D-MATH FS 2020 Prof. D. Johnson

Exercise Sheet 2

Algebraic Geometry

(1) Let $X = X_1 \cup \cdots \cup X_r$ be the decomposition of a Noetherian topological space into irreducible closed subsets with $X_i \not\subseteq X_j$ for all $i \neq j$. Show that

$$\dim X = \max\{\dim X_1, \ldots, \dim X_r\}.$$

- (2) Show that every Noetherian topological space is compact. In particular, every open subset of an affine variety is compact in the Zariski topology.
- (3) Let $\phi, \psi \in \mathcal{F}(U)$ be two sections of a sheaf \mathcal{F} on an open subset U of a topological space X. Show:
 - a. If ϕ and ψ agree in all stalks, i.e. $\overline{(U,\phi)} = \overline{(U,\psi)} \in \mathcal{F}_a$ for all $a \in U$, then $\phi = \psi$.
 - b. If $\mathcal{F} = \mathcal{O}_X$ is the sheaf of regular functions on an irreducible affine variety X then we can already conclude that $\phi = \psi$ if we only know that they agree in one stalk \mathcal{F}_a for $a \in U$.
 - c. For a general sheaf \mathcal{F} on a topological space X the statement of b. is false.
- (4) Let *a* be any point on the real line \mathbb{R} . For which of the following sheaves \mathcal{F} on \mathbb{R} (with the standard topology) is the stalk \mathcal{F}_a actually a local ring in the algebraic sense (i.e. it has exactly one maximal ideal)?
 - a. \mathcal{F} is the sheaf of continuous functions;
 - b. \mathcal{F} is the sheaf of locally polynomial functions.
- (5) Let Y be a non-empty irreducible subvariety of an affine variety X, and set U = X Y. Assume that A(X) is a unique factorization domain. Show that $\mathcal{O}_X(U) = A(X)$ if and only if $\operatorname{codim} Y \ge 2$.
- (6) Let X be a topological space. For each of the following, is it presheaf? Is it a sheaf in general?
 - a. $\mathcal{F}(U)$ =continuous functions from U to \mathbb{R} .
 - b. $\mathcal{F}(U)$ =bounded functions from U to \mathbb{R} .

- c. $\mathcal{F}(U) = K$, where K is a field and the restriction maps are the identity.
- d. Fix a point $x \in X$,

X,
$$\mathcal{F}(U) = \begin{cases} K & \text{if } x \in U \\ 0 & \text{if } x \notin U. \end{cases}$$

(What should the restriction maps be?)

e.
$$\mathcal{F}(U) = U$$
.