
EXERCISES ON ALGEBRAIC GROUPS

1. Exercises

(1) Onischik–Vinberg, Problem 3.1.2.
(2) Onischik–Vinberg, Problem 3.1.3.
(3) Onischik–Vinberg, Problem 3.1.4.
(4) Onischik–Vinberg, Problem 3.1.7.
(5) Onischik–Vinberg, Problem 3.1.8.
(6) Milne, Problem 3-1.

optional Let G be an algebraic group. Let A := k[G] denote its coordinate ring, equipped
with the right regular representation rA of G. Let g ∈ G. Show that g is semisimple
(resp. unipotent) if and only if rA(g) has semisimple (resp. unipotent) restriction
to each finite-dimensional subrepresentation of A. (Use the proof technique given in
lecture of the existence and uniqueness of Jordan decompositions.)

(7) Onishchik–Vinberg, Problem 3.2.1.
(8) Onishchik–Vinberg, Problem 3.2.2.
(9) Suppose k has chacteristic zero. Show that each g ∈ GL(V ) of finite order (i.e., gn = 1

for some natural number n) is semisimple. Show also that if gn is semisimple for some
natural number n, then g is semisimple. Show by example that either implication
may fail if k has positive characteristic.

(10) Show that every connected diagonalizable algebraic group is a torus.
(11) Let H be an algebraic subgroup of a torus T . Let H⊥ := {χ ∈ X(T ) : χ|H= 1}.

Show that H = {t ∈ T : χ(t) = 1 for all χ ∈ H⊥}.
(12) Let G be an algebraic group. For g ∈ G, write G(g) for the Zariski closure of the

group {gn : n ∈ Z} generated by g. Verify (using an earlier homework problem) that
G(g) is a commutative algebraic group. Show that G(g)s = G(gs) and G(g)u = G(gu).
Deduce that the multiplication map defines an isomorphism of commutative algebraic
groups G(g) ∼= G(gs)×G(gu).

(13) Using Theorem 11.2 and Lemma 12.2 in the course synopsis, prove the following:
for any connected nilpotent algebraic group G, the subsets Gs and Gu are normal
algebraic subgroups, and the multiplication map Gs ×Gu → G is an isomorphism of
algebraic groups.

(14) (a) Write down a careful proof (following, e.g., the course references) that the im-
age of the Grassmannian Gn,m under the Plücker embedding Gn,m ↪→ PN =
P(Λm(kn)) is closed.
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(b) Show that GLn is irreducible.
(c) Show that the action of GLn on Gn,m is transitive.
(d) Verify that GLn acts algebraically on PN , hence continuously on Gn,m; deduce

that the Plücker image of Gn,m is irreducible.
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Solution 6: Let Γ be a group. Let R(Γ) be the k-algebra of maps Γ→ k on Γ. Note that
R(Γ) ⊗ R(Γ) acts on Γ × Γ by f ⊗ h(g1, g2) := f(g1)h(g2). Recall the maps defining Hopf
algebra

∆ : R(Γ)→ R(Γ× Γ), ∆f(g1, g2) = f(g1g2),

ε : R(Γ)→ k, εf(g) = f(1),

S : R(Γ)→ R(Γ), Sf(g) = f(g−1).

Let ρn : Γ→ GLn(k) be n-dimensional representations of Γ. Consider the family of functions
ρ̃n,i,j : g 7→ ρn(g)i,j on Γ. Let R′(Γ) be the subspace of R(Γ) spanned by the ρ̃n,i,j for various
n, i, j. ρ̃ are called matrix coefficients of the representation ρ and R′(Γ) is the space of (finite
dimensional) matrix coefficients of Γ.

• We need to show that R′(Γ) is a subalgebra of R(Γ). That is, we need to show that

ρ̃n,i,j ρ̃m,k,l ∈ R′(Γ),

for i, j ≤ n and k, l ≤ m. We introduce the natural Γ-invariant Euclidean inner
product 〈, 〉 on ρn. Then

ρ̃n,i,j(g) = 〈ρn(g)ei, ej〉,

where {ei}i is the standard basis of kn. Consider the representation ρn⊗ ρm as diag-
onal representation of Γ, which is a finite dimensional representation of Γ. Consider
the matrix coefficient

〈ρn ⊗ ρm(g)ei ⊗ ek, ej ⊗ el〉 ∈ R′(Γ).

The above equals to 〈ρm(g)ei, ej〉〈ρn(g)ek, el〉 = ρ̃n,i,j ρ̃m,k,l(g).
• We need to show that ∆ maps R′(Γ) to R′(Γ) ⊗ R′(Γ). A priori, ∆(R′(Γ)) is inside
R′(Γ× Γ) given by

∆(ρ̃n,i,j)(g1, g2) = ρ̃n,i,j(g1g2).

The RHS of the above is the i, j’th matrix coefficient of g1g2, which can also be
written as

n∑
k=1

ρ̃n,i,k(g1)ρ̃n,k,j(g2) =
n∑
k=1

ρ̃n,i,k ⊗ ρ̃n,k,j(g1, g2).

Hence the above sum lies in R′(Γ)⊗R′(Γ).
• We need to show that ∆, ε, S define a Hopf algebra structure on R′(Γ). That is, we

need to show the following relations:
(1)

(id⊗∆) ◦∆ = (∆⊗ id) ◦∆.
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To show this let gi ∈ Γ for i = 1, 2, 3. Then using the previous problem we
obtain

(id⊗∆)(∆(ρ̃n,i,j))(g1, g2, g3)

= (id⊗∆)(
∑
k

ρ̃n,i,k ⊗ ρ̃n,k,j)(g1, g2, g3)

=
∑
k

ρ̃n,i,k ⊗∆(ρ̃n,k,j)(g1, g2, g3)

=
∑
k

ρ̃n,i,j(g1)ρ̃n,k,j(g2g3)

=
∑
k

ρ̃n(g1)i,j ρ̃n(g2g3)j,k

= ρn(g1g2g3)i,j.

On the other hand, doing a similar computation one can check that

(∆⊗ id)(∆(ρ̃n,i,j))(g1, g2, g3)

=
∑
k

ρ̃n,i,j(g1g2)ρ̃n,k,j(g3)

= ρn(g1g2g3)i,j.

(2)

(id⊗ S) ◦∆ = (S ⊗ id) ◦∆.

To show this let g ∈ Γ.

(id⊗ S)(∆(ρ̃n,i,j))(g)

= (id⊗ S)(
∑
k

ρ̃n,i,k ⊗ ρ̃n,k,j)(g)

=
∑
k

˜ρn,i,k(g)ρ̃n,k,j(g
−1)

= ρn(gg−1)i,j = δi,j.

On the other hand doing a similar computation

(S ⊗ id)(∆(ρ̃n,i,j))(g)

= ρn(g−1g) = δi,j.

(3)

(id⊗ ε) ◦∆ = (ε⊗ id) ◦∆.
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To show this we proceed as before with g ∈ Γ.

(id⊗ ε)(∆(ρ̃n,i,j))(g)

= (id⊗ ε)(
∑
k

ρ̃n,i,k ⊗ ρ̃n,k,j)(g)

=
∑
k

˜ρn,i,k(g)ρ̃n,k,j(1)

= ρn(g.1)i,j.

On the other hand doing a similar computation

(ε⊗ id)(∆(ρ̃n,i,j))(g)

= ρn(1.g)i,j.
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Solution 7: A ∈ End(V ) for some finite dimensional vector space V . Let U ⊆ V be an
A-invariant subspace of V . Let A be semisimple.

(1) We need to show that A |U is semisimple. We can write

V = ⊕ri=1Vλi ,

where Vλi are the λi-eigenspaces and λi are the distinct eigenvalues of A. Now if if
u ∈ U such that

u = v1 + · · ·+ vr, vi ∈ Vλi ,
then Aku =

∑r
i=1 λ

k
i vi. Running k = 0, . . . , r − 1 we will have r equations

Λṽ = ũ,

where ṽ = (v1, . . . , vr)
t, ũ = (u, . . . , Ar−1u)t and Λij = λi−1j i,e,, a Vandermonde

matrix, hence invertible. As Aiu ∈ U we have vi ∈ U for all i. Thus

U = ⊕ri=1Vλi ∩ U,
hence A |U is semisimple.

(2) We need to show that U has a A-invariant complement. As A |U is semisimple we
can choose an eigenabasis E for U . As A is semisimple we can complete E to an
eigenbasis F of V . Thus

V = U ⊕ span(F \ E).

span(F \ E) is clearly A invariant being union of eigenspaces of A.
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Solution 8: We want to show that a family of commuting semisimple operators is si-
multaneously diagonalizable. First assume that the family of the commuting semisimple
operators is finite, say, {A1, . . . , Ar}. We use induction on r. For r = 1 it follows by defini-
tion. Let r − 1 commutating semisimple element are simultaneously diagonalizable. Let Eλ
be an eigenspace of Ar. Because of commutativity

Ar(Ajv) = Aj(Arv) = λ(Ajv),

for v ∈ Eλ. That is, Eλ is Aj invariant. Using the previous problem Aj |Eλ are semisimple.
Using induction hypothesis (as Aj |Eλ also commute) there exists a basis of Eλ such that
Aj |Eλ for j = 1, . . . , r − 1 are diagonalizable. But all vectors of Eλ are eigenvectors of Eλ.
Hence Eλ is also diagonalizable wrt that basis.

Now for possibly infinite family of commutating semisimple operators we consider the
span of them inside End(V ). The span would be a finite dimensional vector space as the
same is true for End(V ). We choose a basis of the span which would be a finite family
of commutating semisimple operators. Apply the previous argument to get a simultaneous
eigenbasis for the basis vectors. Hence the claim follows.
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Solution 10: Let H be a diagonalizable connected algebraic group. Now the character
group X(H) of H is a finitely generated abelian group (Lemma 8.3) which thanks to the
structure theorem looks like

X(H) = Zr ⊕ T,
for some r ≥ 0 and T is the torsion part. On the other hand, X(H) is the character group
of Gr

m×M where M is a group consisting of roots of unity and the character group of M is
T . Thus we can conclude that (Corollary 8.12)

H ∼= Gr
m ×M.

However, H is connected. Hence, the image under the projection map πT : H →M should be
connected. But this is only possible if the discrete group M is trivial. This yields H ∼= Gr

m,
therefore, a torus.
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Solution 11: Let us denote

H⊥⊥ := {t ∈ T : χ(t) = 1 for all χ ∈ H⊥}.
Note that, H⊥⊥ is a algebraic subgroup of T (as it is defined by polynomial equations) hence
a diagonalizable group. We easily see that for all h ∈ H and for all χ ∈ H⊥ we have χ(h) = 1,
by definition. So we have

H ⊆ H⊥⊥ ⊆ T.

To see the opposite direction we claim that there is a natural surjection of the character
groups

X(T ) � X(H⊥⊥) � X(H)

by restriction maps.
We see that if χ ∈ ker(X(T ) � X(H⊥⊥)) i.e.

⇐⇒ χ |H= 1 ⇐⇒ χ ∈ H⊥ ⇐⇒ χ |H⊥⊥= 1

i.e. χ ∈ ker(X(T ) � X(H)). Thus X(H) ∼= X(T )/ker ∼= X(H⊥⊥). Thus H = H⊥⊥.
Now we prove the claim. Note that, there is a surjection of the coordinate rings

O(T ) � O(H⊥⊥) � O(H)

again by restriction maps. Thus it is enough to prove that if G is a diagonaligable group
with an algebraic subgroup H such that O(G) � O(H) then X(G) � X(H). We know that
X(G) is a basis of O(G) (Lemma 8.8) (similarly, for H). Thus

I := {χ |H : χ ∈ X(G)} ⊆ X(H),

is linear independent. But X(G) spans O(G); which along with the surjection O(G) � O(H)
imply that I spans O(H), hence a basis and equals to X(H). This concludes the proof.

Another solution: We know that (Theorem 3.11) there exists a finite dimensional rep-
resentation ρ of G such that ker(ρ) = H. But G is diagonalizable which implies that ρ
decomposes as

ρ = ⊕dim(ρ)
i=1 χi,

where χi |H= 1. Hence,

ker(ρ) = ∩dim(ρ)
i=1 ker(χi).

But
H⊥⊥ = ∩χ|H=1ker(χ) ⊆ ker(ρ) = H.

Thus H = H⊥⊥.
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Solution 12: We already know that the Zariski closure of a group is an algebraic group.
G(g)×G(g) lies in the closed set

{(a, b) | aba−1b−1 = 1},
so as G(g)×G(g). If we show that G(g)×G(g) contains G(g)×G(g) then we will be done.
In other words, we need to show that if a polynomial f vanishes on X×Y then it will vanish
on X̄ × Ȳ . Now for every x ∈ X we have f(x, Y ) = 0. Thus f(x, Ȳ ) = 0, hence f vanishes
of X × Ȳ . Similarly, for every y ∈ Ȳ we have f(X, y) = 0. Hence f vanishes on X̄ × Ȳ .

As G(g) is commutative we know that (Theorem 10.2) there exists an isomorphism

G(g) = G(g)s ×G(g)u.

Under this map g 7→ (gs, gu) by the main theorem of Jordan decomposition. We know G(g)s
is algebraic, hence it follows that G(gs) ⊆ G(g)s and closed. Similarly, G(gu) ⊆ G(g)u and
closed. Thus G(gs)×G(gu) is closed in G(g). The inverse image of the multiplication map
is closed and thus is contained in G(gs)×G(gu). Hence, the multiplication map

G(gs)×G(gu)→ G(g),

is a surjection. However,

G(gs) ∩G(gu) = {1} = G(g)s ∩G(g)u.

This forces G(g)s = G(gs) and G(g)u = G(gu).
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Solution 13: We first prove that Gu is normal algebraic subgroup of G. As G is solvable
and connected we have that G is trigonalizable (Lie–Kolchin, Theorem 11.2). That is, there
exists an embedding G ↪→ GL(n) such that the elements of G map to upper triangular
matrices. Then Gu = G ∩ Un where Un is the set of upper triangular unipotent matrices.
We consider the natural morphism

G ↪→ GL(n)→ Dn,

where Dn is the set of diagonal matrices. Kernel of this map is G ∩ Un = Gu. Hence Gu is
a normal algebraic subgroup of G.

Now we show that Gs is normal algebraic subgroup. We know that Gs ⊂ Z(G) (Lemma
12.2). We will prove that Gs is an algebraic subgroup. The elements of Gs are semisimple
and commuting. If G ⊂ GL(V ) we can have common eigenspaces Vλ for all of Gs. As
Gs ⊂ Z(G) we have that G will leave each eigenspace invariant. We apply Lie–Kolchin to
each Vλ to get a closed embedding of G into upper triangular matrices in GL(V ) so that Gs

gets mapped to set of diagonal matrices. Hence, Gs is a central, therefor normal, algebraic
subgroup.

To prove Gs×Gu → G an isomorphism we first see that the map is injective as because of
the above embeddings Gs ∩Gu = {1}. Surjectivity follows from the Jordan decomposition.
The map is clearly a morphism. To see that the inverse map is also a morphism we note that
the map g 7→ gs through the Jordan decomposition is a morphism , hence so is g 7→ g−1s g.
This concludes the proof.
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Solution 14:

(a) See Proposition 11.3 in Szamuely’s notes.

(b) We know that kn
2

is irreducible, since its coordinate ring is an integral domain. The

group G := det−1(k \{0}) is non-empty and Zariski open, hence Zariski dense in kn
2
.

As a set is irreducible if and only if its Zariski closure is, we see that G is irreducible.
It remains to show that G is homeomorphic to

GLn(k) = {(x, t) ∈ kn2+1 | det(x)t = 1}.
Clearly the projection from GLn(k) to G is bijective and continuous. Let us show it
is also open. A basic open set U in GLn(k) is of the form

U =

{
(x, t) ∈ GLn(k) |

d∑
i=0

pi(x)ti 6= 0

}
for some d ∈ N and polynomials pi in x. The projection of U to G is then given by{

x ∈ G |
d∑
i=0

pi(x) det(x)−i 6= 0

}
=

{
x ∈ G |

d∑
i=0

pi(x) det(x)d−i 6= 0

}
,

where we cleared the denominators by multiplying with the non-zero number det(x)d.
The latter description exhibits the projection of U as open inside G.

(c) By linear algebra, GLn(k) acts transitively on bases of kn. Given m-dimensional
subspaces V,W of kn, choose bases (vi)

m
i=1, (wi)

m
i=1 of V,W , respectively, and enlarge

them to bases (vi)
n
i=1, (wi)

n
i=1 of kn. Then some g ∈ GLn(k) sends (vi)

n
i=1 to (wi)

n
i=1,

hence V to W .
(d) Note first that the action of GLn(k) on wedge products defines an algebraic repre-

sentation GLn(k) → GL(
∧m kn) ∼= GLN(k), where N =

(
n
m

)
. Indeed, one can check

that the entries of the matrix representation of g ∈ GLn(k) acting on
∧m kn with

respect to the basis (ei1 ∧ . . .∧ eim)1≤i1<···<im≤n are the m×m-minors of g. Thus, the
claim that the action of GLn(k) on PN induced by the exterior power representation
is algebraic follows from the more general claim that the action of GLN(k) on PN
(induced by the linear action of GLN(k) on kN) is algebraic, which is clear since the
action map

GLN(k)× PN → PN ,
(g, [x]) 7→ [gx],

has as components homogeneous (indeed, linear) polynomials in x1, . . . , xN (cf. the
argument in Example 12.4(2) in Szamuely’s notes).

Finally, irreducibility of Gm,n follows by combining all of the above, since, by
transitivity, Gm,n is the image of the irreducible set GLn(k) under an orbit map, and
continuous images of irreducible sets are irreducible.
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