Solutions 1

Algebraic Geometry

(1) Let $J=\left(X_{1}^{3}-X_{2}^{6}, X_{1} X_{2}-X_{2}^{3}\right)$. By the Hilbert's Nullstellensatz,

$$
\sqrt{J}=I(V(J)) .
$$

One can easily check that

$$
V(J)=\left\{\left(a^{2}, a\right): a \in \mathbb{C}\right\},
$$

SO

$$
I(V(J))=\left\{p \in \mathbb{C}\left[X_{1}, X_{2}\right]: p\left(a^{2}, a\right)=0 \forall a \in \mathbb{C}\right\}
$$

This implies in particular that $p\left(X_{2}^{2}, X_{2}\right)=0$, hence $I(V(J)) \subseteq\left(X_{1}-\right.$ $\left.X_{2}^{2}\right)$. On the other hand, $X_{1}-X_{2}^{2} \in I(V(J))$, so $\sqrt{J}=\left(X_{1}-X_{2}^{2}\right)$.
(2) Let $A(X)=K\left[X_{1}, \ldots, X_{n}\right] / I(X)$. Then $A(X)$ is a field if and only if the ideal $I(X)$ is maximal. By the Weak Nullstellensatz, $I(X)$ must be of the form

$$
I(X)=\left(X_{1}-a_{1}, \ldots, X_{n}-a_{n}\right)
$$

for some $a:=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{A}^{n}$. Then $V(I(X))=X=\{a\}$.
(3) See Remark 1.14 of Gathmann-K $\frac{1}{4} \frac{1}{\mathrm{~h} h}$ notes.
(4) One always has $X \subseteq V(I(X))$. Since $V(I(X))$ is closed, one also gets $\bar{X} \subseteq V(I(X))$. Recall that the closure of X is the set of points $a \in \mathbb{A}^{n}$ so that every neighborhood of a intersects X. The neighborhoods of a in the Zaroski topology are of the form $\mathbb{A}^{n}-V(J)$ for some ideal J with $a \notin V(J)$. If $a \in V(I(X))$, then by definition $f(a)=0$ for all polynomial f vanishing on X. Let now $g \in K\left[X_{1}, \ldots, X_{n}\right]$ with $g(a) \neq 0$. By the above, there exists a $x \in X$ such that $g(x) \neq 0$, so $x \notin V(g)$ and $x \in X$.
(5) By substituing $X_{1}=X_{2} X_{3}$ to the other equation one gets

$$
X_{2}\left(X_{3}^{2}-X_{2}\right)=0,
$$

so the two irreducible components are $V\left(X_{1}, X_{2}\right)$ and $V\left(X_{1}-X_{3}^{2}, X_{2}-\right.$ X_{3}^{2}).
(6) This is a basic exercise of topology.
(7) Let

$$
A_{0} \subset A_{1} \subset \cdots \subset A_{n}
$$

be a chain of irreducible closed subsets of A. Write $A_{i}=C_{i} \cap A$ for some $C_{i} \subseteq X$ closed. By taking the closures, one gets a chain of irreducible closed subsets of X

$$
\overline{A_{0}} \subseteq \cdots \subseteq \overline{A_{n}} .
$$

It remains to show that the inclusions are strict. For all $i=0, \ldots, n$, pick $x \in A_{i+1}-C_{i}$. Then $x \notin \overline{A_{i}} \subseteq C_{i}$.
(8)

$$
X=\left\{A=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right): \operatorname{rank} A \leq 1\right\} \subseteq \mathbb{A}^{6} .
$$

This is equivalent to say that all the 2×2 minors are zero, i.e. X is the zero locus of the ideal

$$
\left(X_{11} X_{22}-X_{21} X_{12}, X_{11} X_{23}-X_{21} X_{13}, X_{12} X_{23}-X_{22} X_{13}\right) .
$$

(9) Assume that I can be generated by two polynomials, say $I=(f, g)$. Since I is a monomial ideal, one has that the monomials of f and g belong to I. This implies that both f and g have no degree ≤ 1 monomials. Also, one has that $X_{1} X_{2} \mid f_{2}$ or $X_{1} X_{3} \mid f_{2}$ or $X_{2} X_{3} \mid f_{2}$, where f_{2} is the degree- 2 monomial part of f. Same holds for g. Assume that $X_{1} X_{2} \mid f_{2}$ and $X_{2} X_{3} \mid g_{2}$, then the monomial $X_{1} X_{3}$ does not appear in any polynomial combination $\alpha f+\beta g\left(\alpha, \beta \in \mathbb{C}\left[X_{1}, X_{2}, X_{3}\right]\right)$. Hence $X_{1} X_{3} \notin(f, g)$.

