Solutions 2

(1) See Remark 2.31.a of Gathmann's notes.
(2) Being noetherian is equivalent to the property that every non-empty family of open subsets has a maximal element. Consider an open cover $\bigcup_{i \in I} U_{i}=X$ of X and the family

$$
\mathcal{F}=\left\{\bigcup_{i \in I_{0}} U_{i}: I_{0} \subseteq I \text { finite }\right\} .
$$

Then \mathcal{F} has a maximal element $\bigcup_{i \in I_{0}} U_{i}$. Assume $\bigcup_{i \in I_{0}} U_{i} \subset X$ and pick $x \in X-\bigcup_{i \in I_{0}} U_{i}$. But $X=\bigcup_{i \in I} U_{i}$, so there exists $i \in I-I_{0}$ such that $x \in U_{i}$. Hence $U_{i} \cup \bigcup_{i \in I_{0}} U_{i} \supset \bigcup_{i \in I_{0}} U_{i}$, which contradicts the maximality of $\bigcup_{i \in I_{0}} U_{i}$.
a. Let $a \in U ;(U, \phi) \sim(U, \psi)$ means that there exists $V_{a} \subseteq U$ such that $\phi_{V_{a}}=\psi_{V_{V_{a}}}$. Clearly $\left\{V_{a}\right\}_{a \in U}$ is an open cover of U such that $\phi_{V_{a} \cap V_{b}}=\psi_{V_{a} \cap V_{b}}$. By the gluing property there exists a unique $\xi \in \mathcal{F}(U)$ such that $\xi_{V_{V_{a}}}=\phi_{\left.\right|_{V_{a}}}=\psi_{\left.\right|_{V_{a}}}$ for all $a \in U$. In particular both ϕ and ψ do the job, by uniqueness we conclude.
b. Consider the zero lucus $V(\phi-\psi)$, where ϕ and ψ agree on a neighborhood $V_{a} \subseteq U$ of $a \in U$. Then $V_{a} \subseteq V(\phi-\psi)$ and $V(\phi-\psi)$ is closed in U. Hence ${\overline{V_{a}}}^{U} \subseteq V(\phi-\psi)$. Also, U is irreducible (since X is), then ${\overline{V_{a}}}^{U}=U$.
c. Consider ψ and ϕ two functions looking like the ones in the figure below. Let you the pleasure to write down an explicit expression for them.
(4) a. By the homomorphism $\mathcal{F}_{a} \rightarrow \mathbb{R}, \phi \mapsto \phi(a)$ we see that the kernel I_{a} is maximal, since $\mathcal{F}_{a} / I_{a} \simeq \mathbb{R}$. It is the only maximal ideal, since $\mathcal{F}_{a}-I_{a}=\mathcal{F}_{a}^{\times}$:
If $\phi(a) \neq 0$, then if $U^{\prime}:=X-\{\phi=0\}$,

$$
(U, \phi) \cdot\left(U^{\prime}, 1 / \phi\right) \sim\left(U \cap U^{\prime}, 1\right)
$$

in \mathcal{F}_{a}, since $a \in U \cap U^{\prime}$.

b. Consider $(\mathbb{R}, X-1) \in \mathcal{F}_{0}$. Then $X-1_{\left.\right|_{0}} \neq 0$, but $(\mathbb{R}, X-1)$ is not a unit in \mathcal{F}_{0}^{\times}: if ψ defined on $0 \in U$ is such that

$$
\psi \cdot(X-1)=1
$$

on U, then ψ cannot be a polynomial on U.
(5) If $\operatorname{codim} Y=1$, then $I(Y)=(f)$ for some $f \in A(X)$ irreducible. Then

$$
\mathcal{O}_{X}(D(f)) \simeq A(X)_{f}
$$

Assume codim $Y \geq 2$ and let $I(Y)=\left(f_{1}, \ldots, f_{k}\right)(k \geq 2)$. Since $X-Y=\cup_{i=1}^{k} D\left(f_{i}\right)$ and $\mathcal{O}_{X}\left(D\left(f_{i}\right)\right) \simeq A(X)_{f_{i}}$, one has $\phi=g_{i} / f_{i}^{m_{i}}$ on $D\left(f_{i}\right)$ for some $g_{i} \in A(X), m_{i} \in \mathbb{N}$ with $f_{i} \nmid g_{i}$. On $D\left(f_{i}\right) \cap D\left(f_{j}\right)$ $(i \neq j), g_{i} f_{j}^{m_{j}}=g_{j} f_{i}^{m_{i}}$. This also holds on $\overline{D\left(f_{i}\right) \cap D\left(f_{j}\right)}=X$. Since $A(X)$ is a UFD, $m_{i}=0$, otherwise $f_{i} \mid g_{i}$. Therefore $\phi=g_{i}$, a polynomial on $D\left(f_{i}\right)$ for all i.
(6) a. It's a sheaf, the reason is that being continuous is a local condition.
b. It's not a sheaf, since being bounded is a global condition.
c. Not even a presheaf, since $\mathcal{F}(\emptyset)=K \neq 0$.
d. If $V \subseteq U$,

$$
\rho_{U, V}= \begin{cases}\text { id } & \text { if } x \in V \text { or } x \notin U \\ 0 & \text { if } x \in U-V\end{cases}
$$

It's clearly a sheaf.
e. In the category of rings for instance, it's not a presheaf: $\mathcal{F}(\emptyset) \neq 0$.

