Exercise Sheet 1

Algebraic Geometry

(1) Determine the radical of the ideal $\left(X_{1}^{3}-X_{2}^{6}, X_{1} X_{2}-X_{2}^{3}\right) \subseteq \mathbb{C}\left[X_{1}, X_{2}\right]$. Hint: look at the vanishing locus.
(2) Let X be an affine variety. Show that the coordinate ring $A(X)$ is a field if and only if X is a single point.
(3) Let $X \subset \mathbb{A}^{n}$ be an affine variety. In class we defined the coordinate ring $A(X)$ to be the quotient ring $K\left[X_{1}, \ldots, X_{n}\right] / I(X)$. Alternatively, one can take the coordinate ring to be the set of all functions f : $X \rightarrow K$ such that there exists a polynomial $p \in K\left[X_{1}, \ldots, X_{n}\right]$ so that $f\left(c_{1}, \ldots, c_{n}\right)=p\left(c_{1}, \ldots, c_{n}\right)$. This set is a ring, with the obvious addition and multiplication of functions.
Show that the ring from the alternate definition is isomorphic to $A(X)$.
(4) Let $X \subseteq \mathbb{A}^{n}$ be an arbitrary subset. Prove that $V(I(X))=\bar{X}$.
(5) Find the irreducible components of the affine variety $V\left(X_{1}-X_{2} X_{3}, X_{1} X_{3}-\right.$ $\left.X_{2}^{2}\right) \subseteq \mathbb{A}_{\mathbb{C}}^{3}$.
(6) Let $f: X \rightarrow Y$ be a continuous map of topological spaces. Prove:
a. If X is irreducible then so is $f(X)$.
b. If X is connected then so is $f(X)$.
(7) Let A be an arbitrary subset of a topological space X. Prove that $\operatorname{dim} A \leq \operatorname{dim} X$.
(8) Let X be the set of all 2×3 matrices over a field K that have rank at most 1 , considered as a subset of $\mathbb{A}^{6}=\operatorname{Mat}(2 \times 3, K)$.
Show that X is an affine variety.
(9) Show that the ideal $I=\left(X_{1} X_{2}, X_{1} X_{3}, X_{2} X_{3}\right) \subseteq \mathbb{C}\left[X_{1}, X_{2}, X_{3}\right]$ cannot be generated by fewer than three elements. What is the zero locus of I ?

