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0 Introduction

The aim of this note is to provide a new proof of Hurwitz’s theorem using
hyperbolic geometry:

Theorem 0.1. (Hurwitz) 1. For all x ∈ RrQ there are infinitely many pairs
of integers r and s with s > 0 such that∣∣∣x− r

s

∣∣∣ < 1√
5s2

. (1)

2. Furthermore, the constant 1√
5

is optimal. This means, that for (
√

5 + ε)−1,

there are irrationals x ∈ RrQ such that the Inequality (1) only holds for finitely
many pairs of integers.

Later we could prove the Markov’s theorem using hyperbolic geometry as well.

1 Hyperbolic Plane and Horocycles

We denote H := {z ∈ C | =(z) > 0} ⊆ C. It can be also viewed a 2 dimensional
manifold since locally we could write the coordinates as (<(z),=(z)) := (x, y).

Definition 1.1. The hyperbolic plane is H equipped with metric tensor

g =
dx⊗ dx+ dy ⊗ dy

y2
.

This means the length of a given piecewise smooth curve c : [0, 1] −−! H can be
computed in the following way

L(c) :=

∫ 1

0

√
g(ċ(t), ċ(t))dt =

∫ 1

0

|ċ(t)|
=(c(t))

dt.

We should anticipate that the “lines” (geodesics) on H may not be “straight”
anymore. But from the form of the metric tensor, we can see that the model is
conformal, i.e., the angle between two intesecting lines is the same as the angles
between their tangent lines as in Euclidean geometry.
We provide the two following lemmas to show how the geodesics on H look like
and what the isometry group of H is. The proofs can be found in [THY12].
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Lemma 1.2. Let p, q be two distinct points in H. When <(p) = <(q), the
geodesic connecting them is the (unique) line segment (in Euclidean sense) pass-
ing through them; when <(p) 6= <(q), the geodesic connecting them is the arc
between p and q of the (unique) semi circle (in Euclidean sense) passing through
p, q whose center is lying on the real axis (of the complex plane). Precisely, the
distance between p and q is

d(p, q) = log

(
|p− q|+ |p+ q̄|

2
√
=(p)=(q)

)
. (2)

H

p1

q1

p2

q2

Pic. 1

Let Isom(H) denote the group of all isometries of H and Isom+(H) denote the
group of all orientation-preserving isometries of H. We have:

Lemma 1.3. Isom(H) ∼= PGL2(R) and Isom+(H) ∼= PSL2(R). Precisely, every

isometry M of H is given by the action of a matrix A =

(
a b
c d

)
∈ PGL2(R),

on H:

MA : z 7−! A.z :=


az + b

cz + d
if det(A) > 0

az̄ + b

cz̄ + d
if det(A) < 0

.

PGL2(R) := GL2(R)/{λ Id | λ ∈ R×} and PSL2(R) := SL2(R)/{± Id}. PSL2(R)
is a proper subgroup of PGL2(R). E.g, the reflection over the y-axis is an isom-
etry but not orientation-preserving one.

Definition 1.4. Let r, s ∈ R but cannot be zero simultaneously. A horocycle
h(r, s) with parameters (r, s) is:
1. h(r, s) := {z ∈ C | =(z) = r2} when s = 0.
2. h(r, s) := {z ∈ C | |z − r

s −
1

2s2 i| =
1

2s2 } when s 6= 0.

H

h(r2, 0)

h(r1, s1)

Pic. 2
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We can see a horocycle is either a Euclidean circle tangent to the real axis or
a Euclidean horizontal line. The case when s = 0 can be thought as a limit
case of the case when s 6= 0, i.e., a circle of radius infinity. The point ∞ and
the tangent point of circle on the real axis do not belong to H. However, it is
sometimes more convenient to consider the complex plane is compactified by∞.
So sometimes we call the Euclidean line with infinity and a Euclidean circle a
generalized circle. And some näıve computations involved with ∞ are allowed:
∞+ b =∞, λ∞ =∞, ∞ =∞, 1

∞ = 0, and 1
0 =∞ with b ∈ C and λ ∈ C×.

Lemma 1.5. Generalized circles are sent to generalized circles under translation
z 7−! z + b, dilation z 7−! λz, conjugation z 7−! z̄, and inversion z 7−! 1

z̄ with
λ ∈ C×, b ∈ C.

Proof. It is trivial to see that the lemma is true for the first three cases thanks
to (primary) school geometry.
For the inversion, we could prove it with some elementary computation. But
there is a nice geometry trick (inversion with respect to a circle). Given a circle
�H, we want to compute its image under the inversion z 7−! 1

z̄ . Link the center

H and the origin O. The line OH intersect �H at A and B. Pick an arbitrary
point C on �H. Denote the inverted point of A,B,C by A′, B′, C ′ respectively.
See Pic. 3.

C ′

H
A

C

O
B′A′ B

Pic. 3

By definition of the inversion map, we have the points, its inverted image and
the origin are colinear. Furthermore, |OA′||OA| = |OB′||OB| = |OC ′||OC| = 1.
Consider 4OCA and 4OA′C ′. They share one angle, i.e., ∠COA = ∠A′OC ′.
Rearranging the equality of sides, we have |OC′|

|OA| = |OA′|
|OC| . Hence, 4OCA ∼

4OA′C ′. Then ∠CAO = ∠OC ′A′. Similarly, 4OCB ∼ 4OB′C ′. Then
∠CBO = ∠OC ′B′. Note that ∠CBO = ∠CAO + ∠BCA = ∠CAO + 90◦.
Thus, ∠CAO + 90◦ = ∠OC ′A′ + ∠A′C ′B′. Then ∠A′C ′B′ is a right angle.
Thus, C ′ lies on the circle with diameter A′B′. �

Lemma 1.6. For A ∈ GL2(R) with det(A) = ±1 and for v ∈ R2 r {(0, 0)}
the hyperbolic isometry MA maps the horocycle h(v) to h(Av) (with at most one
point missing) where we identify Av is the canonical matrix-vector multiplication
(regarding v as a column vector).

Proof. An isometry of H can be considered as compositions of the z 7−! z + b,
z 7−! λz, z 7−! −z̄ and z 7−! 1

z̄ which correspond to the following matrices(
1 b
0 1

)
,

(√
λ 0

0
√
λ−1

)
,

(
−1 0
0 1

)
, and

(
0 1
1 0

)
,
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where b ∈ R and λ ∈ R+. With the help of Lemma 1.5, the rest will be
elementary computation. For example, z 7−! z+b is the translation to the right
by b. If s = 0, the translation does nothing on the horocycle and A(r, 0) = (r, 0).
So A.h(v) = h(Av). If s 6= 0, the translation shifts the horocycle h(v) to the
left for b and A(r, s) = (r+ bs, s). The radius is the same 1

2s2 as before and the

center is r+bs
s + i

2s2 = r
s + b+ i

2s2 . So A.h(v) = h(Av) again. �

Definition 1.7. Let h1 := h(r1, s1), h2 := (r2, s2) be two horocycles. The
signed distance between h1 and h2 is defined to as

d(h1, h2) :=

{
2 log(|r1s2 − s1r2|) if r1s2 − s1r2 6= 0

−∞ otherwise
.

Remark 1.8. The signed distance between two horocycles h1 and h2 can be
elaborated in the following way:
1. If the two horocycles osculate at the same point on the real axis or one of
them is a Euclidean horizontal line, the signed distance is −∞.
2. If the two horocycles osculate at different points on the real axis and are
disjoint, the signed distance is the length between the two intersecting points
on H between the horocycle the hyperbolic geodesic (semi-circle in the Euclidean
sense) with the two osculating points as limit points.
3. If the two horocycles osculate at the different points on the real axis and
intersect, the signed distance is the same length as in 2 but taken negative.
4. If the two horocycles osculate at the different points on the real axis and
tangent, the signed distance is zero.

Pic. 4

Definition 1.9. For a horocycle h and a geodesic g, the signed distance d(h, g)
is defined as
1. If h and g do not intersect, then d(h, g) is the length of the geodesic segment
connecting h and g and orthogonal to both.
2. If h and g do intersect, then d(h, g) is the length of that geodesic segment
taken negative.
3. If h and g are tangent then d(h, g) = 0.
4. If g ends in the osculating point of h on the real axis then d(h, g) = −∞.
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Pic. 5

Proposition 1.10. Let h = h(r, s) with s 6= 0 and a vertical geodesic g on H
emanating from x ∈ R. Their signed distance is

d(h, g) = log
(

2s2
∣∣∣x− r

s

∣∣∣) .
Proof. First, consider the case when the line and the horocycle are disjoint.
As is depicted in Pic. 6, we want to show that the distance measured by the
geodesic segment AB is the same as the vertical one A′B′. We need to find an
isometry sends AB to A′B′.

B′

k

h

x

g

A′
l

j

A B

r
s

Pic. 6

We can always apply a translation and a dilation. Hence, we reduce to the
case r = 0, s = 1. We claim that the desired isometry should be z 7−! z

1
2 z+1

.

Applying Lemma 1.6, we can see that the inner and outer horocycles h and j
are preserved. The geodesic semicircle k centered at x is sent to the geodesic
vertical line l emanating from r

s = 0 which can be computed by Lemma 1.5.
After transformation the images of endpoint A must still lie on the horocycle j
and the vertical geodesic l. Hence, A′ is the only possibility. So is for B and
B′. After knowing this, we can set the number r, s, x back (without assuming
r = 0, s = 1). By some simple Euclidean geometry, we can get the coordinates
A′ = ( r

s , 2|x−
r
s |) and B′ = ( r

s ,
1
s2 ). Then the distance easily by (2).

The case when the line and the horocycle are intersecting is analogous. The
only difference is the sign and the position of these circles and lines. �
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Now, we take the parameter of horocycles (r, s) from Z2 r {(0, 0)}. After do-
ing this, we could link geometry to number theory. Let h(r1, s1), h(r2, s2) be
two horocycles with integral parameters. By Definition 1.7 and Remark 1.8 if
s1, s2 6= 0 and r1

s1
= r2

s2
the two horocycles have a common osculating on the real

axis. If s1, s2 6= 0 and r1
s1
6= r2

s2
, they will never intersect and are tangent to each

other if and only if r1s2 − r2s1 = ±1 which happens only if (r1, s1) and (r2, s2)
coprime. Hence, r1

s1
and r2

s2
represent reduced fraction of rational numbers. We,

hence, will remove the cases where the horocycles osculate at the same point on
the real axis.

Definition 1.11. A Ford circle is a horocycle with integral parameters h(r, s)
such that r, s are coprime.
A triangle on H is a subset of H surrounded by three geodesic segments.
An ideal triangle on H is a subset of H surrounded by three geodesic with three
distinct points from R ∪ {∞} as their limit end points.
The Farey tessellation of H is an ideal triangulation of H with vertex set Q∪{∞}.

Pic. 7

Lemma 1.12. Suppose a geodesic g crosses an ideal triangle T of the Farey
tessellation. If g is one of the three geodesics bisecting two sides of T , then

d(h, g) = − log

(√
5

2

)

for all three Ford circles h at the vertices of T .

Proof. After applying a proper isometry, we can reduce to the case of ideal
triangle with end points 0, 1,∞.
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Pic. 8

The rest of the argument is simply Euclidean (school) geometry task and trans-
lation into Hyperbolic geometry as is shown in Pic. 8. �

Now we are prepared to prove the Hurwitz’s theorem (Theorem 0.1).

Proof. 1. We first proof part 1 of Theorem 0.1. Let x be an irrational and g be
the vertical geodesic from x to ∞. This part of Hurwitz’s theorem is equivalent
to: there are infinitely many Ford circles h satisfying

d(g, h) < − log

(√
5

2

)
. (3)

Note that g passes through infinitely many (ideal) triangles of the Farey tes-
sellation. For each of these triangles, at least one of its Ford circles h satisfies
Inequality (3) by Lemma 1. For consecutive triangles that g crosses, the same
horocycle may satisfy Inequality (3). But this can happen only finitely many
times (otherwise x would be rational), and then the geodesic will never again
intersect a triangle incident with this horocycle. Hence, infinitely many Ford
circles satisfy Inequality (3), and this completes the proof of part 1. �

2. For the second part, we will again show for Φ :=
√

5+1
2 , g the geodesic from

Φ to ∞. and ε > 0 there are only finitely many Ford circles h that satisfy

d(g, h) < − log

(√
5

2

)
− ε. (4)

To this end, let g1 be the geodesic from Φ to 1− Φ. For every Ford circle h,

d(h, g1) > − log

(√
5

2

)
.

Indeed, the distance is equal to − log
(√

5
2

)
for all Ford circles that g1 intersects,

and positive for all others. Because the geodesics g and g1 converge at the
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common end Φ, there is a point p ∈ g such that all Ford circles h intersecting
the ray from p to Φ satisfy

|d(g,Φ)− d(g1,Φ)| < ε,

and hence

d(g,Φ) > − log

(√
5

2

)
− ε.

On the other hand, the complementary ray of g, from p to ∞, intersects only
finitely many Ford circles. Hence, only finitely many Ford circles satisfy In-
equality (4), and this completes the proof of part 2. �
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