
Markov’s Theorem on quadratic forms([1],[2])

First we look at a chain of theorems for indefinite quadratic forms, these are
exspressions of the form

f(x, y) = αx2 + βxy + γy2

with positive discriminant δ(f) = δ = β2 − 4αγ and α, β, γ real or integer
numbers.

Definition 0.1. Two quadratic forms f(x, y), f ′(x, y) are equivalent if there
are integers a, b, c, d, st.

f ′(ax+ by, cx+ dy) = f(x, y), where ad− bc = ±1 (1)

identically in x, y.

This forms an equivalence realtion in the usual sense. It is also easily verified
that two equivalent forms have the same discriminant. We write

µ(f) = inf
x,y∈N

| f(x, y) | x,y not both 0.

The chain of theorems is now as follows:

µ(f) ≤ 5−
1
2 δ

1
2 (f)

equality is only for the forms equivalent to a multiple of x2 + xy − y2, else

µ(f) ≤ 2−
3
2 δ

1
2 (f)

with equality only for the forms equivalent to a multiple of x2 + 2xy − y2, and
so on. The sequence of numbers 5−

1
2 , 2−

3
2 , ... converges to 1

3 .
This brings us to the theorem we want to prove

Theorem 0.1. Suppose that

f(x, y) = αx2 + βxy + γy2, δ(f) = β2 − 4αγ

and put

µ = inf
x,y∈N

| f(x, y) | x,y not both 0.
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• If

µ >
1

3
δ

1
2 , (2)

then f is equivalent to a Markov form (definition later).

• Conversely (2) holds for all forms equivalent to multiple of Markov forms.

• There are non-enumerably many forms, none of which is equivalent to a
multiple of any other, st. µ = 1

3δ
1
2

The poof is the goal of this notes.

Definition 0.2. Consider the diophantine equation defined by

m2 +m2
1 +m2

2 = 3mm1m2. (3)

We call the positive integer solutions (m,m1,m2) which may occur a Markov
triple.

Lemma 0.2. The triples (1, 1, 1) and (2, 1, 1) are the only Markov triples with
repeated numbers.

Proof. Suppose, without loss of generality, m1 = m2. Then m2
1 | m2, say

m = dm1. Plugging this into (3) gives d2 +2 = 3dm1, which implies d | 2, hence
d = 1 or d = 2. In either case m1 = m2 = 1 with m = 1 or 2.

The triples (1, 1, 1), (2, 1, 1) are called singular, and all other Markov triples
with three different entries non-singular. The smallest non-singular Markov
triple is (1, 5, 2) . The following clever idea permits a recursive construction of
all Markov triples. Suppose (m,m1,m2) is a non-singular triple. Then m is a
root of the polynomial

φ(x) = x2 − 3xm1m2 +m2
1 +m2

2 = (x−m)(x−m′).

The other root m′ satisfies m + m′ = 3m1m2, mm′ = m2
1 + m2

2. So m′ =

3m1m2 − m =
m2

1+m2
2

m implies m′ is an integer and m′ is positive. Therefore
(m′,m1,m2) is a different Markov triple. Similarly we get that

(m,m′1,m2), (m,m1,m
′
2),

where m′1 = 3mm2 −m1, m′2 = 3mm1 −m2 are Markov triple. Now we need
to check that they are distinct. Assume m > m1 > m2, then

m′1 > m > m2,m
′
2 > m > m1. (4)

and

(m1 −m)(m1 −m′) = φ(m1) = 2m2
1 − 3m2

1m2 +m2
2 < 0.
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Hence, max(m1,m2) lies strictly between m and m′ except for the singular
solutions; hence

m1 > m′,m2 (5)

We see that

m′2 > m′1 > m > m1.

Hence this are four different triples. Thus every non-singular solution gives rise
to three distinct solutions, called the neighbouring triples

(m′,m1,m2), (m,m′1,m2), (m,m1,m
′
2),

where m′ = 3m1m2 −m, m′1 = 3mm2 −m1, m′2 = 3mm1 −m2.

Definition 0.3. The solutions are arranged as in Figure 1. The branches ”going
down” from a solution (a, b, c) correspond to taking the neighbours with higher
maximum, and the branch ”going up” corresponds to taking the neighbour with
lower maximum. This constructed tree is the Markov tree.

Figure 1: Markov tree

Theorem 0.3. All Markov triples appear exactly once in the Markov tree.

Proof. Suppose (a,m, b) is a non-singular triple with maximum m. By (4)
and (5), there is exactly one neighbour with smaller maximum a or b, namely
(a, b, 3ab −m) if b > a respectively (3ab −m, a, b) if a > b. Going back in this
way, we decrease the maximum each time and end up eventually at (1, 5, 2) or
(2, 5, 1), since this is the only triple with maximum 5. Retracing our steps in
the tree from (1, 5, 2), we find that (a,m, b) or (b,m, a) is in the tree.Uniqueness
is clear, since the neighbor with smaller maximum is uniquely determined, and
we can argue by induction on the maximum.

Remark. A direct proof gives

g.c.d(m,m1) = g.c.d(m,m2) = g.c.d(m2,m1) = 1.
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From the Markov equation

m2 +m2
1 +m2

2 = 3mm1m2

it follows that m divides m2
1 +m2

2, whence

m2
1 = −m2

2(mod m)

Since m, m1, and m2 are coprime, the two congruences

m1x = ±m2(mod m)

have unique solutions u, u′ with 0 < u, u′ < m. Therefore we find integer
numbers k, k1, k2, st.

k =
m2

m1
=
−m1

m2
(mod m) with 0 ≤ k < m

k1 =
m

m2
=
−m2

m
(mod m1) with 0 ≤ k1 < m1

k2 =
m1

m
=
−m
m1

(mod m2) with 0 < k2 ≤ m2

Definition 0.4. We call

(m, k;m1, k1;m2, k2)

an ordered Markov set.

Remark. It holds

k2 =
m2

m1

−m1

m2
= −1(mod m) ect.

and therefore ∃l, l1, l2, st.

k2 + 1 = lm, k21 + 1 = l1m1, k22 + 1 = l2m2.

Lemma 0.4 (see [2] p.30 Lemma 7). For non-singular (m,m1,m2) we have

mk2 −m2k = m1

mk1 −m1k = m2

m1k2 −m2k1 = m′ = 3m1m2 −m

Definition 0.5. The Form Fm, defined by

mFm(x, y) = mx2 + (3m− 2k)xy + (l − 3k)y2

is called a Markov form.
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Identically one can write

m2Fm(x, y) = φm(y, z) (6)

where z = mx− ky and φm(y, z) = y2 + 3myz + z2.
Trivially

φm(y, z) = φm(z, y) = φm(−z, y + 3mz) (7)

= φm(z + 3my,−y) (8)

The discriminant of mFm(x, y) is 9m2 − 4 and so

Fm = (x+
3m− 2k

2m
y)2 − (

9

4
− 1

m2
)y2. (9)

We can see that the definition of Fm is asymetric in m1,m2. Suppose that
m2k

′ = m1(mod m), 0 ≤ k′ < m and k′2+1 = l′m. Let F ′m be the corresponding
form. By (6) we have k + k′ = 0(mod m) and so either m = 1, k = k′ or m > 0
and k + k′ = m In the first case F ′m = Fm and in the second F ′m(x, y) =
Fm(x − 2y,−y) by (9). Since we deal only with equvalence of forms we need
not consider Fm and F ′m seperately. If we order m1,m2 so that k ≤ k′, the
0 ≤ 2k ≤ m.
Each Markov triple corresponds to a Markov form. If we look at the first triple
(1, 1, 1) we have k = 0 and we get the form x2 + 3xy+ y2 (short (1, 3, 1)) which
is equivalent to x2 + xy − y2 like in the introduction. Therefore to the tree of
solutions of m2 +m2

1 +m2
2 = 3mm1m2 corresponds a tree of Markov forms (see

Figure 2)

Figure 2: Markov tree of forms

Lemma 0.5. For non-singular (m,m1,m2),

Fm(k,m) = Fm(k − 3m,m) = 1,

Fm(k1,m1)Fm(k2 − 3m2,m2) = −1.

Proof.

m2 = Fm(k,m) = φm(m, 0) = m2 by (6).
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Similarly (6), (8) give

m2Fm(k − 3m,m) = φm(m,−3m2) = φm(0,−m) = m2.

By Lemma 0.4, (x, y) = (k1,m1) gives z = −m2, so

m2Fm(k1,m1) = φm(m1,−m2)

= m2
1 − 3mm1m2 +m2

2 = −m2.

Finally

m2Fm(k2 − 3m2,m2) = φm(m2,m1 − 3mm2)

= φm(m1,−m2) = (−m2).

Corollary 0.5.1. Let f(x, y) = x2 + βxy + γy2 for some β and γ and suppose
that,

f(k,m) ≥ 1, f(k − 3m) ≥ 1

f(k1,m1) ≤ −1, f(k2 − 3m2,m2) ≤ −1

Then f(x, y) = Fm(x, y).

Proof. Let Fm(x, y) = x2 + βmxy+ γmy
2. Use Lemma 0.5 to show γ = γm and

β = βm.
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