and 7" = 10 with

Tx = z+1, the translation transformation. Then the step of the continued fraction algorithm

becomes .
Tip1 =T " (2;) = <(1) 1 > N

—a; T; — Q4

Recall that xp = x, so recursively we see that each z; is the image of z by a matrix v; , € I’

given by
0 1
Yo = Id, Yijx = (1 ) Yi—1,z5

—Qj—1

- _ (0 1 (0 1
Yiw = 1 —a;—1 1 —ag ’

We will now write v; = v; , when the argument z is obvious and we introduce the following
convention:

or explicitly

p2=0, pa1=1
g—2=1, q_1=0;

_ [ %i-2  —DPi-2
v (—%—1 pz‘—1>’

Proof. We use induction on i. For i = 0 we trivially see that v9 = Id. Now assume the claim

Claim.
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holds for ¢ > 1, then

ey = 0 1 i = 0 1 Gi—2  —Pi-2)\ _ —Gi-1 Pi-1
" 1 —a;) " I —ai) \—¢i-1  pi Gi—2 +0iGi—1  —Pi—2 — QiPi-1
_(~%-1 Pi-1) _ (%i-1 —Pi-1
4% —pi -4 P )

Definition 3. T'(z) = {v1,72,73,--- }-
Note that I'(z) is an unordered set.

Lemma 4. FEvery rational number satisfying

is a convergent of x.
We will not prove this lemma here.

Lemma 5. Let r/t,s/u € Q, with u,t >0, T <z <
is a convergent of x.

and ru— st = 1. Then r/t or s/u

S
u

Proof. Suppose r/t and s/u are not convergent of x. Then using the reverse triangle in-
equality and lemma [d] we have

1 Jru—st| |r s r s 1 1
A o

tu tu t wu u — 2t 2u?’

But this can hold only if t =u =1. Sor <z < sandr—s = +1, that is s = r + 1.
Now consider the convergent 2 = |z|. Since « € [r,r + 1] we must have either [z] =r or
|z] = r 4 1. But this would imply that either r =7/t or r + 1 = s = s/u is a convergent of
r. 2 O

Proposition 2. Vo ¢ R: T'(z) = W ~ (W, UWa), where
W={yel[-1<7(c0) <0,v(z) >1},
Wi :{’YEW"Y(OO):(L det(’)/):]-}a
Wy ={y€W|[~y(c0) =—1,det(y) =—-1}.
Remark. This proposition will be very useful for the next theorem but will not prove it here.
Notice that if v = (Z Z), then y(co) = 2. So in other words y(co) is just a property of
the matrix ~.

Theorem 2. Let v € T and r = #partial quotients of v~ (c0). Then
VeeRIs<r+33It>1: x5 =1y,

where y = y(x).

1

Remark. The bound on the index t is obtained in the same way considering v~ instead of

7.
Proof. Let y = v(x). We have Vs, t

Ty = ’}/s,z(z)a Yt = "Yt,y(y) = ’Vt,yf}/(x)'

We want to show that 3s < r + 3 such that s, = v, for some ¢ > 1. Instead we will
show that if v, » # 47, then ¢ < 2. In fact this is equivalent to say that if i > r + 3,
then 7; » = 7,47, which means that at least for ¢ < r 4 3 we have v; , = V4. So suppose
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Yix # Yty Then 4.7 (y) ¢ T(y) = W~ (W1 UWs). Recalling the definitions of W, Wy
and W5 we see that
Yiay t(o0) >0 or ’ym'yfl(oo) < —1.
Suppose first that v~!(c0) # 0o. Then vy~ 1(00) = B Iy +Y (o) > 0, then
qi—2  —Pi—2\ D Pqi—2 — qp;—2
0< _ P _ Pli-2—4pi-z
< %a(p/0) (_Qil Pi.1 ) q  —DPgi—1+qpi—1

Solving the inequality gives
L S
q
Remark. We introduce here the notation

|a,b|:{[a’b]’ ifa<h.
[b,a], ifb<a

Pi—2 Pi-1
qi—2 ’ qi—1

Di—2

By lemma, [5| we have then that 5;—: or =2

is a convergent of g. Now in the case
Viwy ' (00) < —1 we get

Pqi—2 — qpi—2 < _

1.
—Pgi—-1 + qPi—1
Solving this equality gives
P |Pizt —Piz2 Pic1
q Qi1 —qi—2 i1
One can show that
Pi—1 — Pi—2 c Pi—3 Di—1
qi—1 — qi—2 Gi-3 qi-1|’
hence obtaining
p c pi73’pifl )
q qi-3 qi—1
Notice that
bi—3
Di=3 Pi=1| _ |ai-1 Pi-1
¢i-3 Gi-1 731:? " gi1
and
Pi-3 . Pbi—3 Pi—3 qi—3
——qi—1——=="pi1 = —(ai-1Gi-2 + qi—3) — —— (@;i_1pi—2 + pi — 3)
ai—1 Aj—1 aj—1 Aj—1
=Dpi—3¢i—2 — ¢i—3pi—2 = 1.
Hence we can use lemma obtaining that 2’—:; or 2?—: is a convergent of %. Recall that p/q
has r partial quotients whose last index is 7 — 1. Hence in the worst case we get

i—3<r—1,

ie. 1 <r+2.
Now consider the case when v~!(c0) = oo. Then Vi > 1
ViV (Y) = Yiw(x) =2 >0

and since vy, , € W:
—1 <7071 (00) = 7iw(00) <0.

d
In the first case we must have a = 0 and bec = 1 since det(v; ;) = —1. Wlog b=c=1
(with b = ¢ = —1 we will end up with the same result). To find d we use the inequality

By our assumption we are only left with 7; ,(00) =0 or 7; z(c0) = —1. Let ;4 = <(Cl b).
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Yiz(z) > 1. So

1
r+d

>1 = 0<z4+d<1 = —-z<d<l1-—zx

which implies d = [—x] = —|z| = —ap. hence

L= (0 )= = i=1
Yi,x = 1 —ap =M,z 1= 1.

In the second case with a similar procedure we find that a; = 1 and

_ (1 —a ) _ _
Yi,x = <_1 1 +a0> =72,z = 1= 2.

So in general ¢ < 2 < r + 2 which ends our proof. O
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