D-MATH FS 2020 Prof. D. Johnson

Exercise Sheet 1

Algebraic Geometry

- (1) Determine the radical of the ideal $(X_1^3 X_2^6, X_1X_2 X_2^3) \subseteq \mathbb{C}[X_1, X_2]$. *Hint*: look at the vanishing locus.
- (2) Let X be an affine variety. Show that the coordinate ring A(X) is a field if and only if X is a single point.
- (3) Let $X \subset \mathbb{A}^n$ be an affine variety. In class we defined the coordinate ring A(X) to be the quotient ring $K[X_1, \ldots, X_n]/I(X)$. Alternatively, one can take the coordinate ring to be the set of all functions $f : X \to K$ such that there exists a polynomial $p \in K[X_1, \ldots, X_n]$ so that $f(c_1, \ldots, c_n) = p(c_1, \ldots, c_n)$. This set is a ring, with the obvious addition and multiplication of functions.

Show that the ring from the alternate definition is isomorphic to A(X).

- (4) Let $X \subseteq \mathbb{A}^n$ be an arbitrary subset. Prove that $V(I(X)) = \overline{X}$.
- (5) Find the irreducible components of the affine variety $V(X_1 X_2 X_3, X_1 X_3 X_2^2) \subseteq \mathbb{A}^3_{\mathbb{C}}$.
- (6) Let $f: X \to Y$ be a continuous map of topological spaces. Prove:
 - a. If X is irreducible then so is f(X).
 - b. If X is connected then so is f(X).
- (7) Let A be an arbitrary subset of a topological space X. Prove that $\dim A \leq \dim X$.
- (8) Let X be the set of all 2×3 matrices over a field K that have rank at most 1, considered as a subset of $\mathbb{A}^6 = \operatorname{Mat}(2 \times 3, K)$. Show that X is an affine variety.
- (9) Show that the ideal $I = (X_1X_2, X_1X_3, X_2X_3) \subseteq \mathbb{C}[X_1, X_2, X_3]$ cannot be generated by fewer than three elements. What is the zero locus of I?