Serret's Theorem

We define the action

$$
\begin{aligned}
\mathrm{GL}_{2}(\mathbb{Z}) \times \mathbb{R} & \rightarrow \mathbb{R} ; \\
\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), x\right) & \mapsto \frac{a x+b}{c x+d} .
\end{aligned}
$$

This action will be useful to see composition of this map as matrix multiplication.
Definition 1. Let $x, y \in \mathbb{R}$. We say that x is equivalent to $y(x \sim y)$ if $\exists A \in \mathrm{GL}_{2}(\mathbb{Z})$ with $\operatorname{det}(A)= \pm 1$ such that $x=A y$. That is

$$
x=\frac{a y+b}{c y+d}, \quad \text { for some } a, b, c, d \in \mathbb{Z} \text { with } a d-b c= \pm 1
$$

Proposition 1. " \sim " is an equivalence relation.
Proof. (i) Reflexivity: $x=\operatorname{Id} x$.
(ii) Simmetry: $x=A y$. We apply A^{-1} to both sides and get $y=A^{-1} x$, where $\operatorname{det}\left(A^{-1}\right)=$ $(\operatorname{det}(A))^{-1}= \pm 1$.
(iii) Transitivity: $x=A y$ and $y=B z \Rightarrow x=A B z$ with $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)= \pm 1$.

Lemma 1. Any two irrational numbers are equivalent.
Proof. Let $x=p / q \in \mathbb{Q}$ with $p, q \in \mathbb{Z}$ and $\operatorname{gcd}(p, q)=1$. Then

$$
\exists m, n \in \mathbb{Z}: m q-n p=1
$$

Hence

$$
\frac{p}{q}=\frac{0 \cdot m+p}{0 \cdot n+q}=\left(\begin{array}{ll}
m & p \\
n & q
\end{array}\right) \cdot 0=: A \cdot 0
$$

with $\operatorname{det}(A)=m q-n p=1$. Hence $x \sim 0$.
Since x was arbitrary the claim follows from transitivity.
We recall now some properties of continued fractions. We have

$$
\left[a_{0} ; a_{1}, a_{2}, \ldots\right]=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\ddots}}}
$$

where the a_{i} 's are called partial quotients and $a_{n} \geq 1$ for $n \geq 1$. We define convergents as

$$
\frac{p_{n}}{q_{n}}:=\left[a_{0} ; a_{1}, \ldots, a_{n}\right] .
$$

The following holds:
(i) $\forall n \geq 2$

$$
\begin{array}{lll}
p_{0}=a_{0}, & p_{1}=a_{1} p_{0}+1, & p_{n}=a_{n} p_{n-1}+p_{n-2} ; \\
q_{0}=1, & q_{1}=a_{1} q_{0}, & q_{n}=a_{n} q_{n-1}+q_{n-2} .
\end{array}
$$

(ii) $\forall n \geq 2$

$$
\begin{aligned}
& 0 \leq q_{n-1} \leq q_{n} ; \\
& 0 \leq\left|p_{n-1}\right| \leq\left|p_{n}\right| .
\end{aligned}
$$

Furthermore the p_{n} 's are always all positive or all negative.
(iii) $\forall n \geq 2$

$$
x=\frac{x_{n} p_{n-1}+p_{n-2}}{x_{n} q_{n-1}+q_{n-2}},
$$

where $x=\left[a_{0} ; a_{1}, \ldots, a_{n-1}, x_{n}\right]$. The x_{n} 's are called complete quotients.
(iv) $\forall n \geq 1$:

$$
p_{n} q_{n-1}-q_{n} p_{n-1}=(-1)^{n-1} .
$$

(v)

$$
\begin{array}{ll}
x \leq \frac{p_{n}}{q_{n}}, & n \text { odd } \\
x \geq \frac{p_{n}}{q_{n}}, & n \text { even } .
\end{array}
$$

(vi) $\forall n \geq 0$:

$$
0<\left|x-\frac{p_{n}}{q_{n}}\right|<\frac{1}{q_{n} q_{n+1}} .
$$

Lemma 2. $\forall n \geq 0$:

$$
q_{n} x-p_{n}=\frac{(-1)^{n} \delta_{n}}{q_{n+1}} .
$$

for some $0<\delta_{n}<1$.
Proof. By property (vi) we have

$$
0<q_{n+1}\left|x q_{n}-p_{n}\right|<1 .
$$

So with $\delta_{n}=q_{n+1}\left|x q_{n}-p_{n}\right|$ it follows

$$
\left|x q_{n}-p_{n}\right|=\frac{\delta_{n}}{q_{n+1}} .
$$

While by property (v) we have

$$
\begin{aligned}
& x q_{n}-p_{n} \leq 0, \quad n \text { odd } \\
& x q_{n}-p_{n} \geq 0, \quad n \text { even }
\end{aligned}
$$

Hence the claim follows directly.
Lemma 3. If

$$
x=\left(\begin{array}{ll}
P & R \\
Q & S
\end{array}\right) \omega=\frac{P \omega+R}{Q \omega+S}
$$

for some $P, Q, R, S \in \mathbb{Z}$ with $Q>S>0$ and $P S-Q R= \pm 1$, then $\frac{P}{Q}$ and $\frac{R}{S}$ are two consequent convergent of x, i.e.

$$
\frac{P}{Q}=\frac{p_{n}}{q_{n}}, \quad \frac{R}{S}=\frac{p_{n-1}}{q_{n-1}},
$$

for some $n \geq 1$; and ω is a complete quotient of x, i.e.

$$
x=\left[a_{0} ; a_{1}, \ldots, a_{n}, \omega\right] .
$$

Proof. Let

$$
\frac{P}{Q}=\frac{p_{n}}{q_{n}}=\left[a_{0} ; a_{1}, \ldots, a_{n}\right] .
$$

Notice $\operatorname{gcd}(P, Q)=1$. W.l.o.g. we can assume $P S-Q R=(-1)^{n-1}$. Otherwise we can "adjust" the length of the continued fraction. Indeed if $a_{n} \geq 2$, then

$$
\left[a_{0} ; a_{1}, \ldots, a_{n}\right]=\left[a_{0} ; a_{1}, \ldots, a_{n}-1,1\right] ;
$$

and if $a_{n}=1$

$$
\left[a_{0} ; a_{1}, \ldots, a_{n}\right]=\left[a_{0} ; a_{1}, \ldots, a_{n-2}, a_{n-1}+1\right] .
$$

By property (iv) we get

$$
p_{n} S-q_{n} R=P S-Q R=(-1)^{n-1}=p_{n} q_{n-1}-p_{n-1} q_{n} .
$$

Hence

$$
p_{n}\left(S-q_{n-1}\right)=q_{n}\left(R-p_{n-1}\right) .
$$

Assume $S-q_{n-1} \neq 0$, then q_{n} must divide $S-q_{n-1}$ since p_{n} and q_{n} are coprime. So

$$
q_{n} \leq S-q_{n-1} .
$$

On the other hand $q_{n}=Q>S$, so

$$
q_{n} \leq S-q_{n-1}<q_{n}-\underbrace{q_{n-1}}_{>0} . \dot{z}
$$

Thus $S=q_{n-1}$ and $R=p_{n-1}$. Now since

$$
x=\frac{p_{n} \omega+p_{n-1}}{q_{n} \omega+q_{n-1}}
$$

we conclude $x=\left[a_{0} ; a_{1}, \ldots, a_{n}, \omega\right]$.
Theorem 1 (Serret). Let $x, y \in \mathbb{R} \backslash \mathbb{Q}$. Then x is equivalent to y if and only if the sequences of partial quotients of x and y are equal after some point, i.e.

$$
\begin{aligned}
x & =\left[a_{0} ; a_{1}, \ldots, a_{m}, c_{0}, c_{1}, c_{2}, \ldots\right], \\
y & =\left[b_{0} ; b_{1}, \ldots, b_{n}, c_{0}, c_{1}, c_{2}, \ldots\right] .
\end{aligned}
$$

Proof. " $\Leftarrow "$ Let $\omega=\left[c_{0}, c_{1}, c_{2}, \ldots\right]$. Then

$$
x=\left[a_{0} ; a_{1}, \ldots, a_{m}, \omega\right]=\frac{\omega p_{m}+p_{m+1}}{\omega q_{m}+q_{m+1}}=\left(\begin{array}{cc}
p_{m} & p_{m-1} \\
q_{m} & q_{m-1}
\end{array}\right) \omega=: A \omega
$$

and $\operatorname{det}(A)=p_{m} q_{m-1}-q_{m} p_{m-1}= \pm 1$. So x is equivalent to ω. Similarly y is equivalent to ω, thus by transitivity x is equivalent to y.
$" \Rightarrow "$ Suppose $y \sim x$, i.e. $y=A x$ with $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, $a d-b c= \pm 1$. So $y=\frac{a x+b}{c x+d}$. W.l.o.g. we assume $c x+d>0$ (otherwise substitute every coefficient with its negative). For some $k \geq 2$ write

$$
x=\left[a_{0} ; a_{1}, \ldots, a_{k-1}, x_{k}\right]=\frac{x_{k} p_{k-1}+p_{k-2}}{x_{k} q_{k-1}+q_{k-2}}=\left(\begin{array}{cc}
p_{k-1} & p_{k-2} \\
q_{k-1} & q_{k-2}
\end{array}\right) x_{k} .
$$

Then $y=A x=A B x_{k}=: C x_{k}$ with $\operatorname{det}(C)=\operatorname{det}(A) \operatorname{det}(B)= \pm 1$. We have

$$
C=A B=\left(\begin{array}{ll}
a p_{k-1}+b q_{k-1} & a p_{k-2}+b q_{k-2} \\
c p_{k-1}+d q_{k-1} & c p_{k-2}+d q_{k-2}
\end{array}\right)=:\left(\begin{array}{cc}
P & R \\
Q & S
\end{array}\right) .
$$

Our goal is to use lemma 3 .
Claim. $Q>S$
Proof. By lemma 2 we have

$$
\begin{aligned}
p_{k-1} & =x q_{k-1}+\frac{\delta}{q_{k}} \\
p_{k-2} & =x q_{k-2}+\frac{\delta^{\prime}}{q_{k-1}}
\end{aligned}
$$

for some $|\delta|,\left|\delta^{\prime}\right|<1$. Then

$$
\begin{aligned}
& Q=c p_{k-1}+d q_{k-1}=(c x+d) q_{k-1}+\frac{c \delta}{q_{k}} \\
& S=c p_{k-2}+d q_{k-2}=(c x+d) q_{k-2}+\frac{c \delta^{\prime}}{q_{k-1}}
\end{aligned}
$$

where $q_{k-1}>q_{k-2}$ and the sequence of the q_{k} 's is increasing. Hence we can choose k big enough such that the second term in the above equations become irrelevant, thus showing that $Q>S$.

We can now apply lemma 3 finding

$$
y=\left[b_{0} ; b_{1}, \ldots, b_{n}, x_{k}\right] .
$$

Remark. In the last part of the proof we found some k 'big enough" to show the theorem but we don't say anything about how big this k actually is. So what we want to do now is to improve Serret's Theorem finding a bound for k.

Bound to Serret's Theorem

Recall our action

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) x=\frac{a x+b}{c x+d} .
$$

Definition 2. We define Γ to be the set of all transformation $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ with $\operatorname{det}(\gamma)= \pm 1$ that induce the action above. Note that for every $\gamma \in \Gamma$ we have $\gamma=-\gamma$.

Let $\varepsilon=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ with $\varepsilon x=\frac{1}{x}$, the inverse transformation; and $T=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$ with $T x=x+1$, the translation transformation. Then the step of the continued fraction algorithm becomes

$$
x_{i+1}=\varepsilon T^{-a_{i}}\left(x_{i}\right)=\left(\begin{array}{cc}
0 & 1 \\
1 & -a_{i}
\end{array}\right)=\frac{1}{x_{i}-a_{i}} .
$$

Recall that $x_{0}=x$, so recursively we see that each x_{i} is the image of x by a matrix $\gamma_{i, x} \in \Gamma$ given by

$$
\gamma_{0}=I d, \quad \gamma_{i, x}=\left(\begin{array}{cc}
0 & 1 \\
1 & -a_{i-1}
\end{array}\right) \gamma_{i-1, x}
$$

or explicitly

$$
\gamma_{i, x}=\left(\begin{array}{cc}
0 & 1 \\
1 & -a_{i-1}
\end{array}\right) \cdots\left(\begin{array}{cc}
0 & 1 \\
1 & -a_{0}
\end{array}\right) .
$$

We will now write $\gamma_{i}=\gamma_{i, x}$ when the argument x is obvious and we introduce the following convention:

$$
\begin{array}{ll}
p_{-2}=0, & p_{-1}=1 ; \\
q_{-2}=1, & q_{-1}=0 ;
\end{array}
$$

Claim.

$$
\gamma_{i}=\left(\begin{array}{cc}
q_{i-2} & -p_{i-2} \\
-q_{i-1} & p_{i-1}
\end{array}\right)
$$

Proof. We use induction on i. For $i=0$ we trivially see that $\gamma_{0}=\mathrm{Id}$. Now assume the claim
holds for $i \geq 1$, then

$$
\begin{aligned}
\gamma_{i+1} & =\left(\begin{array}{cc}
0 & 1 \\
1 & -a_{i}
\end{array}\right) \gamma_{i}=\left(\begin{array}{cc}
0 & 1 \\
1 & -a_{i}
\end{array}\right)\left(\begin{array}{cc}
q_{i-2} & -p_{i-2} \\
-q_{i-1} & p_{i-1}
\end{array}\right)=\left(\begin{array}{cc}
-q_{i-1} & p_{i-1} \\
q_{i-2}+a_{i} q_{i-1} & -p_{i-2}-a_{i} p_{i-1}
\end{array}\right) \\
& =\left(\begin{array}{cc}
-q_{i-1} & p_{i-1} \\
q_{i} & -p_{i}
\end{array}\right)=\left(\begin{array}{cc}
q_{i-1} & -p_{i-1} \\
-q_{i} & p_{i}
\end{array}\right) .
\end{aligned}
$$

Definition 3. $\Gamma(x)=\left\{\gamma_{1}, \gamma_{2}, \gamma_{3}, \ldots\right\}$.
Note that $\Gamma(x)$ is an unordered set.
Lemma 4. Every rational number satisfying

$$
\left|\frac{p}{q}-x\right|<\frac{1}{2 q^{2}}
$$

is a convergent of x.
We will not prove this lemma here.
Lemma 5. Let $r / t, s / u \in \mathbb{Q}$, with $u, t>0, \frac{r}{t} \leq x \leq \frac{s}{u}$ and $r u-s t= \pm 1$. Then r / t or s / u is a convergent of x.

Proof. Suppose r / t and s / u are not convergent of x. Then using the reverse triangle inequality and lemma 4 we have

$$
\frac{1}{t u}=\frac{|r u-s t|}{t u}=\left|\frac{r}{t}-\frac{s}{u}\right| \geq\left|\frac{r}{t}-x\right|+\left|\frac{s}{u}-x\right| \geq \frac{1}{2 t^{2}}+\frac{1}{2 u^{2}} .
$$

But this can hold only if $t=u=1$. So $r \leq x \leq s$ and $r-s= \pm 1$, that is $s=r+1$. Now consider the convergent $\frac{p_{0}}{q_{0}}=\lfloor x\rfloor$. Since $x \in[r, r+1]$ we must have either $\lfloor x\rfloor=r$ or $\lfloor x\rfloor=r+1$. But this would imply that either $r=r / t$ or $r+1=s=s / u$ is a convergent of x. 2

Proposition 2. $\forall x \in \mathbb{R}: \Gamma(x)=W \backslash\left(W_{1} \cup W_{2}\right)$, where

$$
\begin{aligned}
& W=\{\gamma \in \Gamma \mid-1 \leq \gamma(\infty) \leq 0, \gamma(x)>1\} \\
& W_{1}=\{\gamma \in W \mid \gamma(\infty)=0, \operatorname{det}(\gamma)=1\} \\
& W_{2}=\{\gamma \in W \mid \gamma(\infty)=-1, \operatorname{det}(\gamma)=-1\}
\end{aligned}
$$

Remark. This proposition will be very useful for the next theorem but will not prove it here. Notice that if $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, then $\gamma(\infty)=\frac{a}{c}$. So in other words $\gamma(\infty)$ is just a property of the matrix γ.

Theorem 2. Let $\gamma \in \Gamma$ and $r=\#$ partial quotients of $\gamma^{-1}(\infty)$. Then

$$
\forall x \in \mathbb{R} \exists s<r+3 \exists t>1: x_{s}=y_{t},
$$

where $y=\gamma(x)$.
Remark. The bound on the index t is obtained in the same way considering γ^{-1} instead of γ.

Proof. Let $y=\gamma(x)$. We have $\forall s, t$

$$
x_{s}=\gamma_{s, x}(x), \quad y_{t}=\gamma_{t, y}(y)=\gamma_{t, y} \gamma(x)
$$

We want to show that $\exists s \leq r+3$ such that $\gamma_{s, x}=\gamma_{t, y} \gamma$ for some $t \geq 1$. Instead we will show that if $\gamma_{i, x} \neq \gamma_{t, y} \gamma$, then $i \leq 2$. In fact this is equivalent to say that if $i \geq r+3$, then $\gamma_{i, x}=\gamma_{t, y} \gamma$, which means that at least for $i \leq r+3$ we have $\gamma_{i, x}=\gamma_{t, y} \gamma$. So suppose
$\gamma_{i, x} \neq \gamma_{t, y} \gamma$. Then $\gamma_{i, x} \gamma^{-1}(y) \notin \Gamma(y)=W \backslash\left(W_{1} \cup W_{2}\right)$. Recalling the definitions of W, W_{1} and W_{2} we see that

$$
\gamma_{i, x} \gamma^{-1}(\infty) \geq 0 \quad \text { or } \quad \gamma_{i, x} \gamma^{-1}(\infty) \leq-1
$$

Suppose first that $\gamma^{-1}(\infty) \neq \infty$. Then $\gamma^{-1}(\infty)=\frac{p}{q}$. If $\gamma_{i, x} \gamma^{-1}(\infty) \geq 0$, then

$$
0 \leq \gamma_{i, x}(p / q)=\left(\begin{array}{cc}
q_{i-2} & -p_{i-2} \\
-q_{i-1} & p_{i .1}
\end{array}\right) \frac{p}{q}=\frac{p q_{i-2}-q p_{i-2}}{-p q_{i-1}+q p_{i-1}} .
$$

Solving the inequality gives

$$
\frac{p}{q} \in\left|\frac{p_{i-2}}{q_{i-2}}, \frac{p_{i-1}}{q_{i-1}}\right| .
$$

Remark. We introduce here the notation

$$
|a, b|=\left\{\begin{array}{ll}
{[a, b],} & \text { if } a \leq b \\
{[b, a],} & \text { if } b<a
\end{array} .\right.
$$

By lemma 5 we have then that $\frac{p_{i-1}}{q_{i-1}}$ or $\frac{p_{i-2}}{q_{i-2}}$ is a convergent of $\frac{p}{q}$. Now in the case $\gamma_{i, x} \gamma^{-1}(\infty) \leq-1$ we get

$$
\frac{p q_{i-2}-q p_{i-2}}{-p q_{i-1}+q p_{i-1}} \leq-1
$$

Solving this equality gives

$$
\frac{p}{q} \in\left|\frac{p_{i-1}-p_{i-2}}{q_{i-1}-q_{i-2}}, \frac{p_{i-1}}{q_{i-1}}\right| .
$$

One can show that

$$
\frac{p_{i-1}-p_{i-2}}{q_{i-1}-q_{i-2}} \in\left|\frac{p_{i-3}}{q_{i-3}}, \frac{p_{i-1}}{q_{i-1}}\right|,
$$

hence obtaining

$$
\frac{p}{q} \in\left|\frac{p_{i-3}}{q_{i-3}}, \frac{p_{i-1}}{q_{i-1}}\right| .
$$

Notice that

$$
\left|\frac{p_{i-3}}{q_{i-3}}, \frac{p_{i-1}}{q_{i-1}}\right|=\left|\frac{\frac{p_{i-3}}{a_{i-1}}}{\frac{q_{i-3}}{a_{i-1}}}, \frac{p_{i-1}}{q_{i-1}}\right|
$$

and

$$
\begin{aligned}
\frac{p_{i-3}}{a_{i-1}} q i-1-\frac{p_{i-3}}{a_{i-1}} p_{i-1} & =\frac{p_{i-3}}{a_{i-1}}\left(a_{i-1} q_{i-2}+q_{i-3}\right)-\frac{q_{i-3}}{a_{i-1}}\left(a_{i-1} p_{i-2}+p_{i}-3\right) \\
& =p_{i-3} q_{i-2}-q_{i-3} p_{i-2}= \pm 1 .
\end{aligned}
$$

Hence we can use lemma 5 obtaining that $\frac{p_{i-3}}{q_{i-3}}$ or $\frac{p_{i-1}}{q_{i-1}}$ is a convergent of $\frac{p}{q}$. Recall that p / q has r partial quotients whose last index is $r-1$. Hence in the worst case we get

$$
i-3 \leq r-1
$$

i.e. $i \leq r+2$.

Now consider the case when $\gamma^{-1}(\infty)=\infty$. Then $\forall i \geq 1$

$$
\gamma_{i, x} \gamma^{-1}(y)=\gamma_{i, x}(x)=x_{i}>0
$$

and since $\gamma_{i, x} \in W$:

$$
-1 \leq \gamma_{i, x} \gamma^{-1}(\infty)=\gamma_{i, x}(\infty) \leq 0
$$

By our assumption we are only left with $\gamma_{i, x}(\infty)=0$ or $\gamma_{i, x}(\infty)=-1$. Let $\gamma_{i, x}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. In the first case we must have $a=0$ and $b c=1$ since $\operatorname{det}\left(\gamma_{i, x}\right)=-1$. W.l.o.g. $b=c=1$ (with $b=c=-1$ we will end up with the same result). To find d we use the inequality
$\gamma_{i, x}(x)>1$. So

$$
\frac{1}{x+d}>1 \quad \Rightarrow \quad 0 \leq x+d \leq 1 \quad \Rightarrow \quad-x \leq d \leq 1-x
$$

which implies $d=\lceil-x\rceil=-\lfloor x\rfloor=-a_{0}$. hence

$$
\gamma_{i, x}=\left(\begin{array}{cc}
0 & 1 \\
1 & -a_{0}
\end{array}\right)=\gamma_{1, x} \quad \Rightarrow \quad i=1 .
$$

In the second case with a similar procedure we find that $a_{1}=1$ and

$$
\gamma_{i, x}=\left(\begin{array}{cc}
1 & -a_{0} \\
-1 & 1+a_{0}
\end{array}\right)=\gamma_{2, x} \quad \Rightarrow \quad i=2 .
$$

So in general $i \leq 2 \leq r+2$ which ends our proof.

Bibliography

[1] G.H. Hardy, E.M. Wright, An Introduction to the Theory of Numbers.
[2] P. Bengoechea, On a theorem of Serret on continued fractions, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 110 (2) (2016) 379-384.
[3] V. Beresnevich, Number Theory, Lecture notes, University of York, 2013.

