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Serret's Theorem

We de�ne the action

GL2(Z)× R→ R;((
a b
c d

)
, x

)
7→ ax+ b

cx+ d
.

This action will be useful to see composition of this map as matrix multiplication.

De�nition 1. Let x, y ∈ R. We say that x is equivalent to y (x ∼ y) if ∃A ∈ GL2(Z) with
det(A) = ±1 such that x = Ay. That is

x =
ay + b

cy + d
, for some a, b, c, d ∈ Z with ad− bc = ±1.

Proposition 1. �∼� is an equivalence relation.

Proof. (i) Re�exivity: x = Idx.

(ii) Simmetry: x = Ay. We apply A−1 to both sides and get y = A−1x, where det(A−1) =
(det(A))−1 = ±1.

(iii) Transitivity: x = Ay and y = Bz ⇒ x = ABz with det(AB) = det(A) det(B) = ±1.

Lemma 1. Any two irrational numbers are equivalent.

Proof. Let x = p/q ∈ Q with p, q ∈ Z and gcd(p, q) = 1. Then

∃m,n ∈ Z : mq − np = 1.

Hence
p

q
=

0 ·m+ p

0 · n+ q
=

(
m p
n q

)
· 0 =: A · 0,

with det(A) = mq − np = 1. Hence x ∼ 0.
Since x was arbitrary the claim follows from transitivity.

We recall now some properties of continued fractions. We have

[a0; a1, a2, . . . ] = a0 +
1

a1 +
1

a2 +
1

. . .

,

where the ai's are called partial quotients and an ≥ 1 for n ≥ 1. We de�ne convergents as

pn
qn

:= [a0; a1, . . . , an].

The following holds:

(i) ∀n ≥ 2
p0 = a0, p1 = a1p0 + 1, pn = anpn−1 + pn−2;
q0 = 1, q1 = a1q0, qn = anqn−1 + qn−2.

(ii) ∀n ≥ 2

0 ≤ qn−1 ≤ qn;

0 ≤ |pn−1| ≤ |pn|.

Furthermore the pn's are always all positive or all negative.
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(iii) ∀n ≥ 2

x =
xnpn−1 + pn−2
xnqn−1 + qn−2

,

where x = [a0; a1, . . . , an−1, xn]. The xn's are called complete quotients.

(iv) ∀n ≥ 1:
pnqn−1 − qnpn−1 = (−1)n−1.

(v)

x ≤ pn
qn
, n odd,

x ≥ pn
qn
, n even.

(vi) ∀n ≥ 0:

0 <

∣∣∣∣x− pn
qn

∣∣∣∣ < 1

qnqn+1
.

Lemma 2. ∀n ≥ 0 :

qnx− pn =
(−1)nδn
qn+1

.

for some 0 < δn < 1.

Proof. By property (vi) we have

0 < qn+1|xqn − pn| < 1.

So with δn = qn+1|xqn − pn| it follows

|xqn − pn| =
δn
qn+1

.

While by property (v) we have

xqn − pn ≤ 0, n odd;

xqn − pn ≥ 0, n even.

Hence the claim follows directly.

Lemma 3. If

x =

(
P R
Q S

)
ω =

Pω +R

Qω + S

for some P,Q,R, S ∈ Z with Q > S > 0 and PS − QR = ±1, then P
Q and R

S are two

consequent convergent of x, i.e.

P

Q
=
pn
qn
,

R

S
=
pn−1
qn−1

,

for some n ≥ 1; and ω is a complete quotient of x, i.e.

x = [a0; a1, . . . , an, ω].

Proof. Let
P

Q
=
pn
qn

= [a0; a1, . . . , an].

Notice gcd(P,Q) = 1. W.l.o.g. we can assume PS − QR = (−1)n−1. Otherwise we can
�adjust� the length of the continued fraction. Indeed if an ≥ 2, then

[a0; a1, . . . , an] = [a0; a1, . . . , an − 1, 1];
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and if an = 1
[a0; a1, . . . , an] = [a0; a1, . . . , an−2, an−1 + 1].

By property (iv) we get

pnS − qnR = PS −QR = (−1)n−1 = pnqn−1 − pn−1qn.

Hence
pn(S − qn−1) = qn(R− pn−1).

Assume S − qn−1 6= 0, then qn must divide S − qn−1 since pn and qn are coprime. So

qn ≤ S − qn−1.

On the other hand qn = Q > S, so

qn ≤ S − qn−1 < qn − qn−1︸︷︷︸
>0

.

Thus S = qn−1 and R = pn−1. Now since

x =
pnω + pn−1
qnω + qn−1

we conclude x = [a0; a1, . . . , an, ω].

Theorem 1 (Serret). Let x, y ∈ RrQ. Then x is equivalent to y if and only if the sequences

of partial quotients of x and y are equal after some point, i.e.

x = [a0; a1, . . . , am, c0, c1, c2, . . . ],

y = [b0; b1, . . . , bn, c0, c1, c2, . . . ].

Proof. �⇐� Let ω = [c0, c1, c2, . . . ]. Then

x = [a0; a1, . . . , am, ω] =
ωpm + pm+1

ωqm + qm+1
=

(
pm pm−1
qm qm−1

)
ω =: Aω,

and det(A) = pmqm−1− qmpm−1 = ±1. So x is equivalent to ω. Similarly y is equivalent to
ω, thus by transitivity x is equivalent to y.

�⇒� Suppose y ∼ x, i.e. y = Ax with A =

(
a b
c d

)
, ad − bc = ±1. So y = ax+b

cx+d . W.l.o.g.

we assume cx + d > 0 (otherwise substitute every coe�cient with its negative). For some
k ≥ 2 write

x = [a0; a1, . . . , ak−1, xk] =
xkpk−1 + pk−2
xkqk−1 + qk−2

=

(
pk−1 pk−2
qk−1 qk−2

)
xk.

Then y = Ax = ABxk =: Cxk with det(C) = det(A) det(B) = ±1. We have

C = AB =

(
apk−1 + bqk−1 apk−2 + bqk−2
cpk−1 + dqk−1 cpk−2 + dqk−2

)
=:

(
P R
Q S

)
.

Our goal is to use lemma 3.

Claim. Q > S

Proof. By lemma 2 we have

pk−1 = xqk−1 +
δ

qk
,

pk−2 = xqk−2 +
δ′

qk−1
,
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for some |δ|, |δ′| < 1. Then

Q = cpk−1 + dqk−1 = (cx+ d)qk−1 +
cδ

qk
,

S = cpk−2 + dqk−2 = (cx+ d)qk−2 +
cδ′

qk−1
,

where qk−1 > qk−2 and the sequence of the qk's is increasing. Hence we can choose k big
enough such that the second term in the above equations become irrelevant, thus showing
that Q > S.

We can now apply lemma 3 �nding

y = [b0; b1, . . . , bn, xk].

Remark. In the last part of the proof we found some k �big enough� to show the theorem
but we don't say anything about how big this k actually is. So what we want to do now is
to improve Serret's Theorem �nding a bound for k.

Bound to Serret's Theorem

Recall our action (
a b
c d

)
x =

ax+ b

cx+ d
.

De�nition 2. We de�ne Γ to be the set of all transformation γ =

(
a b
c d

)
with det(γ) = ±1

that induce the action above. Note that for every γ ∈ Γ we have γ = −γ.

Let ε =

(
0 1
1 0

)
with εx = 1

x , the inverse transformation; and T =

(
1 1
1 0

)
with

Tx = x+1, the translation transformation. Then the step of the continued fraction algorithm
becomes

xi+1 = εT−ai(xi) =

(
0 1
1 −ai

)
=

1

xi − ai
.

Recall that x0 = x, so recursively we see that each xi is the image of x by a matrix γi,x ∈ Γ
given by

γ0 = Id, γi,x =

(
0 1
1 −ai−1

)
γi−1,x;

or explicitly

γi,x =

(
0 1
1 −ai−1

)
· · ·
(

0 1
1 −a0

)
.

We will now write γi = γi,x when the argument x is obvious and we introduce the following
convention:

p−2 = 0, p−1 = 1;

q−2 = 1, q−1 = 0;

Claim.

γi =

(
qi−2 −pi−2
−qi−1 pi−1

)
.

Proof. We use induction on i. For i = 0 we trivially see that γ0 = Id. Now assume the claim
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holds for i ≥ 1, then

γi+1 =

(
0 1
1 −ai

)
γi =

(
0 1
1 −ai

)(
qi−2 −pi−2
−qi−1 pi−1

)
=

(
−qi−1 pi−1

qi−2 + aiqi−1 −pi−2 − aipi−1

)
=

(
−qi−1 pi−1
qi −pi

)
=

(
qi−1 −pi−1
−qi pi

)
.

De�nition 3. Γ(x) = { γ1, γ2, γ3, . . . }.

Note that Γ(x) is an unordered set.

Lemma 4. Every rational number satisfying∣∣∣∣pq − x
∣∣∣∣ < 1

2q2

is a convergent of x.

We will not prove this lemma here.

Lemma 5. Let r/t, s/u ∈ Q, with u, t > 0, r
t ≤ x ≤

s
u and ru− st = ±1. Then r/t or s/u

is a convergent of x.

Proof. Suppose r/t and s/u are not convergent of x. Then using the reverse triangle in-
equality and lemma 4 we have

1

tu
=
|ru− st|

tu
=
∣∣∣r
t
− s

u

∣∣∣ ≥ ∣∣∣r
t
− x
∣∣∣+
∣∣∣ s
u
− x
∣∣∣ ≥ 1

2t2
+

1

2u2
.

But this can hold only if t = u = 1. So r ≤ x ≤ s and r − s = ±1, that is s = r + 1.
Now consider the convergent p0

q0
= bxc. Since x ∈ [r, r + 1] we must have either bxc = r or

bxc = r + 1. But this would imply that either r = r/t or r + 1 = s = s/u is a convergent of

x.

Proposition 2. ∀x ∈ R : Γ(x) = W r (W1 ∪W2), where

W = { γ ∈ Γ | −1 ≤ γ(∞) ≤ 0, γ(x) > 1 } ,
W1 = { γ ∈W | γ(∞) = 0, det(γ) = 1 } ,
W2 = { γ ∈W | γ(∞) = −1, det(γ) = −1 } .

Remark. This proposition will be very useful for the next theorem but will not prove it here.

Notice that if γ =

(
a b
c d

)
, then γ(∞) = a

c . So in other words γ(∞) is just a property of

the matrix γ.

Theorem 2. Let γ ∈ Γ and r = #partial quotients of γ−1(∞). Then

∀x ∈ R ∃s < r + 3 ∃t > 1 : xs = yt,

where y = γ(x).

Remark. The bound on the index t is obtained in the same way considering γ−1 instead of
γ.

Proof. Let y = γ(x). We have ∀s, t

xs = γs,x(x), yt = γt,y(y) = γt,yγ(x).

We want to show that ∃s ≤ r + 3 such that γs,x = γt,yγ for some t ≥ 1. Instead we will
show that if γi,x 6= γt,yγ, then i ≤ 2. In fact this is equivalent to say that if i ≥ r + 3,
then γi,x = γt,yγ, which means that at least for i ≤ r + 3 we have γi,x = γt,yγ. So suppose
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γi,x 6= γt,yγ. Then γi,xγ
−1(y) /∈ Γ(y) = W r (W1 ∪W2). Recalling the de�nitions of W , W1

and W2 we see that

γi,xγ
−1(∞) ≥ 0 or γi,xγ

−1(∞) ≤ −1.

Suppose �rst that γ−1(∞) 6=∞. Then γ−1(∞) = p
q . If γi,xγ

−1(∞) ≥ 0, then

0 ≤ γi,x(p/q) =

(
qi−2 −pi−2
−qi−1 pi.1

)
p

q
=

pqi−2 − qpi−2
−pqi−1 + qpi−1

.

Solving the inequality gives
p

q
∈
∣∣∣∣pi−2qi−2

,
pi−1
qi−1

∣∣∣∣ .
Remark. We introduce here the notation

|a, b| =

{
[a, b], if a ≤ b
[b, a], if b < a

.

By lemma 5 we have then that pi−1

qi−1
or pi−2

qi−2
is a convergent of p

q . Now in the case

γi,xγ
−1(∞) ≤ −1 we get

pqi−2 − qpi−2
−pqi−1 + qpi−1

≤ −1.

Solving this equality gives
p

q
∈
∣∣∣∣pi−1 − pi−2qi−1 − qi−2

,
pi−1
qi−1

∣∣∣∣ .
One can show that

pi−1 − pi−2
qi−1 − qi−2

∈
∣∣∣∣pi−3qi−3

,
pi−1
qi−1

∣∣∣∣ ,
hence obtaining

p

q
∈
∣∣∣∣pi−3qi−3

,
pi−1
qi−1

∣∣∣∣ .
Notice that ∣∣∣∣pi−3qi−3

,
pi−1
qi−1

∣∣∣∣ =

∣∣∣∣∣
pi−3

ai−1

qi−3

ai−1

,
pi−1
qi−1

∣∣∣∣∣
and

pi−3
ai−1

qi− 1− pi−3
ai−1

pi−1 =
pi−3
ai−1

(ai−1qi−2 + qi−3)− qi−3
ai−1

(ai−1pi−2 + pi − 3)

= pi−3qi−2 − qi−3pi−2 = ±1.

Hence we can use lemma 5 obtaining that pi−3

qi−3
or pi−1

qi−1
is a convergent of p

q . Recall that p/q

has r partial quotients whose last index is r − 1. Hence in the worst case we get

i− 3 ≤ r − 1,

i.e. i ≤ r + 2.
Now consider the case when γ−1(∞) =∞. Then ∀i ≥ 1

γi,xγ
−1(y) = γi,x(x) = xi > 0

and since γi,x ∈W :
−1 ≤ γi,xγ−1(∞) = γi,x(∞) ≤ 0.

By our assumption we are only left with γi,x(∞) = 0 or γi,x(∞) = −1. Let γi,x =

(
a b
c d

)
.

In the �rst case we must have a = 0 and bc = 1 since det(γi,x) = −1. W.l.o.g. b = c = 1
(with b = c = −1 we will end up with the same result). To �nd d we use the inequality
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γi,x(x) > 1. So

1

x+ d
> 1 ⇒ 0 ≤ x+ d ≤ 1 ⇒ −x ≤ d ≤ 1− x,

which implies d = d−xe = −bxc = −a0. hence

γi,x =

(
0 1
1 −a0

)
= γ1,x ⇒ i = 1.

In the second case with a similar procedure we �nd that a1 = 1 and

γi,x =

(
1 −a0
−1 1 + a0

)
= γ2,x ⇒ i = 2.

So in general i ≤ 2 ≤ r + 2 which ends our proof.
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