D-MATH FS 2020 Prof. D. Johnson

Exercise Sheet 3

Algebraic Geometry

(1) Which of the following ringed spaces are isomorphic over \mathbb{C} ?

a. \mathbb{A}^1 ; b. $V(X_1^2 + X_2^2) \subseteq \mathbb{A}^2$; c. $V(X_2 - X_1^2, X_3 - X_1^3) - \{0\} \subseteq \mathbb{A}^3$; d. $V(X_1 X_2) \subseteq \mathbb{A}^2$; e. $\mathbb{A}^1 - \{0\}$.

(2) Let $Y = V(Y - Z^2, XZ - Y^2, YZ - X) \subseteq \mathbb{A}^3$. Define a map

$$\begin{aligned} f: \mathbb{A}^1 &\longrightarrow Y \\ t &\longmapsto (t^3, t^2, t) \end{aligned}$$

Check that this is a well defined morphism. (This is called the twisted cubic curve).

- (3) Let $f : X \to Y$ be a morphism of affine varieties and $f^* : A(Y) \to A(X)$ the corresponding homomorphism of the coordinate rings. Are the following statements true or false?
 - a. f is surjective if and only if f^* is injective.
 - b. f is injective if and only if f^* is surjective.

Hint: See examples 4.9 and 4.18 in the text (that we did in class).

- c. If $f : \mathbb{A}^1 \to \mathbb{A}^1$ is an isomorphism then f is affine linear, i.e. of the form f(x) = ax + b for some $a, b \in K$.
- d. If $f : \mathbb{A}^2 \to \mathbb{A}^2$ is an isomorphism then f is affine linear, i.e. of the form f(x) = Ax + b for some $A \in Mat(2 \times 2, K)$ and $b \in K^2$.

(4) Prove the following statements:

a. Every morphism $\mathbb{A}^1 - \{0\} \to \mathbb{P}^1$ can be extended to a morphism $\mathbb{A}^1 \to \mathbb{P}^1$.

Hint: Let X_1, X_2 be the standard open cover of \mathbb{P}^1 , as discussed in class. A morphism $\mathbb{A}^1 - \{0\} \to \mathbb{P}^1$ is the same as a pair of morphisms $f_i : \mathbb{A}^1 - \{0\} \to X_i$ that are compatible with the gluing maps.

- b. Not every morphism $\mathbb{A}^2 \{0\} \to \mathbb{P}^1$ can be extended to a morphism $\mathbb{A}^2 \to \mathbb{P}^1$.
- c. Every morphism $\mathbb{P}^1 \to \mathbb{A}^1$ is constant.

(5) If X and Y are affine varieties we have seen that there is a bijection

{morphisms $X \to Y$ } $\stackrel{1:1}{\longleftrightarrow}$ {K – algebra morphisms $\mathcal{O}_Y(Y) \to \mathcal{O}_X(X)$ } $f \longmapsto f^*.$

Does this statement still hold

- a. if X is an arbitrary prevariety (but Y is still affine);
- b. if Y is an arbitrary prevariety (but X is still affine)? *Hint*: We see that $A(\mathbb{P}^1) = K$ (the only global functions are constant).