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1 Disclaimers
The notes recorded here are intended to supplement the lectures, but I have
included more material here than is necessary for the course. You are not
expected to read these notes, but I hope that providing them as a reference may
be helpful. For example, although I have recorded here a fair bit of background
from differential geometry, it should not be necessary for the purposes of the
course.

A principal aim of the lectures is that after attending them, you should be
able to do the homework problems given below their summaries.

It is very likely that the notes and exercises will contain some mistakes; any
corrections would be much appreciated.

2 Summary of classes and homework assignments
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2.1 9/20: The definition of a Lie group
Objectives. You should be able to explain the definition of "Lie group" and
to prove that basic examples (e.g., orthogonal groups) are in fact Lie groups.

Summary.

1. review of one-variable calculus and how it relates global properties of func-
tions (e.g., monotonicity) to infinitesimal ones (e.g., positivity of deriva-
tive)

2. review of multivariable calculus:

(a) partial and total derivatives of a function
(b) inverse function theorem
(c) implicit function theorem

3. very brief review of differential geometry:

(a) the definition of submanifolds of open subsets of Euclidean spaces
(b) how (in practice) to check that a subset is a submanifold
(c) how (in practice) to compute tangent spaces of submanifolds
(d) immersions, embeddings, submersions

4. review of group theory:

(a) functorial definition of "group" in terms of multiplication and inver-
sion maps

(b) permutation groups; Cayley’s theorem
(c) definition of topological group

5. basic Lie-theoretic definitions:

(a) Lie group (without recalling what a "manifold" is, other than to note
that open subsets of Euclidean space and submanifolds thereof are
examples of manifolds)

(b) Lie subgroup
(c) immersed Lie subgroup (e.g., irrational winding of the 2-torus)
(d) the Lie algebra of a Lie group (without justifying the "algebra" in

"Lie algebra")
(e) linear Lie group

6. how to compute Lie algebras of Lie groups in practice; examples of GLn,SLn, On

Homework 1 (Due Oct 4). Write down the definitions of “Lie group” and “Lie
subgroup”. Using some lemmas from class, prove that O(n) := {g ∈ GLn(R) :
ggt = 1} is a Lie subgroup of GLn(R) of dimension n(n− 1)/2 with Lie algebra
o(n) := Lie(O(n)) given by the space {X ∈ Mn(R) : X + Xt = 0} of skew-
symmetric matrices.
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2.2 9/22: The connected component
Objectives. You should be able to define the "connected component" of a Lie
group, explain its importance, and determine it in some basic examples (such
as linear, orthogonal or unitary groups).

Summary.

1. review of the general topological notion of connected components of a
topological space, and how it specializes when the space is a manifold

2. basics on the connected component of the identity G0 in a Lie group G:

(a) it is a normal Lie subgroup whose cosets are the connected compo-
nents of G

(b) G0 (and more generally, any connected topological group) is gener-
ated by any neighborhood of the identity

3. most of the classical groups were introduced and their number of connected
components described, with some cases proved (SLn,GLn,O(n),SO(n),U(n))
and others left as exercises (O(p, q), . . . ); a large part of the class consisted
of filling in and explaining the entries in the three-column table depicted
in §12.2

4. review on the matrix exponential, as in §13.1

Homework 2 (Due Oct 4). Let p, q ≥ 1 and n := p+ q. Recall that

O(p, q) := {g ∈ GLn(R) : Q(gv) = Q(v) for all v ∈ Rn}
= {g ∈ GLn(R) : gtJg = J},

where Q(v) := v2
1 + · · ·+v2

p−v2
p+1−· · ·−v2

n and J := diag(1, . . . , 1,−1, . . . ,−1),
and that SO(p, q) := SLn(R)∩O(p, q). For a ∈ R, set Va := {v ∈ Rn : Q(v) = a}.
Denote by e1, . . . , en the standard basis vectors for Rn.

1. Suppose p = q = 1, so that n = 2.

(a) Show that every matrix of the form

g =

(
ε1

ε2

)(
cosh(t) sinh(t)
sinh(t) cosh(t)

)
(1)

with ε1, ε2 ∈ {±1}, t ∈ R belongs to O(1, 1). Show that(
cosh(t) sinh(t)
sinh(t) cosh(t)

)
= exp(t

(
0 1
1 0

)
).

Show that if ε1 = ε2 = 1, then g ∈ O(1, 1)0.

(b) Show that for each v ∈ V1 with v1 > 0 there is an element g ∈ O(1, 1)0

so that ge1 = v.
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(c) Show that every g ∈ O(1, 1) with ge1 = e1 is of the form (1) with
ε1 = 1, ε2 = ±1 and t = 0.

(d) Show for a = ±1 that the space Va has two connected components
and that O(1, 1) acts transitively on Va. Determine the orbit of e1

under SO(1, 1).

(e) Using some of the previous steps (or direct calculation), show that
every element of O(1, 1) is of the form (1) and that O(1, 1) has four
connected components.

2. Suppose now that p = 1, q = 2, n = 3.

(a) Observe (by drawing a picture, say) that V−1 is connected, that V1

has two connected components, and that e1 ∈ V1. Denote by V 0
1 the

connected component of V1 containing e1. Show that for each v ∈ V 0
1

there exists an h ∈ SO(1, 2)0 so that hv = e1. [Hint: one can reduce
to part (b) of the previous exercise.]

(b) Show that the stabilizer of e1 in SO(1, 2) is isomorphic to SO(2),
hence is connected.

(c) Show that any g ∈ SO(1, 2) for which ge1 ∈ V 0
1 belongs to the con-

nected component SO(1, 2)0.

(d) Deduce that SO(1, 2) has two connected components.

9



2.3 9/27: One-parameter subgroups and the exponential
map

Objectives. You should be able to define one-parameter subgroups and apply
their basic uniqueness theorem. You should be able to define and characterize
the exponential map on a Lie group in a few different ways, and be able to apply
these characterizations. You should be able to apply the exponential map to
relate global symmetries to infinitesimal ones (as in the example from lecture or
the homework problem below). You should be able to apply the fact that the
image of the exponential map contains a neighborhood of the identity, which in
turn generates the connected component.

Summary.

1. Review of the matrix exponential and its various characterizations:

(a) as a series exp(X) =
∑
Xn/n!

(b) as a limit exp(X) = lim(1 + X/n)n, or more generally, exp(X) =
lim γ(1/n)n for any curve with basepoint γ(0) = 1 and initial velocity
γ′(0) = X

(c) by requiring that for each X, the function ΦX(t) = exp(tX) is the
unique solution to the ODE Φ′(t) = XΦ(t) with initial condition
Φ(0) = 1

(d) by requiring that for each X, the function ΦX(t) as above is the
unique smooth group homomorphism with initial velocity Φ′X(0) =
X.

2. We explained how the above generalizes to any Lie group. The key was
the existence/uniqueness of one-parameter subgroups.

(a) The uniqueness was reduced to uniqueness theorems for ODE’s.

(b) We gave a direct proof of the existence of one-parameter subgroups
for GLn, deduced it for linear Lie groups via the second characteri-
zation above, and indicated how it follows for general G by solving
some ODE’s and extending their solutions.

3. As a basic application we explained how to characterize the rotation-
invariant functions on Rn as the solutions to a finite system of homo-
geneous linear differential equations.

Homework 3 (Due Oct 4).

1. Use Lie’s first theorem (Theorem 81) and the results of Homework 2 to
show that the following are equivalent for a smooth function f : R3 → R:

(a) f is constant on each connected component of {(x, y, z) ∈ R3 : z2 −
x2 − y2 = 1}.
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(b) f satisfies the differential equations

x
∂f

∂y
− y ∂f

∂x
= 0,

z
∂f

∂x
+ x

∂f

∂z
= 0,

z
∂f

∂y
+ y

∂f

∂z
= 0

on {(x, y, z) ∈ R3 : z2 − x2 − y2 = 1}.

2. LetG be a topological group andH ≤ G a subgroup with the property that
there is a neighborhood U in G of the identity element so that U∩H = {1}.
Show that H is a discrete subgroup of G.

3. Let G be a connected commutative Lie group with Lie algebra g. Show
that exp : g→ G is a surjective homomorphism and with discrete kernel.
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2.4 9/29: The Lie algebra of a Lie group
Objectives. You should be able to explain how the Lie bracket arises as an
infinitesimal commutator of group elements. You should be able to explain the
meaning of the sentence "the differential of a morphism of Lie groups is a mor-
phism of Lie algebras"; in particular, you should be able to define all of its terms.
Given a fairly explicit morphism of Lie groups (such as the representations on
polynomials discussed in lecture or in the homework below), you should be able
to compute the induced infinitesimal action of the Lie algebra.

Summary.

1. tying up loose ends on application of exponential map:

(a) connected Lie subgroups are determined by their Lie algebras

(b) the exponential map intertwines morphisms of Lie groups with their
differentials

(c) morphisms of Lie groups with connected domain are characterized
by their differentials

2. the commutator of infinitesimal elements on the general linear group com-
pared with the commutator bracket [X,Y ] := XY − Y X on the matrix
algebra; generalization to arbitrary Lie groups

3. definition of Lie algebra and morphism of Lie algebra

4. examples of Lie algebras:

(a) Lie(G) for G a Lie group

(b) End(V ) for V a vector space

(c) Der(A) for A an algebra

(d) Vect(M) = Der(C∞(M)) for M a manifold

5. proof that morphisms of Lie groups induce morphisms of Lie algebras

6. definition of a representation of a Lie group, matrix coefficients with re-
spect to a basis; example involving trigonometric functions and their ad-
dition law

Homework 4 (Due Oct 4). Let G be the Lie group SL2(C), g := Lie(G) =
sl2(C), and let n be a positive integer. Let V ≤ C[x, y] be the (n+1)-dimensional
vector space consisting of homogeneous polynomials of degree n in the variables
x, y, so that a basis of V is given by the set of monomials

B := {xn, xn−1y, . . . , xyn−1, yn}.

Let R : G→ GL(V ) be the map given for φ ∈ V by

(R(g)φ)(x, y) := φ((x, y)g),

12



where (x, y)g denotes matrix multiplication, so that more explicitly

(R(

(
a b
c d

)
)φ)(x, y) = φ(ax+ cy, bx+ dy).

1. Verify that R defines a representation of G on V , hence (by a general
theorem from class) that dR : g→ End(V ) is a morphism of Lie algebras.

2. Verify that the basis elements

H :=

(
1 0
0 −1

)
, X :=

(
0 1
0 0

)
Y :=

(
0 0
1 0

)
of g satisfy [X,Y ] = H.

3. Compute the actions of dR(H), dR(X), dR(Y ) ∈ End(V ) explicitly with
respect to the basis B of V and verify directly (without appeal to the
general theorem from class) that [dR(X), dR(Y )] = dR(H). [See §16.4 if
the definition of dR(X) is unclear.]

13



2.5 10/4 (half-lecture) and 10/6: Representations of SL(2)
Objectives. You should be able to analyze (finite-dimensional) representations
of SL2(C) by differentiating them to obtain representations of sl2(C), breaking
the latter up into weight spaces, and studying how the weight spaces are per-
muted by raising and lowering operators.

Summary.

1. definition of representations of Lie groups and algebras

2. example of polynomial representations of linear Lie groups; explicit calcu-
lation of the induced representation on the Lie algebra

3. discussion of the action of the standard basis of SL2(C) on the $(n+1)$-
dimensional representation Wn from Homework 4

4. definition of invariant subspaces, irreducibility

5. Wn is irreducible

6. every irreducible finite-dimensional representation of SL2(C) is isomorphic
to some Wn

Homework 5 (Due Oct 11). Let G be the Lie group SL2(C). Let H,X, Y be
the basis of g := Lie(G) as in Homework 4.

1. For λ ∈ C, let Vλ be the vector space with basis (vk)k∈Z≥0
. Show that the

action

Hvk = (λ− 2k)vk

Xvk = k(λ− k + 1)vk−1 (v−1 := 0)

Y vk = vk+1

defines a Lie algebra representation g→ End(Vλ). Determine the invariant
subspaces of Vλ.

2. Same question, but for the spaces Uν (ν ∈ C) with basis (vk)k∈Z and
action

Hvk = 2kvk

Xvk = (ν + k)vk+1

Y vk = (ν − k)vk−1.

3. Let b ≤ g be the subspace spanned by H,X. Verify that b is a Lie
subalgebra. Let ρ : g → End(V ) be a finite-dimensional representation.
Show that the following are equivalent for v ∈ V :

(a) v is an eigenvector for every element of b.

(b) v is an eigenvector of H and satisfies Xv = 0.

14



4. Let V be a finite-dimensional representation of G. Let v ∈ V be a nonzero
element satisfying Hv = λv for some integer λ ∈ Z. Define v′ ∈ V by

v′ :=

{
Y λv λ ≥ 0

X−λv λ ≤ 0.

(a) Verify that Hv′ = −λv′.
(b) Prove that v′ 6= 0. [Hint: Use the classification theorem for V proved

in lecture.]

5. (Optional) The nth Legendre polynomial Pn may be defined (perhaps up
to a sign) by

Pn(x) :=

n∑
k=0

(
n

k

)2(
x− 1

2

)n−k (
x+ 1

2

)k
.

The purpose of the exercise is to establish the formula

Pn(cos θ1)Pn(cos θ2) =

∫ π

φ=−π
Pn(cos(θ1) cos(θ2)−sin(θ2) sin(θ2) cos(φ))

dφ

2π
.

(2)
The geometric interpretation of the argument in the integrand is that if
one fixes a point O ∈ S2 at spherical distance θ1 from the north pole N ,
then cos(θ1) cos(θ2)−sin(θ2) sin(θ2) cos(φ) is the vertical coordinate of the
point P ∈ S2 at spherical distance θ2 from O for which the angle between
the arcs ON and OP is φ. [You might wish first to attempt to prove (2)
directly.]

(a) Let R : G → GL(V ) be the (2n + 1)-dimensional representation
V := W2n defined in the lectures. Let (vk)k=−n..n be the basis of V
given by vk := xn+kyn−k. For i, j ∈ {−n..n}, let Rij(g) denote the
matrix entry of g ∈ G with respect to this basis, i.e., the coefficient
of vi in R(g)vj . For θ, φ ∈ R, set

κ(θ) :=

(
cos(θ/2) i sin(θ/2)
i sin(θ/2) cos(θ/2)

)
, δ(φ) :=

(
eiφ/2

e−iφ/2

)
.

Verify that

R00(

(
a b
c d

)
) =

n∑
k=0

(
n

k

)2

(ad)k(cy)n−k.

Deduce that
Pn(cos(θ)) = R00(κ(θ)).

(b) Show that for each θ1, θ2, φ there exist φ1, φ2, θ so that

κ(θ1)δ(φ)κ(θ2) = δ(φ1)κ(θ)δ(φ2)

15



and moreover

cos(θ) = cos(θ1) cos(θ2)− sin(θ1) sin(θ2) cos(φ).

This can be proved directly via the geometric interpretation men-
tioned after (2) using the map SU(2) → SO(3) to be discussed next
week; if one wishes to attempt an algebraic proof, it may help to note
that

i. every element of SU(2) may be decomposed as δ(φ1)κ(θ)δ(φ2),
ii. the function

f : SU(2)→ R

given by

f(

(
α β

−β α

)
) := 2|α|2 − 1

satisfies f(δ(φ1)gδ(φ2)) = f(g) and f(κ(θ)) = cos(θ).

It may also help to treat first the case φ = 0.

(c) Verify that Rkl(δ(φ1)gδ(φ2)) = ei(−kφ1+lφ2) for all relevant indices
and arguments.

(d) Prove (2) by taking the (0, 0)th matrix coefficient of the identity

R(g1g2) = R(g1)R(g2)

with
g1 := κ(θ1)δ(φ),

g2 := κ(θ2)

and integrating over φ. [It may be helpful to recall the Fourier inver-
sion formula ∫ π

φ=−π
eikφ

dφ

2π
=

{
1 k = 0

0 k 6= 0

for k ∈ Z.]
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2.6 10/11 (half-lecture) and 10/13: The unitary trick
Objectives. Given a real form of a complex Lie algebras, you should be able to
relate representations of the two. You should be able to verify that the classical
complex Lie groups have compact real forms and apply this fact to deduce their
linear reductivity. You should know the definitions of Ad and ad and be able to
apply the fact that they are morphisms.

Summary.

1. introduction to and overview of the "unitary trick"

2. defn of real form of a complex Lie algebra, comparison between represen-
tations

3. defn of real form of a connected complex Lie group

4. example of a representation that is not completely reducible

5. lemma: complete reducibility is the same as invariant subspaces having
invariant complements

6. stated theorems that the following classes of groups are linearly reductive:

(a) finite groups

(b) (more generally) compact groups

(c) complex connected Lie groups with a compact real form

7. (Thursday onwards) we proved the above theorems.

8. along the way, we proved the useful fact that any finite-dimensional rep-
resentation of a compact group is unitarizable, i.e., admits an invariant
inner product.

9. we spent some time talking about examples of real forms and complexifi-
cations.

10. we introduced Ad and ad. we related them, proved some of their basic
properties, and interpreted the Jacobi identity in terms of properties of
ad.

Homework 6 (Due Oct 18).

1. Prove that if f : G → H is a Lie group morphism, then df(Ad(g)X) =
Ad(f(g))df(X).

2. Do Exercise 20.

3. Let G := SL2(C); it is a three-dimensional complex Lie group. Regard
Ad : G→ GL(g) as a three-dimensional holomorphic representation of G.
Write down an explicit isomorphism between Ad and the representation
W2 = Cx2 ⊕ Cxy ⊕ Cy2 discussed in lecture.

17



4. Let g be a Lie algebra (the case g = End(V ) is already interesting), let
n ≥ 1, and let

M = [Z1, [Z2, . . . , [Zn−1, Zn] · · · ] = ad(Z1) ad(Z2) · · · ad(Zn−1)Zn

be an n-fold iterated commutator of elements Z1, . . . , Zn ∈ g. Let M ′ ∈ g
be the result of formally expanding M as a sum of degree n monomials
Zi1 · · ·Zin and replacing each such monomial by the corresponding com-
mutator ad(Zi1) · · · ad(Zin−1

)Zin . For example:

(a) If M = [X,Y ], then we expand and set

M = XY − Y X,
M ′ := [X,Y ]− [Y,X]

and obtain M ′ = 2[X,Y ] after some simplification.

(b) If M = [X, [Y,X]], then we expand and set

M = XYX −XXY − Y XX +XYX,

M ′ := [X, [Y,X]]− [X, [X,Y ]]− [Y, [X,X]] + [X, [Y,X]]

and obtain M ′ = 3[X, [Y,X]] after some simplification.

Show thatM ′ = nM . [Hint: induct on n. Use the consequence [ad(Zi1), [ad(Zi2), . . . , [adZin−1
, adZin ]]] =

ad([Zi1 , [Zi2 , . . . , [Zin−1
, Zin ]]]) of iterated application of the Jacobi iden-

tity in the form ad([X,Y ]) = [ad(X), ad(Y )].]

18



2.7 10/18 (half-lecture): The adjoint representation
Objectives. You should be able to use the adjoint representation to describe
some low-dimensional exceptional isomorphisms and to relate representations of
the involved Lie groups and Lie algebras.

Summary.

1. recap of what we’ve shown about representations of SL2(C) and SU(2)

2. the exceptional isomorphisms SL2(C)/{±1} ∼= SO3(C), SU(2)/{±1} ∼=
SO(3), SL2(R)/{±1} ∼= SO(1, 2)0, (plus some generalities on quadratic
spaces)

Homework 7 (Due Oct 25).

1. Write down a careful proof that the adjoint representation Ad : G →
GL(g) of the group G := SL2(R) induces an isomorphism of Lie groups
f : PSL2(R)

∼=−→ SO(1, 2)0. Give an explicit isomorphism of Lie algebras
df : sl2(R)

∼=−→ so(1, 2).

2. Explain why the adjoint representation of G = GL2(C) does not induce
an isomorphism between G and SO4(C).

3. Let H denote Hamilton’s quaternion algebra over R, realized as the sub-
algebra of M2(C) given by

H :=

{(
z w
−w z

)
: z, w ∈ C

}
.

Set
H(1) :=

{
g ∈ H× : det(g) = 1

}
and

H0 := {v ∈ H : trace(v) = 0} .

(a) Verify that H(1) = SU(2). Deduce in particular via the embed-
ding (z, w) ↪→ C2 ↪→ R4 that SU(2) is diffeomorphic to the three-
dimensional sphere S3.

(b) Show that (H0,det) is a quadratic space over R of signature (3, 0).
(c) Let α : H× → GL(H0) be the conjugation action α(g)(v) := gvg−1

(g ∈ H×, v ∈ H0). Show that α(H(1)) = SO(H0,det) ∼= SO(3) and
that {g ∈ H(1) : α(g) = 1} = {±E} where E := ( 1

1 ). Deduce that

H×/R× ∼= H(1)/{±1} ∼= SO(3).

[Use the connectedness of SO(3) to reduce the problem to one involv-
ing Lie algebras.]

(d) Deduce that α induces an isomorphism SU(2)/{±1} ∼= SO(3). Com-
pare with the proof given in class by showing that one has Lie(H(1)) =
H0 under the natural identification Lie(H×) = H.
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4. (Optional) Here we understand how the map SU(2) → SO(3) may be
defined by comparing the standard actions P1(C) 	 SU(2) and S2 	 SO(3)
under the identification P1(C) ∼= S2 given by stereographic projection:

(a) Let P1(C) be the complex projective line, that is, the set of equiv-
alence classes [z : w] of row vectors (z, w) ∈ C2 − {0} under the
equivalence relation (z, w) ' (λz, λw) for all λ ∈ C×. Verify that
SU(2) acts on P1(C) via

[ξ : η] · g := [aξ + cη : bξ + dη] for g =

(
a b
c d

)
∈ SU(2).

(b) Let S2 := {(x, y, z) : x2 + y2 + z2} ⊆ R3 be the standard two-
dimensional sphere. Let SO(3) act on S2 in the usual way: for v ∈ S2

and g ∈ G, v · g is given by matrix multiplication. Verify that an
element of SO(3) is determined by its action on S2.

(c) Let p := (0, 0,−1) ∈ S2 denote the “south pole” and let P :=
{(u, v, 0) : u, v ∈ R} ⊆ R3 denote the “equatorial plane.” Let
π : S2 − {p} → P denote the result of stereographic projection
from p, thus π(x, y, z) = (u, v, 0) means that the points (0, 0,−1),
(u, v, 0), (x, y, z) are collinear. Let ρ : P ↪→ P1(C) be the map
ρ(u, v, 0) := [u+ iv : 1]. Verify that the composition ρ ◦ π : S2 − {p}
extends to a homeomorphism

ι : S2 → P1(C)

for which ι(p) = [1 : 0].

(d) Show that for each g ∈ SU(2) there is a unique α(g) ∈ SO(3) so that
for all s ∈ S2, one has ι(s · α(g)) = ι(s) · g. Show that the map
α : SU(2)→ SO(3) is a surjective morphism of Lie groups.

(e) Read about the “Hopf fibration” somewhere and understand its rele-
vance.
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2.8 10/20 (first half): Character theory for SL(2) (alge-
braic)

Objectives. Given a (reasonably explicit) representation SL2(C) or some
closely related group, you should be able to determine its reduction into irre-
ducibles by computing its character and multiplying by the Weyl denominator.

Summary.

1. definitions of direct sum and tensor product of representations of Lie
groups and Lie algebras

2. characters of representations of SL2(C) as Laurent polynomials in one
variable z

3. compatibility with direct sum and direct product

4. the characters of the irreducibles

5. the Weyl denominator z − 1/z

6. Clebsch–Gordon decomposition

Homework 8 (Due Oct 25).

1. Verify that if ρj : g → End(Vj) (j = 1, 2) are representations of a Lie
algebra, then the map ρ1 ⊗ ρ2 : g → End(V1 ⊗ V2), defined as in class by
linear extension of its definition on pure tensors v1 ⊗ v2 ∈ V1 ⊗ V2 by

((ρ1 ⊗ ρ2)(X))(v1 ⊗ v2) := ρ1(X)v1 ⊗ v2 + v1 ⊗ ρ2(X)v2,

or in abbreviated form simply by

X(v1 ⊗ v2) := Xv1 ⊗ v2 + v1 ⊗Xv2,

defines a representation of Lie algebras.

2. Verify that the mapW2⊕W0 →W1⊗W1 defined in class is an isomorphism
of SL2(C)-representations.

3. Show that there does not exist a representation V of SL2(C) whose weight
spaces V [m] := {v ∈ V : Hv = mv} (m ∈ Z) have dimensions given by

dimV [m] =

{
1 m ∈ {−7,−6,−5, 5, 6, 7},
0 otherwise.

More generally, for which functions ν : Z→ Z≥0 does there exist a finite-
dimensional representation V of SL2(C) with dimV [n] = ν(n) for all n?
[Hint: write V ∼= ⊕W⊕µ(m)

m and apply D · ch(.) to both sides.]
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4. (Optional) Given k ∈ Z≥0 and a representation R : G → GL(V ) of a Lie
group G, one obtains a symmetric power representation Symk(R) : G →
GL(Symk(V )) on the symmetric power vector space Symk(V ); see §16.9.3
or Google for some details. The purpose of this exercise is to relate the
character of Symk(V ) to that of V . We restrict to the case G := SL2(C),
although the arguments are somewhat more general. Let A := Z[z, z−1]
be as in lecture.

(a) Define σ(V ) to be the element of the formal power series ring A[[T ]]
in the variable T with coefficients in A given by the formula

σ(V ) :=
∑
k∈Z≥0

ch(Symk V )T k.

Show that

σ(V ) = exp
∑
k≥1

Ψk(ch(V ))T k

k

where Ψk is defined via the substitution z 7→ zk, i.e., by setting
Ψk(χ)(z) := χ(zk) for χ ∈ A. [Hint: the identity

exp
∑
k≥1

xk

k
=

1

1− x
=
∑
k≥0

xk

is relevant.]

(b) Deduce the recursion relation

n ch(Symk(V )) =

n∑
k=1

Ψk(ch(V )) ch(Symn−k(V )).

Check that this is consistent with the isomorphisms Symn(W1) ∼=
Wn.

(c) Specialize the above relation to the case n = 2 to obtain

ch(Sym2(V )) =
ch(V )2 −Ψ2(ch(V ))

2
.

For each irreducible representationWm ofG, compute ch(Sym2(Wm))
by the above formula and use it to derive the decomposition

Sym2(Wm) ∼= W2m ⊕W2m−4 ⊕ · · · = ⊕0≤j≤2m:
j≡2m(4)

Wj .

of Sym2(Wm) into irreducibles. (It is also instructive, and not diffi-
cult, to derive this decomposition directly.) Write down an explicit
isomorphism Sym2(W2) ∼= W4 ⊕W0.
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2.9 10/20 (second half): Maurer-Cartan equations; lifting
morphisms of Lie algebras

Objectives. You should know that Hom(G,H)→ Hom(g, h) is injective when
G is connected and surjective when G is simply-connected and be able to give
some basic counter-examples indicating the necessity of such conditions. You
should be able to describe the role played by the Maurer–Cartan equations in
establishing surjectivity in the simply-connected case. Given hints, you should
be able to apply the Maurer–Cartan equation to related problems.

Summary.

1. statement of main theorem on lifts of Lie algebra morphisms

2. proof via paths and Maurer–Cartan equation

Homework 9 (Due Oct 25).

1. For a smooth scalar-valued function f : R 99K R, the chain rule implies
that

d

dt
exp(f(t)) = exp(f(t))f ′(t). (3)

The purpose of this exercise is to generalize the above identity as an ap-
plication of a technique introduced in lecture. Let G be a real Lie group
with Lie algebra g; the problem is already interesting when G = GLn(R),
so feel free to assume that. Prove that for a smooth function f : R 99K g,
one has

d

dt
exp(f(t)) = exp(f(t))

∞∑
n=1

(− adf(t))
n−1f ′(t)

n!
(4)

where we may write more explicitly

(− adf(t))
n−1f ′(t) = [[[f ′(t), f(t)], f(t)], . . . , f(t)].

Observe that (4) specializes to (3) when G is abelian, so that adf(t) = 0.
[Hint: Consider the map g : R2 99K G given by

g(s, t) := exp(sf(t)).

Define ξ : R2 99K g by ∂g
∂t = gξ, so that d

dt exp(f(t)) = exp(f(t))ξ(t, 1).
Apply the Maurer–Cartan equation (§19.1) to characterize ξ as the unique
solution F to the differential equation

∂F

∂s
(t, s) = f ′(t) + [F (t, s), f(t)]

with initial condition F (t, 0) = 0. On the other hand, verify that such a
solution may be given explicitly by

F (t, s) :=

∞∑
n=1

sn
(− adf(t))

n−1f ′(t)

n!

and set s := 1 to conclude.]
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2.10 10/25 (half-lecture): universal covering group
Objectives. You should be able to classify the Lie groups having a given Lie
algebra in terms of discrete central subgroups of a simply-connected group. You
should be able to describe some basic examples of covering morphisms and use
them to determine the fundamental groups of some Lie groups.

Summary.

1. The main theorem was that for any connected Lie group G there exists a
simply-connected Lie group G̃ and a covering morphism p : G̃→ G whose
kernel N = ker(p) is a discrete subgroup of the center of G̃, with (G̃,N)
uniquely determined up to isomorphism. Moreover, π1(G) ∼= N .

2. We gave several examples to which this applies. Some further examples
are given on the homework.

3. We stated without proof that every finite-dimensional Lie algebra arises
from some Lie group.

4. By combining with a result from last time, we deduced that the category
of simply-connected Lie groups is equivalent to the category of finite-
dimensional Lie algebras.

5. We recalled the definition of "cover" (locally trivial fiber bundle with
discrete fiber). We briefly recalled the construction of the universal cover
of a connected manifold and stated its universal property (existence of
unique lifts of paths). We defined the group structure on the simply-
connected cover of a Lie group.

6. We reduced the remainder of the proof of the main theorem to some
lemmas left mostly as exercises.

Homework 10 (Due Nov 1).

1. Let n ≥ 1. For the purposes of this exercise, you may use without proof
that SLn(C) and SU(n) are simply-connected.

(a) Show that π1(PGLn(C)) ∼= Z/n. [Hint: show that the natural map
p : SLn(C)→ PGLn(C) is a covering morphism, determine the kernel
of p, and appeal to the theorem from lecture.]

(b) Set g := sln(C). Determine the connected Lie groups G (up to iso-
morphism, and over either the real or complex numbers – it doesn’t
matter) having Lie algebra (isomorphic to) g, and describe their
fundamental groups π1(G). [Hint: start by determining the cen-
ter of SLn(C).] Interpret “determine” as you wish. For instance, you
should be able to answer the following question: How many isomor-
phism classes of connected Lie groups have Lie algebra isomorphic to
sl12(C)?

(c) Same question but for g := su(n).
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2. Verify that (at least one or two of) the following maps are covering mor-
phisms of Lie groups and determine their kernels. [Hint: the lemma from
lecture characterizing covering morphisms may help.]

(a) The morphism of complex Lie groups

C exp−−→ C×.

(b) The morphism of complex Lie groups

SL2(C)
Ad−−→ SO(sl2(C),det) ∼= SO3(C).

(c) The morphism of real Lie groups

SU(2)
Ad−−→ SO(su(2),det) ∼= SO(3).

(d) The morphism of real Lie groups

SL2(R)
Ad−−→ SO(sl2(R),det)0 ∼= SO(1, 2)0.

(e) The morphism of complex Lie groups

SL2(C)× SL2(C)→ SO(M2(C),det) ∼= SO4(C),

(g, h) 7→ [x 7→ gxh−1].

(f) The morphism of real Lie groups

SU(2)× SU(2)→ SO(H,det) ∼= SO(4),

(g, h) 7→ [x 7→ gxh−1],

where H =

{(
z w
−w z

)}
⊆ M2(C) denotes Hamilton’s quaternion

algebra as considered on previous homeworks.

(g) The morphism of real Lie groups

SL2(C)→ SO(V,det)0 ∼= SO(1, 3)0,

g 7→ [x 7→ gxgt],

where V :=
{
X ∈M2(C) : X = Xt

}
=

{(
x z
z y

)
: x, y ∈ R, z ∈ C

}
is the space of 2× 2 hermitian matrices.
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2.11 10/27: Fundamental groups of Lie groups
Objectives. You should be able to analyze the topology of Lie groups by

• applying the homotopy exact sequence to their transitive actions, and

• via the Cartan decomposition.

Summary

1. Description, without proof, of the fundamental groups of the classical
groups; empirical observation that complex Lie groups and their compact
real forms (if they exist) have the same fundamental groups

2. Homotopy exact sequence and its consequences; proofs of some of the de-
scriptions of fundamental groups given before (most were left as exercises).
For example, we showed inductively that SLn(C) is simply-connected.

3. Quotient groups (abstract, topological, Lie), quotient manifolds, transitive
action theorem; sketch of construction of smooth structure on the quotient

4. Statement of Cartan decomposition; application to comparing homotopy
groups, recap on the unitary trick

Homework 11 (Due Nov 1).

1. Let p, q ≥ 1. Set G := O(p, q), realized as usual as a subgroup of
GLp+q(R). Let Θ be given by Θ(g) := tg−1.

(a) Show that the subgroup K := {g ∈ G : Θ(g) = g} fixed by G
identifies with O(p)×O(q).

(b) Use (without proof) the Cartan decomposition (§23)

K × p ∼= G

(k, Y ) 7→ k exp(Y )

to show that G has four connected components.

(c) Describe the Cartan decomposition explicitly in the special case p :=
1, q := 1, and compare with the related problem on Homework 2.

2. (Optional) Let
G := SL2(R).

Denote by H := {x+ iy : x, y ∈ R, y > 0} ⊆ C the upper half-plane. The
group G acts smoothly on H by fractional linear transformations:

gz :=
az + b

cz + d
if g =

(
a b
c d

)
∈ G, z ∈ H.

Denote by G̃ the set of all pairs (g, φ), where
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• g ∈ G, and
• φ : H→ C is a holomorphic function with the property that

exp(φ(z)) = cz + d if we write g =

(
a b
c d

)
.

In other words, φ is a branch of log(cz+d); it is determined by g and any of
its values, say φ(i). We may define on G̃ a smooth structure by regarding
it as a submanifold of G × C via the embedding (g, φ) 7→ (g, φ(i)). We
define on G̃ a group structure by the law

(g1, φ1) · (g2, φ2) := (g1g2, φ
g2
1 φ2) where (φg21 φ2)(z) := φ1(g2z)φ2(z).

This group operation is then associative and smooth, and defines on G̃
the structure of a Lie group. The natural map

π : G̃→ G

given by π((g, φ)) := g, is smooth and surjective. The group G̃ inherits
from G an action on H: (g, φ) · z := gz. The map

κ : R→ G̃

given by

κ(θ) := (

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
, φθ),

where φθ(z) is the unique branch of log(− sin(θ)z + cos(θ)) for which
φθ(i) = −iθ, is a morphism of Lie groups. [For the purposes of this
exercise, all of the assertions just made may be regarded as sufficiently
self-evident as not to require proof.]

(a) Write down an isomorphism N ∼= Z.
(b) Show that G̃ is connected. [Hint: use κ to show that N ⊆ G̃0, and

use that G is connected.]

(c) Let H ≤ G̃ denote the image of κ. Show that H is the stabilizer in
G̃ of the point i ∈ H.

(d) Show that G̃ is simply-connected. [The homotopy exact sequence
gives one way to do this; alternatively, one can find a diffeomorphism
G̃ ∼= H× R.]

In summary, G̃ is the simply-connected covering group of G, and π1(G) ∼=
N ∼= Z.
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2.12 11/1: The Baker–Campbell–Hausdorff(–Dynkin) for-
mula

Objectives. You should be able to describe the BCH formula (qualitatively),
specialize it to the case of $2$-step nilpotent groups, and apply it to derive
asymptotic expansions in local exponential coordinates of products in a Lie
group.

Summary.

1. We defined what it means for a pair of Lie groups to be locally isomorphic,
and explained how the lifting theorem for simply-connected Lie groups
and the existence of the universal cover of a given Lie group imply that
two Lie groups are locally isomorphic if and only if their Lie algebras are
isomorphic.

2. Motivated by a “local” proof of this assertion, we initiated a study of the
x ∗ y := log(exp(x) exp(y)) for a pair of matrices x, y.

3. We verified empirically that the first couple homogeneous components zn
in the series expansion of x ∗ y are Lie polynomials, i.e., linear combina-
tions of iterated Lie commutators involving x and y. We stated the BCH
theorem, which says that this empirical observation holds for all n.

4. We stated Dynkin’s formula and indicated briefly how it follows from the
BCH theorem together with an earlier homework problem on iterated
commutators.

5. We proved the BCH theorem in its qualitative form using the homework
problem on the derivative of the exponential map.

Homework 12 (Due Nov 8).

1. Let s ∈ Z≥0. A group G is said to be s-step nilpotent if all for all
x1, . . . , xs+1 ∈ G, the iterated commutator (x1, (x2, . . . , (xs, xs+1))) is the
identity element. Here (x, y) := xyx−1y−1. For example, G is 1-step
nilpotent if and only if it is abelian.

Similarly, a Lie algebra g is said to be s-step nilpotent if [x1, [x2, . . . , [xs, xs+1]]] =
0 for all x1, . . . , xs+1 ∈ g. We call g abelian if it is 1-step nilpotent, or
equivalently, if the commutator bracket vanishes identity.

(a) Verify that the Lie group G ≤ SLs+1(R) consisting of strictly upper-
triangular matrices is s-step nilpotent.

(b) Let G be a connected Lie group with adjoint representation Ad :
G→ GL(g). Show that ker(Ad) is the center of G.

(c) Let G be a connected Lie group with Lie algebra g. Show for s ≤ 2
that G is s-step nilpotent if and only if g is s-step nilpotent. (The
same conclusion holds for all s, and can be proved similarly; the
assumption s ≤ 2 is just to simplify the homework problem.)
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(d) If G is 2-step nilpotent, show that the BCH formula takes the simple
form

x ∗ y = x+ y +
1

2
[x, y] (5)

for small enough x, y ∈ g. Show that the quantities

x ∗ (y − x), y +
1

2
[x, y],

x

2
∗ y ∗ (

−x
2

) (6)

coincide.

(e) Let G ≤ SL3(R) be the three-dimensional Lie group consisting of
strictly upper-triangular matrices; we have seen already that it is
2-step nilpotent. Establish the formula

exp(

 x 0
0

) exp(

 0 0
y

) = exp(

 x xy/2
y

)

in two ways:

i. By direct calculation with power series.
ii. By application of the BCHD formula to

X :=

 x
 , Y :=

 y

 .

2. Let G be a Lie group. Equip its Lie algebra g with some norm |.|. Use
the BCHD formula (or part of its proof) to show that for small enough
x, y ∈ g,

x ∗ y ∗ (−x) = exp(adx)y = y + [x, y] +
[x, [x, y]]

2
+ · · · , (7)

x∗y = x+F1(adx)y+O(|y|2), F1(z) :=
z

1− exp(−z)
= 1+

z

2
+· · · , (8)

x∗(y−x) = F2(adx)y+O(|y|2), F2(z) :=
exp(z)− 1

z
= 1+

z

2
+· · · . (9)

Deduce that the quantities (6) coincide up to a possible error of size
O(|x|2|y| + |y|2). [Hint: For (8) and (9), one can specialize the BCHD
formula directly. Alternatively, let t ∈ R be small and let f(t) denote one
of the expressions x ∗ ty or x ∗ (ty − x). Then the BCH formula in its
qualitative form, together with Taylor’s theorem, reduces the problem to
computing f(0) and f ′(0). For this, Homework 9 and (87) may be helpful.]
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2.13 11/3: Closed subgroups are Lie; virtual subgroups
vs. Lie subalgebras

Objectives. You should know the following trivia, and some of their basic
consequences:

1. closed subgroups of a Lie group are the same as Lie subgroups.

2. connected immersed Lie subgroups of a given Lie group correspond to the
Lie subalgebras of its Lie algebra.

Summary.

1. I explained how the BCH formula implies directly that isomorphisms of Lie
algebras lift to local isomorphisms of Lie groups, and how Lie theory is the
same whether one starts with "smooth manifolds" or "analytic manifolds".

2. I stated the theorem that closed subgroups of Lie groups are Lie subgroups,
and indicated briefly how it implies that continuous homomorphisms be-
tween Lie groups are automatically smooth (hence, by BCH, analytic with
respect to exponential coordinates). I then proved that theorem.

3. I explained the correspondence between Lie subalgebras and immersed Lie
subgroups and briefly mentioned some ideas of the proof.

Homework 13 (Due Nov 8).

1. Following the sketch indicated in lecture, write down a careful proof that a
continuous homomorphism of Lie groups G→ H is automatically smooth.

2. Let n ≥ 1. Denote by 1n the n×n identity matrix. Set J :=

(
1n

−1n

)
;

it is a 2n× 2n matrix. Set

Sp2n(C) := {g ∈ SL2n(C) : gtJg = J}

Sp2n(R) := Sp2n(C) ∩ SL2n(R)}
and

Sp(2n) := U(2n) ∩ Sp2n(C).

(In practice, one alternates between writing Sp(2n) and Sp(n) to mean
the same thing. Beware conventions.) Check that this definition is the
same as what we gave earlier using quaternions. Show that Sp(2n) is a
compact real form of Sp2n(C) and that

sp2n(C) := Lie(Sp2n(C)) =

{(
a b
c d

)
: a, b, c, d ∈Mn(C), d = −at, bt = b, ct = c

}
.

Show for k = R,C and a ∈ GLn(k) and b ∈ Mn(k) with bt = b that
Sp2n(k) contains the matrices(

0n 1n
−1n 0n

)
,

(
a

ta−1

)
,

(
1n b

1n

)
.
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Show that Sp2n(C) and Sp(2n) are connected and simply-connected. Show
that Sp2n(R) is connected, that Sp2n(R) ∩ U(2n) is isomorphic to U(n),
and that π1(Sp2n(R)) ∼= Z. [Hint: one way is as follows. Study Sp2n(C)
inductively on n by considering the natural action on C2n − {0}, analyz-
ing stabilizers, and using the homotopy exact sequence. Study Sp(2n)
using the Cartan decomposition. Study Sp2n(R) using either the Cartan
decomposition or the homotopy exact sequence.]
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2.14 11/8: Simplicity of Lie groups and Lie algebras
Objectives. You should be able to explain what it means for a Lie group to
be “simple as a Lie group” and how this differs from being simple as an abstract
group.

Summary.

1. I defined what it means for Lie algebras and Lie groups to be simple and
proved the equivalence of the following assertions concerning a connected
Lie group:

(a) It is simple (no nontrivial proper normal connected virtual Lie sub-
groups).

(b) Its Lie algebra is simple (no nonzero proper ideals).

(c) Its proper normal subgroups are discrete.

2. I recalled the classical groups (complex forms, compact real forms, Lie
algebras) and stated as a motivating goal the theorem describing when
they are simple and what are the exceptional isomorphisms between them.

Homework 14 (Due Nov 15).

1. Check carefully that the following are equivalent for a connected Lie group
G with Lie algebra g and connected virtual Lie subgroup H with Lie
algebra h:

(a) H is a normal subgroup of G.

(b) Ad(G)h ⊆ h

(c) h is an ideal of g.

[Hint: Exercise 22 may be useful.]

2. (a) Prove by hand that sl2(C) is simple.

(b) Complete the following sentence: “a Lie algebra g is simple if and
only if its adjoint representation ad : g → GL(g) is (...).” Explain
then how we have already secretly proven that sl2(C) is simple.
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2.15 11/10: Simplicity of the special linear Lie algebra
Objectives. You should be to analyze ideals in classical Lie algebras by de-
composing them into root spaces.

Summary.

1. We recalled briefly some facts we established long ago concerning SL(2).

2. We recalled, with sketch of proof, the theorem from linear algebra that
commuting diagonalizable operators are simultaneously diagonalizable.
We then reformulated this result in terms of representations of abelian
Lie algebras.

3. We defined the set of weights of a semisimple representation of an abelian
Lie algebra, and illustrated the definition in the basic case of the standard
representation of the diagonal subalgebra of the matrix algebra.

4. We defined the set of roots for the diagonal subalgebra of sln(C) and
described the root spaces and their commutation relations explicitly.

5. We proved that sln(C) is simple by splitting any nonzero ideal as a sum
of root spaces and applying suitable commutators.

Homework 15 (Due Nov 17). Set g := sp2n(C). The main purpose of
this exercise is to carry out the analogue for g of what was done in lecture for
sln(C). We include some additional computations of independent interest; they
are straightforward but (I think) instructive.

1. Recall the description of g from Homework 13. Verify that dim(g) =
2n2 + n. For 1 ≤ j, k ≤ 2n, let Ejk ∈ M2n(C) denote the elementary
matrix with 1 in the (i, j)th entry and 0 elsewhere, thus Ejkek = ej and
ejkel = 0 for l 6= k, where e1, . . . , e2n denotes the standard basis of C2n.
Verify that a basis for g is given by elements of the following form, where
1 ≤ j, k ≤ n:

• Ejj − En+j,n+j

• Ej,k − En+k,n+j for j 6= k

• Ej,n+k + Ek,n+j for j ≤ k
• En+j,k + En+k,j for j ≤ k

Write all these elements out explicitly when n = 2.

2. Let h ≤ g denote the subalgebra of diagonal matrices. Then dim(h) = n.
Explicitly, h has the basis Ejj −En+j,n+j (j = 1, . . . , n) and consists of of
matrices of the form

H =


λ1(H) 0 0 0 0 0

0 · · · 0 0 0 0
0 0 λn(H) 0 0 0
0 0 0 −λ1(H) 0 0
0 0 0 0 · · · 0
0 0 0 0 0 −λn(H)

 . (10)
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A basis for the dual space h∗ consists of the elements λ1, . . . , λn defined
by (10), or equivalently, by λk(Ejj − En+j,n+j) := δjk.
Let R denote the set of roots for the pair (g, h), defined exactly as in the
case of sln(C) to consist of all nonzero elements α ∈ h∗ for which the
eigenspace

gα := {X ∈ g : [H,X] = α(H)X for all H ∈ h}

is nonzero. The same argument as in lecture shows that

g = h⊕ (⊕α∈Rgα).

Show that
R = {±(λj ± λk) : j < k} ∪ {±2λk},

where the signs ± vary independently. Verify that R spans h∗.

3. For each α ∈ R:

(a) Verify that {n ∈ Z : nα ∈ R} = {±1}.
(b) Verify that dim(gα) = 1.
(c) Find an explicit basis element Xα ∈ gα.
(d) Show that there exists Yα ∈ g−α so that the element Hα := [Xα, Yα]

of h satisfies α(Hα) = 2; write down Hα explicitly.
(e) Verify that for all α, β ∈ R,

[gα, gβ ] =


gα+β if α+ β ∈ R
CHα if α+ β = 0

0 otherwise.

(f) (Optional) Show that the subspace CHα ⊕ CXα ⊕ CYα of g is a Lie
subalgebra that is isomorphic to sl2(C).

4. (Optional) Set S := {λ1 − λ2, λ2 − λ3, . . . , λn−1 − λn, 2λn} ⊆ R. Verify
that S is a basis for h∗ and that every β ∈ R may be written in the form
β =

∑
α∈Smαα, where the mα are integers which are either all ≥ 0 or all

≤ 0. Let C denote the set of all λ ∈ h∗ for which λ(Hα) ≥ 0 for all α ∈ S.
Verify that C = {l1λ1 + · · ·+ lnλn : l1 ≥ l2 ≥ · · · ≥ ln−1 ≥ |ln|}.

5. By adapting the argument given in lecture for sln(C), prove that g is sim-
ple. [This is the only part of this homework that is not a straightforward
computation. The same argument as in lecture shows that no nonzero
ideal is contained in h. The key point is then to show that if an ideal
contains one root space, then it contains every other root space. For this,
one can certainly imitate the proof given in lecture, but it may be simpler
to show that Lemma 202 applies also to sp2n(C) with λmax := 2λ1; the
rest of the proof then goes through unmodified.]
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2.16 11/22, 11/24: How to classify classical simple com-
plex Lie algebras

Objectives. You should be to classify classical simple complex Lie algebras
by computing their Dynkin diagrams. You should be able to explain why this
process is well-defined. You should develop some intuition for the following
important concepts by reference to the classical examples: Cartan subalgebras,
roots, simple roots, positive roots, Cartan matrix, root reflections, Weyl group,
Weyl chambers and their relation with simple systems

Summary. (Tuesday.) We recalled the classical simple complex Lie al-
gebras, explained (mechanically) how to compute their Dynkin diagrams (by
reference to the handout copied in §29.4), and started explaining why the pro-
cess of doing so is well-defined (i.e., depends only upon the isomorphism class
of the Lie algebra); namely, we briefly discussed why Cartan subalgebras of
classical simple algebras are conjugate.

(Thursday.) We started explaining why the Cartan matrix (hence the Dynkin
diagram) is independent of the choice of simple root system. We divided the
proof into three parts:

1. The definition of root reflections and the observation that each root re-
flection stabilizes the set of roots.

2. The interpretation of root reflections as geometric reflections with respect
to the "obvious" inner product on the real span of the roots.

3. The claim that the Weyl group, i.e., the group generated by the root
reflections, acts transitively on the sets of simple systems.

We explained how these points imply that the Cartan matrix is independent of
the simple system.

We did not explain why points 1,2 hold (other than by brute-force inspection
of the handout, §29.4); we will return to them later. We started explaining point
3 by introducing the real span of the roots, the regular subset of that span, the
Weyl chambers, the dominant Weyl chamber for a given simple system. For
each classical example, we described the root reflections, the Weyl groups, the
regular elements, and the dominant Weyl chambers explicitly. For the low-
dimensional families B2 = C2, A1 and A2, we drew pictures of the root systems,
indicating the simple roots, the irregular hyperplanes, the Weyl chambers, the
dominant Weyl chamber, etc. We observed that the number of Weyl chambers
is the same as the order of the Weyl group in those examples. We stated the
theorem that simple systems and Weyl chambers are in natural bijection with
each other, equivariantly for the action of the Weyl group, and that the Weyl
group acts simply transitively on the set of Weyl chambers. We described both
directions of the bijection between simple systems and Weyl chambers, without
yet proving that we get well-defined bijections in this way; we explicated the
bijection in the case of A2. We explained how these facts imply that the Weyl
group acts simply-transitively on the set of simple systems.
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Homework 16 (Due Nov 29).

1. (Optional, but highly recommended) Carefully study the computation of
the Cartan matrices N on the handout, §29.4. Check that all entries are
as they should be; report to me any errors that you find. (I worked them
out by hand; it might be a healthy exercise to redo them.) Verify by
inspection that the formula

α(Hβ) = 2
(α, β)

(β, β)
.

holds (see §29.9 for details).

2. Let X :=

(
0 1
0 0

)
∈ g := sl2(C). Show that adX is not semisimple (i.e.,

diagonalizable). Show that CX is a maximal abelian subalgebra of g (i.e.,
that if h is an abelian subalgebra of g that contains CX, then h = CX.

3. Which of the classical simple complex Lie algebras have the property that
there exists an element w of the Weyl group for which w(α) = −α for all
roots α?

4. Let g be a classical simple complex Lie algebra with Weyl groupW . Equip
g with the scalar product (, ) as in lecture or as in §29.9.

(a) Suppose g = An or Dn. Verify (by inspecting the handout (§29.4),
say) that (α, α) = 2 for all roots α ∈ R. Verify that W acts transi-
tively on R.

(b) Suppose g = Bn or Cn. Observe that (α, α) takes two distinct values
as α traverses R; call α long or short according as it takes the larger
or the smaller of these values.

i. Verify (by inspecting the handout (§29.4)) that W acts transi-
tively on the set of long roots and also on the set of short roots.

ii. Verify that for each root α there is a root β so that γ := α + β
is a root and (α, α) 6= (γ, γ).

Remark: we may explain next week how these observations yield new
proofs of the simplicity of g, “simpler” than the proofs we gave earlier; the
key point will be to explain why the Weyl group W permutes the root
spaces belonging to any ideal.

5. Let g be a classical simple complex Lie algebra, and let notation be oth-
erwise as usual; in particular, S ⊂ R is the “standard” simple system, R+

the associated set of positive roots, and (, ) the standard inner product.

(a) Verify that if α, β ∈ S are distinct simple roots, then (α, β) ≤ 0, or
equivalently, α(Hβ), β(Hα) ≤ 0. [The intention here is to observe
that this holds in every example; we will explain “why” next week.]
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(b) Verify that if α ∈ S is a simple root, then the root reflection sα
stabilizes the set R+−{α} consisting of all positive roots other than
α. [This can be verified by inspection; alternatively, use the previous
part of this exercise and appeal to the definition of “simple system”
and the observation that {n ∈ Z : nα ∈ R} = {±1}.]

(c) Let ρ := (1/2)
∑
α∈R+ α ∈ h∗ denote the half-sum of positive roots.

Compute that

ρ =


∑n
j=1

n+1−2j
2 λj g = An−1∑n

j=1(n+ 1
2 − j)λj g = Bn∑n

j=1(n+ 1− j)λj g = Cn∑n
j=1(n− j)λj g = Dn.

(11)

Show for each α ∈ S that

sαρ = ρ− α, (12)

or equivalently, that
ρ(Hα) = 1. (13)

[The two assertions are obviously equivalent. The first assertion (12)
can be deduced from the previous part. The second assertion (13)
may be compared with (11).]

(d) Verify that if α ∈ R+ − S is a positive root that is not simple, then
there exist positive roots β, γ ∈ R+ such that α = β + γ. [This is
unrelated to the previous parts of this exercise; the intention is to
observe that it holds in all examples.]

(e) Let λ ∈ h∗R be a regular element. Verify that {w ∈W : w(λ) = λ} =
{1}. [This is again unrelated to the previous parts of this exercise;
the intent is that you verify it using the explicit description of W .]

6. (Optional) The exceptional isomorphisms between classical complex sim-
ple Lie algebras that we have not already seen are the following:

(a) A3
∼= D3, i.e., sl4(C) ∼= so6(C). On the group level, denote by

V := Λ2C4 = ⊕i<jCei ∧ ej
the six-dimensional vector space given by the exterior square of C4.
Equip it with the quadratic form Q : V → C defined by requiring
that v ∧ v = Q(v)e1 ∧ e2 ∧ e3 ∧ e4. Then (V,Q) is a quadratic
space (see §18.5) and the natural map Λ2 : SL4(C) → GL(V ) given
by Λ2(g)(v1 ∧ v2) := gv1 ∧ gv2 defines a covering morphism Λ2 :
SL4(C)→ SO(V ) ∼= SO6(C).

(b) C2
∼= B2, i.e., sp4(C) ∼= so5(C). [Restrict the map SL4(C)→ SO6(C)

to Sp4(C); show that its image is the stabilizer of a one-dimensional
subspace L of V , hence identifies with the orthogonal group of the
orthogonal complement L⊥. One can read off L from the definition
of Sp4(C).]
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2.17 11/29: 11/31: Why simple Lie algebras give rise to
root systems

Objectives. You should be able to use $sl2$-triples to explain why simple
complex Lie algebras (which contain Cartan subalgebras satisfying the expected
properties) give rise to root systems.

Summary. (Tuesday.)

1. We finished the proof from last time that the Weyl group of a classical
simple complex Lie algebra acts transitively on the simple systems; this
was deduced by choosing an element that maximizes the inner product of
a pair of elements of the corresponding Weyl chambers and verifying that
the map from simple systems to Weyl chambers is one-to-one.

2. We stated the definition of a Cartan subalgebra of a simple complex Lie
algebra and the theorem concerning the existence and uniqueness of such
subalgebras; we included in this theorem also

• the existence of a real form of the Cartan subalgebra on which the
roots are real-valued, and

• the existence of a scalar product on the ambient Lie algebra (i.e.,
a non-degenerate symmetric bilinear form) whose restriction to the
real form of the Cartan subalgebra is positive-definite.

We observed that the conclusion of this theorem holds for the classical
families "by inspection" and gave a reference for the general case; dis-
cussing its proof would take us too far afield from (what I think are) more
interesting topics to present in a first course on Lie groups.

3. We stated the definition of a (reduced) root system: it is a finite subset of
a real inner product space that satisfies some axioms that we had observed
empirically last week.

4. We stated the theorem that simple complex Lie algebras (satisfying the
conclusion of the "Cartan subalgebra theorem") give rise to root systems.
Our aim next time is to prove this theorem.

(Thursday.) We explained in detail how $sl2$-triples allow us to prove that
simple Lie algebras possessing Cartan subalgebras give rise to root systems that
satisfy the various properties we had observed for the classical families.

Homework 17 (Due Dec 6). The main purposes of the lectures this week were
to demystify last week’s observations concerning root systems for the classical
Lie algebras and to demonstrate the power of sl2(C) in proving results about
more general Lie algebras. This week there is one multipart exercise whose
purpose is to complement that discussion by showing how one might instead
use SL2(C) to establish such properties.

Thus, let g be a simple Lie algebra over C, let h ≤ g be a Cartan subalgebra
with real form hR so that the set R of roots of ad : h → End(g) satisfies
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R ⊆ h∗R = HomR(hR,R) ∼= {λ ∈ h∗ : λ(hR) ⊆ R}. Fix α ∈ R. Assume given
nonzero elements Xα ∈ gα, Yα ∈ g−α, Hα ∈ hR satisfying the relations indicated
just before the statement of Lemma 240, so that the map

φα : sl2(C)→ sα := CXα ⊕ CHα ⊕ CYα ⊆ g

given by X,Y,H 7→ Xα, Yα, Hα is an isomorphism of Lie algebras. Finally, fix
a complex Lie group G so that g = Lie(G).

Our aim here is to give alternative proofs (using Lie group methods rather
than Lie algebra methods) of the first part of Lemma 242. Thus, it would be
best not to invoke the statement of that lemma in the arguments to follow.

1. Show that there is a morphism of complex Lie groups Fα : SL2(C) → G
so that dFα = φα.
For an element t of any complex vector space on which exp is defined (e.g.,
t can be a complex scalar or an element of a Lie algebra over C), introduce
the abbreviation e(t) := exp(2πit).

2. Show that e(H) = 1.

3. Show that e(Hα) = 1.

4. Let β ∈ R. Show for t ∈ C and v ∈ gβ that Ad(e(tHα))v = e(tβ(Hα))v.

5. Deduce that e(β(Hα)) = 1, hence that β(Hα) ∈ Z.

6. Set w :=

(
0 1
−1 0

)
∈ SL2(C). Verify that w = eXe−Y eX and that

Ad(w)H = −H.

7. Set wα := Fα(w) ∈ G. Show that Ad(wα)Hα = −Hα and that Ad(wα)2 =
1.

8. Suppose H ∈ h satisfies α(H) = 0.

(a) Show that [x,H] = 0 for all x ∈ sα.
(b) Show that Ad(g)H = H for all g in the image of Fα. Deduce in

particular that Ad(wα)H = H.

9. Deduce that Ad(wα)h = h.

10. Recall that for λ ∈ h∗, we set sαλ := λ−λ(Hα)α. Show that for all H ∈ h,
one has

λ(Ad(wα)H) = (sαλ)(H). (14)

11. For any λ ∈ h∗, set gλ := {v ∈ g : [H, v] = λ(H)v for all H ∈ h}. Show
that Ad(wα) induces a well-defined isomorphism

Ad(wα) : gλ → gsα(λ). (15)

12. Deduce in particular that if β ∈ R, then sα(β) ∈ R.
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2.18 12/6: Complex reductive vs. compact real
Objectives. You should be able to explain the relationships between complex
simple Lie algebras, complex semisimple Lie algebras, complex reductive Lie
algebras, and compact real Lie algebras.

Summary.

1. We explained that the association constructed in previous weeks from

(a) simple complex Lie algebras to

(b) irreducible reduced root systems to

(c) connected Dynkin diagrams

is bijective, and indicated briefly how the Serre relations explain this (with-
out proving them).

2. We defined semisimple and reductive Lie algebras and indicated how the
above bijection generalizes to them.

3. We defined compact real Lie algebras and explained why the Lie algebra
of any compact real Lie group is compact; we stated the theorem that
every compact real Lie algebra arises in this way.

4. We stated the theorem that compact real Lie algebras and complex re-
ductive Lie algebras are in natural bijection. We gave a proof using the
unitary trick and the Serre relations.

2.19 12/8: Compact Lie groups: center, fundamental group
Objectives. You should be able to describe the center and fundamental group
of a copmact Lie group in terms of its root/weight lattices and the kernel of the
exponential map.

Summary. We defined the root, weight, coroot and coweight lattices of a
semisimple Lie algebra as well as the lattices of integral elements attached to a
compact Lie group. We explained how the center and fundamental group are
described in terms of these, and illustrate with the examples of tori and SLn.

Homework 18 (Due Dec 13). Let K be a compact Lie group with finite
center. Let other notation be as in §32. Thus h be a Cartan subalgebra of a
complex semisimple Lie algebra g. Let R be the set of roots and S ⊆ R a base.
Let h∗R denote the span of R and hR := {H ∈ h : α(H) ∈ R for all α ∈ R}, as
usual.

1. Verify that the Weyl group W (generated by the sα for α ∈ R, as usual)
acts on the root and weight lattices. Verify that the transposes of elements
of the Weyl group act on the coroot and coweight lattices. One can thus
form the semidirect product W n ZR∧.

2. Let hsreg
R = {H ∈ hR : α(H) /∈ Z for all α ∈ R}.
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(a) Verify that W acts on hsreg
R .

(b) Verify that ZR∧ acts on hsreg
R (by translation).

(c) Verify that the actions ofW and ZR∧ on hR induce an action of their
semidirect productWnZR∧ on hR, preserving h

sreg
R . Let T ≤ GL(hR)

denote the image of W n ZR∧.
(d) Let n ∈ Z, α ∈ R. Let sα,n : hR → hR be the reflection in the

hyperplane α(H) = n, thus sα,n(H) = H − (α(H) − n)Hα. Show
that sα,n belongs to T .

(e) Show that T is generated by the sα,n.

3. Choose an enumeration S = {α1, . . . , αl}.

(a) Show that the Z-span ZR is has basis S in the sense that ZR =
Zα1 ⊕ · · · ⊕ Zαl.

(b) Show that there exist unique elements π1, . . . , πl ∈ hR so thatHαi(πj) =
δij for all i, j ∈ {1..l}. (These are called the fundamental weights.)

(c) Show that (ZR∧)∗ = Zπ1 ⊕ · · · ⊕ Zπl.
(d) Show that matrix (aij) for which αi =

∑
j aijπj is given by the

Cartan matrix.

(e) (Optional) Compute π1, . . . , πl for the classical families. (This can
be done by hand, or by inverting the Cartan matrix.)
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2.20 12/13 Maximal tori in compact Lie groups
Objectives. You should be able to explain the role played by maximal tori in
the study of compact connected Lie groups.

Summary. (Tuesday) See §33 for details. Throughout, let K be a compact
connected Lie group.

1. We defined tori, and characterized them as compact connected abelian Lie
groups.

2. We defined maximal tori in K and characterized them as closed connected
subgroups whose Lie algebras are maximal abelian subalgebras.

3. We recorded that closed connected abelian subgroups of K are tori.

4. As an example of the latter, we gave the connected components of closures
of subgroups generated by individual elements.

5. We indicated why the Lie algebras of maximal tori give rise to Cartan
subalgebras after taking complexifications.

6. We stated (without proof yet) the big theorem that K is the union of the
conjugates of any one of its maximal tori.

7. We derived from this the consequence that the center of K is the inter-
section of all (maximal) tori and indicated briefly how this implies the
description given last time of the center in terms of roots.

(Thursday) See §33 for details.

1. Aut(T )

2. N(T )0

3. Λ(f)

4. Proof.

5. T1, T2

6. Z(T ) = T
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3 Selected homework solutions
• Homework 2, 2d. Here is a quick and fairly intuitive way to see that G :=

SO(1, 2) has two connected components. (We’ve seen later in the course
that this is established more efficiently using the Cartan decomposition.)
We realize G as a subgroup of SL3(R) in the evident way. It contains the
subgroups

H1 :=


a b 0
c d 0
0 0 1

 :

(
a b
c d

)
∈ O(1, 1)


and

H2 :=


1 0 0

0 a b
0 c d

 :

(
a b
c d

)
∈ SO(2)

 .

Note that H2 is connected, so H2 ⊆ G0.

Let V1 be as in the homework problem. Let V +
1 denote the connected

component containing e1, and V −1 the other component. (Thus V +
1 = V 0

1

in the notation of the homework problem.) We now make the following
observations:

1. Since V ±1 is connected and G acts on V1 = ∪±V ±1 , for each g ∈ G
we have either gV +

1 ⊆ V
+
1 or gV +

1 ⊆ V
−
1 . It follows that G permutes

the two connected components V ±1 of V1, and so the subgroup {g ∈
G : gV +

1 ⊆ V
+
1 } of G has index at most 2.

2. There exist elements g ∈ G which map V +
1 to V −1 , and vice-versa.

For instance, one can take g := diag(−1,−1, 1). The subgroup {g ∈
G : gV +

1 ⊆ V
+
1 } of G thus has index exactly 2.

3. Since V +
1 is connected, we have G0 ⊆ {g ∈ G : gV +

1 ⊆ V
+
1 }.

4. Let v ∈ V +
1 . It is of the form v = (x, y, z) with x2 − y2 − z2 =

1. Choose an element h2 ∈ H2 so that h2v = (x, r, 0), where r =√
y2 + z2. By part 1b of the same homework, we can then find

h1 ∈ H0
1 so that h2v = h1e1. Consequently v = ge1 where g :=

h−1
2 h1 ∈ G0.

5. Now let g ∈ G with gV +
1 ⊆ V +

1 . Then ge1 ∈ V +
1 . By what was

shown in the previous item, we can find g0 ∈ G0 so that ge1 = g0e1,
thus g ∈ g0H2 ⊆ G0. Thus, G0 ⊇ {g ∈ G : gV +

1 ⊆ V
+
1 }.

6. We have seen that G0 = {g ∈ G : gV +
1 ⊆ V +

1 } and that {g ∈
G : gV +

1 ⊆ V +
1 } has index 2 in G. Therefore G has two connected

components.

One can tidy this discussion up a bit with some lemmas from lecture.

• Homework 3, part 1. Let G := SO(2, 1). It acts on M := V1 := {(x, y, z) :
z2 − x2 − y2 = 1} as well as its connected components V ±1 . Let us realize
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M as a space of row vectors, so that G acts onM by right matrix multipli-
cation: m 7→ mg. The group G then acts on smooth functions f : M → R
by the formula: for g ∈ G, m ∈M ,

gf(m) := f(mg).

We saw in an earlier homework problem that G acts transitively on the
connected components of M , hence f is constant on each such component
if and only if

gf = f for all g ∈ G. (16)

Set g := Lie(G). We may differentiate the action of G on C∞(M) to the
action of g on C∞(M) given for X ∈ g by

Xf(m) := ∂t=0f(m exp(tX)).

Explicitly, the Lie algebra g consists of matrices X ∈ M3(R) satisfying
tXJ + JX = 0, where J := diag(1, 1,−1); an explicit basis for g is given
by the matrices

X1 :=

 0 1 0
−1 0 0
0 0 0

 , X2 :=

0 0 1
0 0 0
1 0 0

 , X3 :=

0 0 0
0 0 1
0 1 0

 .

Using that
(x, y, z)X1 = xe2 − ye1,

(x, y, z)X2 = ze1 + xe3,

(x, y, z)X3 = ze2 + ye3,

we obtain
X1f(x, y, z) = (x∂y − y∂x)f(x, y, z),

X2f(x, y, z) = (z∂x + x∂z)f(x, y, z),

X3f(x, y, z) = (z∂y + y∂z)f(x, y, z).

Therefore assertion (b) in the homework problem is equivalent to saying
that Xif = 0 for i = 1, 2, 3, or equivalently, that

Xf = 0 for all X ∈ g. (17)

It remains only to verify that (16) and (17) are equivalent. This follows
from the connectedness of G by the same argument (the “exponentia-
tion/differentiation trick”) as in §13.4.

• Homework 6, part 1. We want to show for f : G→ H that df(Ad(g)X) =
Ad(f(g))df(X). The curve t 7→ exp(tAd(g)X) = exp(Ad(g)tX) in G has
initial velocity Ad(g)X, hence

df(Ad(g)X) = ∂t=0f(exp(Ad(g)tX)). (18)
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In particular,
df(X) = ∂t=0f(exp(tX)). (19)

By Exercise 22, we have exp(Ad(g)tX)) = g exp(tX)g−1; since f is a
group homomorphism, it follows that

df(Ad(g)X) = ∂t=0f(g)gf(exp(tX))f(g)−1 = Ad(f(g))∂t=0f(exp(tX))
(20)

Combining (19) with (20) gives the required identity.

• Homework 6, part 2. We want to determine the complexifications of
SLn(H),SU(p, q), and Um(H). (!!! to be written)

• Homework 8, part 3. The answer is: those functions ν : Z → Z≥0 for
which

1. ν(n) = 0 for all but finitely many n,
2. ν(n) = ν(−n) for all n ∈ Z≥0,
3. ν(0) ≥ ν(2) ≥ ν(4) ≥ ν(6) ≥ · · · , and
4. ν(1) ≥ ν(3) ≥ ν(5) ≥ ν(7) ≥ · · · .

Given such a seuqence, we can define µ : Z≥0 → Z≥0 by µ(m) := ν(m)−
ν(m+ 2) and set

V := ⊕m∈Z≥0
W⊕µ(m)
m .

Conversely, the claimed inequalities are clearly satisfied for V of this form
(by the hint suggested in the homework problem, or by directly writing
out the characters).

• Homework 10, part 1: It is easy to see (by considering elementary ma-
trices) that the center of SLn(C) is the subgroup µn of scalar matrices
diag(z, z, . . . , z) whose entries z are nth roots of unity. We have Z/n ∼= µn

via the map x 7→ e2πix.

The inclusion SLn(C) → GLn(C) has differential given by the inclusion
sln(C) → gln(C) from the space of traceless matrices to the space of all
matrices. The group PGLn(C) is the quotient of GLn(C) by the normal
subgroup Z of scalar matrices diag(z, z, . . . , z) (z ∈ C×). Thus (by some
theorem from lecture) the surjective quotient map GLn(C) → PGLn(C)
has differential given by the surjective linear map

gln(C)→ pgln(C),

where pgln(C) denotes the quotient of gln(C) by the subgroup of diagonal
scalar matrices of the form diag(Z,Z, . . . , Z) (Z ∈ C). The composite
map

sln(C)→ gln(C)� pgln(C)

is an isomorphism (indeed, one may invert it by sending an element of
pgln(C) to its unique traceless representative) so we may identify pgln(C) =
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sln(C). The map p : SLn(C) → PGLn(C) is a morphism between con-
nected Lie groups whose differential dp is then the “identity map” on
sln(C); in particular, dp is an isomorphism. Thus p is a covering mor-
phism. We have seen that SLn(C) is simply-connected. By the homotopy
exact sequence (or the uniqueness of the discrete central subgroup “N ”
appearing in the theorem on the universal covering group), it follows that
π1(PGLn(C)) ∼= ker(p) = µn ∼= Z/n, as required.
An identical argument works for G = SU(n).
The connected Lie groups having Lie algebra isomorphic to sln(C) are in
bijection with the discrete central subgroups of the simply-connected Lie
group SLn(C) having that Lie algebra; since the center of that group is
µn ∼= Z/nZ and since all subgroups of the latter are uniquely of the form
dZ/nZ ∼= Z/(n/d)Z for some positive divisor d of n, we obtain a bijection
between the isomorphism classes of such Lie groups G and the positive
divisors d of n, where π1(G) ∼= Z/(n/d)Z.

• Homework 12, 1a. Let G ≤ SLn(R) be the group of unipotent upper-
triangular matrices; for n = 3, one has

G =

1 ∗ ∗
1 ∗

1

 .

For subgroups A,B of G, let (A,B) denote the subgroup of G generated
by all commutators (a, b) := aba−1b−1 with a ∈ A, b ∈ B. In the special
case that B is a normal subgroup of A, we may interpret B/(A,B) as the
maximal quotient of B on which A acts trivially by conjugation: if φ : B →
K is a surjective group homomorphism with the property that φ(aba−1) =
φ(b) for all a ∈ A, b ∈ B, then φ factors uniquely as a composition B �
B/(A,B)

ψ−→ K.
For k ∈ Z≥1, define Gk inductively by G1 := G and Gk+1 := (G,Gk). The
problem is to show that Gn = {1}.
We will establish the stronger assertion that Gk = Uk, where

Uk := {a ∈ G : aij = 0 if i < j < i+ k}.

For example, if n = 4, then

U1 =


1 ∗ ∗ ∗

1 ∗ ∗
1 ∗

1

 , U2 =


1 0 ∗ ∗

1 0 ∗
1 0

1

 ,

U3 =


1 0 0 ∗

1 0 0
1 0

1

 , U4 =


1 0 0 0

1 0 0
1 0

1

 = {1}.
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For notational convenience, set Um := {1} if m ≥ n.
To show that Gk = Uk, it suffices (since G1 = U1 and Gk+1 = (G,Gk)) to
show that

(U,Uk) = Uk+1. (21)

For i, j ∈ {1..n} with i < j, let Eij ∈ G denote the “elementary matrix”
that has a 1 in the (i, j)th entry and vanishes on all other off-diagonal
entries. For example, if n = 3, then

E12 =

1 1 0
1 0

1

 , E13 =

1 0 1
1 0

1

 , E23 =

1 0 0
1 1

1

 .

By matrix multiplication, one has the commutation relations

[Eij , Ejk] = Eik, [Eij , Ekl] = 0 if j 6= k.

By Gaussian elimination, G is generated by the elements Eij taken over
all i < j. Similarly, Uk is generated by those Eij for which j ≥ i + k. It
follows from this observation and the commutation relations that

(i) Uk is normal in U1 for all k,

(ii) the conjugation action of U1 on the quotient Uk/Uk+1 is trivial, and

(iii) (U1, Uk) ≥ Uk+1 for all k.

On the other hand, Uk/(U1, Uk) is the maximal quotient of Uk on which
U1 acts trivially by conjugation, hence (U1, Uk) ≤ Uk+1 and therefore
(U1, Uk) = Uk+1. This completes the proof.

Remark: One can alternatively argue using the matrix logarithm/exponential.
The series defining the logarithm converges everywhere on G because g−1
is nilpotent for g ∈ G, hence the series is actually finite; similarly, the ex-
ponential series g→ G is actually a polynomial.

Remark: One can formulate the definition of Uk more geometrically in
terms of the standard complete flag Rn = V0 ⊃ V1 ⊃ · · · ⊃ Vn = {0},
where Vk denotes the span of the first k standard basis vectors e1, . . . , ek.
Then Uk = {g ∈ GLn(R) : (g − 1)Vi ⊆ Vi+k for all i}, where Vm := {0}
for m ≥ n.

• Homework 12, 2. In what follows, x, y denote small enough elements of g,
while g denotes an element of the group G.

1. Recall (from Exercise 22) the general identity exp(Ad(g)x) = g exp(x)g−1.
Recall also (from §18.4) that Ad(exp(x)) = exp(adx). From these
identities it follows that

exp(x∗y∗(−x)) = exp(x) exp(y) exp(−x) = exp(Ad(exp(x))y) (22)
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and thus
x ∗ y ∗ (−x) = Ad(exp(x))y = exp(adx)y, (23)

as required.

2. Set f(t) := x ∗ ty. By BCH, f is analytic near 0. We have f(0) = x.
We have

exp(f(t)) = exp(x) exp(ty) (24)

and thus
exp(−f(0))∂t=0 exp(f(t)) = y. (25)

On the other hand, by Homework 9,

exp(−f(0))∂t=0 exp(f(t)) = Ψ(adx)f ′(0) (26)

where

Ψ(z) =

∞∑
n=1

(−z)n−1

n!
=

1− exp(−z)
z

. (27)

It follows that f ′(0) = Ψ(adx)−1y, or more verbosely, that

f ′(0) =
adx

1− exp(− adx)
y =

∑
n≥0

cn adnx y = y +
[x, y]

2
+ · · · (28)

for some explicit coefficients cn (Bernoulli numbers). Since f is ana-
lytic, we deduce (upon setting t := 1, taking x, y small enough and
appealing to Taylor’s theorem) that

x ∗ y = x+
adx

1− exp(− adx)
y +O(|y|2). (29)

3. Take f(t) := x ∗ (ty − x). Then exp(f(t)) = exp(x) exp(ty − x) and
f(0) = 0; we want to compute f ′(0). To that end, we compute the
quantity

Q := exp(−f(0))∂t=0 exp(f(t)) = ∂t=0 exp(x) exp(ty − x). (30)

in two ways. First, by the rearrangement

Q = exp(x)∂t=0 exp(ty − x) (31)

and the formula (87), we have

Q = Ψ(− adx)y (32)

with Ψ as above. On the other hand, by direct application of (26)
(which remains valid in this context),

Q = Ψ(adf(0))f
′(0) = f ′(0), (33)
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since f(0) = 0. Therefore

f ′(0) = Ψ(− adx)y =
1− exp(adx)

− adx
y =

exp(adx)− 1

adx
y = y+

[x, y]

2
+· · · .
(34)

The asymptotic formula

x ∗ (y − x) =
exp(adx)− 1

adx
y +O(|y|)2 (35)

for small enough x, y follows as in the previous part of the problem.

4. In particular, since | adnx y| = O(|x|n|y|), we see by Taylor’s theorem
that

x

2
∗ y ∗ −x

2
= x+

[x, y]

2
+O(|x|2|y|+ |y|2), (36)

x ∗ (y − x) = x+
[x, y]

2
+O(|x|2|y|+ |y|2). (37)

4 Some notation

4.1 Local maps
4.1.1 Motivation

We shall often have occasion to consider continuous maps defined on open sub-
sets of topological spaces for which the precise choice of domain is unimportant
(other than, perhaps, in that it contains a specific point). This circumstance
motivates introducing the notation and terminology to follow.

4.1.2 Definition

Let X, Y be topological spaces. By a map f from X to Y , denoted f : X → Y ,
we shall mean a continuous function. By a local map f from X to Y , denoted1

f : X 99K Y,

we shall mean more precisely a pair (U, f), where:

• U is an open subset of X, called the domain of definition or simply the
domain of f and denoted U =: dom(f), and

• f : U → Y is continuous.

We say that f : X 99K Y is defined at a point p ∈ X if p belongs to the domain
of f .

Example 1. Let X := Y := k. The pair (U, f), where U := k× and f(x) :=
1/x, is a local map f : k 99K k.

1The notation is inspired by that used in algebraic geometry for rational maps.

49



4.1.3 Equivalence

Two local maps f1, f2 : X 99K Y will be called equivalent if they coincide on
the intersection of their domains of definition.

4.1.4 Images

Given a local map f : X 99K Y and a subset S of X, we denote by f(S) the
image of the intersection of S with the domain of f , i.e., if U = dom(f), then
f(S) := f(U ∩ S).

4.1.5 Composition

Given local maps f : X 99K Y and g : Y 99K Z, we may define their composi-
tion to be the local map

g ◦ f : X 99K Z

with dom(g◦f) := dom(f)∩f−1(dom(g)) given as usual by (g◦f)(x) := g(f(x)).
It can happen that dom(g ◦ f) = ∅.

4.1.6 Inverses

A local map f : X 99K Y with domain U := dom(f) will be called invertible if
f(U) is open and the induced map f : U → f(U) is a homeomorphism. In that
case, the inverse of f is defined to be the local map

f−1 : Y 99K X

with dom(f−1) := f(U) given as usual by f−1(y) := x if y = f(x).

5 Some review of calculus
To explain what will happen in this course, it will help to recall some background
from calculus. Let k denote either of the fields R or C.

5.1 One-variable derivatives
We say that f : k 99K k is smooth if all of its derivatives (of arbitrary order)
exist at all points in the domain of definition. The first derivative f ′ : k 99K k
may be characterized by the relation

f(p+ v) = f(p) + f ′(p)v + o(|v|)

holding for each fixed point p as |v| → 0. In a single-variable calculus course,
one learns to relate (apparently complicated) global properties of a function to
simpler local (or infinitesimal) properties involving its derivatives. For example,
when k = R, one learns that the following are equivalent:
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• f is increasing (an ostensibly global property, as it requires one to check
that f(x) < f(y) for every pair of points with x < y, and such points
might be quite far apart!);

• f ′ is positive (a local property, as it only requires one to check that f ′(x) >
0 for each point x).

This test and others (concerning the second derivative, for instance) often suffice
to piece together an approximate portrait of the global shape of a function from
the local behavior of its derivatives at the critical points.

5.2 Multi-variable total and partial derivatives
We say that f : km 99K kn is smooth if all of its partial derivatives exist at
all points in the domain of definition. For each p in the domain of f , the total
derivative Tpf is a linear map Tpf : km → kn that may be characterized as
above by the relation

f(p+ v) = f(p) + (Tpf)(v) + o(|v|)

holding for each fixed p as |v| → 0. One can express Tpf in matrix form

Tpf =

 ∂f1
∂x1

(p) · · · ∂f1
∂xm

(p)

· · · · · · · · ·
∂fn
∂x1

(p) · · · ∂fn
∂xm

(p)


where the function f is expressed as a tuple f = (f1, . . . , fn) of components
fi : km 99K k, elements x ∈ km are equipped with the standard coordinates
x = (x1, . . . , xn), and the partial derivatives are characterized by

fi(p+ tej) = fi(p) +
∂fi
∂xj

(p)t+ o(|t|)

for t ∈ k with |t| → 0, where ej denotes the standard jth basis element of km
dual to the coordinate xj ; for a vector v = (v1, . . . , vm) ∈ km and a coordinate
index i = 1, . . . , n, one then has

((Tpf)v)i =

m∑
j=1

∂fi
∂xj

(p)vj .

As in single-variable calculus, one learns various ways to relate the global be-
havior of a f to the local behavior of its total derivative Tpf at various critical
points p (Hessian test, etc). A basic case to keep in mind is that of a linear
function A : km → kn, for which one has TpA = A for all p ∈ km.

When m = 1, so that f = (f1, . . . , fn) may be thought of as an n-tuple of
functions fi : k → k, the total derivative Tpf is then a linear transformation
k→ kn and so may be identified with the vector

f ′(p) = (f ′1(p), . . . , f ′n(p)) ∈ kn

characterized by the same relation as in the one-variable case.
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5.3 The chain rule
Given a pair of smooth functions f : km 99K kn and g : kn 99K kl, one can
form the composition h := g ◦ f : km 99K kl, which is smooth. One knows
the chain rule: at a point p ∈ km at which h is defined, the derivative of the
composition h is the linear map Tph : km → kl given by the composition

Tph = Tf(p)g ◦ Tpf

of the derivatives of f, g. Expanding out in terms of matrices and using standard
coordinates x1, . . . , xm on km and y1, . . . , yn on kn, the chain rule reads: for
i ∈ {1..l} and k ∈ {1..m},

∂hi
∂xk

(p) =

n∑
j=1

∂gi
∂yj

(f(p))
∂fj
∂xk

(p).

Specialized to the case m = 1, the chain rule reads h′(p) = (Tf(p)g)f ′(p), or ex-
panding out further in terms in terms of components, as h′i(p) =

∑n
j=1

∂hi
∂yj

(f(p))fj(p).

5.4 Inverse function theorem
The inverse function theorem is a fundamental tool for controlling the local
behavior of a function f near a point p in terms of linear algebraic properties
of the derivative Tpf .

Theorem 2. Let f : kn 99K kn be smooth and defined at p. The following are
equivalent:

1. The map Tpf : kn → kn is a linear isomorphism of vector spaces, or
equivalently, has nonzero Jacobian determinant det(Tpf).

2. There is an open neighborhood U of p, contained in the domain of f , so
that V := f(U) is open and the induced map f : U → V is a diffeomor-
phism, i.e., admits a smooth two-sided inverse g : V → U .

5.5 Implicit function theorem
We state it here rather verbosely, saving a tidier formulation for the generaliza-
tion to manifolds given below in §6.8.

Theorem 3. Let n,m, d be nonnegative integers with n = m + d. Suppose
given a point p ∈ kn and smooth maps f1, . . . , fm : kn 99K k defined at p =
(p1, . . . , pn) satisfying either of the following evidently equivalent properties:

1. The m × n matrix of partial derivatives ∂fi
∂xj

(p) (i = 1..m, j = 1..n) has
rank m.

2. The function f := (f1, . . . , fm) : kn 99K km has the property that its total
derivative Tpf : kn → km at p is surjective.
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3. dim ker(Tpf) = d.

4. The space of solutions (dx1, . . . , dxn) ∈ kn to the system of homogeneous
linear equations

∑n
j=1

∂fi
∂xj

(p)dxj = 0 (i = 1, . . . ,m) is d-dimensional.

Then after suitably reordering the coordinates indices, one can find smooth func-
tions ψd+1, . . . , ψn : kn 99K k defined at (p1, . . . , pd, f1(p), . . . , fm(p)) so for any
point x = (x1, . . . , xn) close enough to p, one has

xj = ψj(x1, . . . , xd, f1(x), . . . , fm(x)) for j = d+ 1, . . . , n.

In particular, if we suppose moreover that f1(p) = · · · = fm(p) = 0, then the
following are equivalent for x close enough to p:

1. f1(x) = · · · = fm(x) = 0

2. xj = ψj(x1, . . . , xd, 0, . . . , 0) for j = d+ 1, . . . , n.

Consequently the map
Ψ : kd 99K kn

Ψ(x1, . . . , xd) := (x1, . . . , xd, ψd+1(x1, . . . , xd, 0, . . . , 0), . . . , ψn(x1, . . . , xd, 0, . . . , 0))

parametrizes the set {x : f1(x) = · · · = fm(x) = 0} near p.

Proof. Suppose after suitably relabeling indices that the rightmost m ×m mi-
nor of the matrix Tpf is nonsingular. Consider then the map φ : M 99K kn

defined near p by the formula φ(x) := (x1, . . . , xd, f1(x), . . . , fm(x)). The total
derivative Tpφ is then given by the matrix

1 0 · · · 0 0 · · · 0
0 1 · · · 0 0 · · · 0
· · · · · · · · · · · · · · · · · · 0
0 0 · · · 1 0 · · · 0

∂f1
∂x1

(p) ∂f1
∂x2

(p) · · · ∂f1
∂xd

(p) ∂f1
∂xd+1

(p) · · · ∂f1
∂xn

(p)

· · · · · · · · · · · · · · · · · · · · ·
∂fm
∂x1

(p) ∂fm
∂x2

(p) · · · ∂fm
∂xd

(p) ∂fm
∂xd+1

(p) · · · ∂fm
∂xn

(p)


By our assumption on Tpf , it follows that Tpφ is nonsingular. By the inverse
function theorem, we can find a local inverse ψ = (ψ1, . . . , ψn) : kn 99K kn to
φ defined at φ(p). By construction, ψi(x) = xi for i = 1, . . . , d, while the ψi for
i > d satisfy the requirements of the conclusion.

6 Some review of differential geometry
As indicated already in §1, this section is intended to be used mainly as a
reference. I don’t plan to use much differential geometry in the actual course.
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6.1 Charts
Recall the notation and terminology of §4.1. By a topological chart on a topo-
logical space X we shall mean a pair (φ, n), where n is a nonnegative integer
and

φ : X 99K kn

is an invertible local map. More verbosely, this means that a topological chart
is a triple (U, φ, n), where n is a nonnegative integer, U is an open subset of X,
and φ : U → kn is a continuous map for which φ(U) is open and φ : U → φ(U)
is a homeomorphism onto its image.

6.2 Manifolds
For us, an n-manifold (over the field k) is a triple (M,n,A), often abbreviated
simply as M when the data n,A are understood by context, where:

1. M is a topological space (which we assume to be Hausdorff and second-
countable, hence metrizable),

2. n is a nonnegative integer,

3. A is an maximal smooth atlas, that is to say, a collection of topological
charts φ : M 99K kn whose domains cover M and which are smoothly
compatible in the sense that for each pair φ, ψ of charts in A, the compo-
sitions

φ ◦ ψ−1, ψ ◦ φ−1 : kn 99K kn

are smooth on their respective domains of definition. “Maximal” means
that A contains every chart on M that is compatible with every chart in
A. By a smooth chart on M we then mean an element of A.

A manifold is an n-manifold M for some n, which is called the dimension of M
and denoted n = dim(M).

Example 4. An open subset subsetM of kn is a n-manifold if we take for A the
set of all charts φ : M 99K kn which are smooth and have smooth inverses in the
ordinary sense of §5.2. In particular, kn is an n-manifold. More generally, any
open subset U of an n-manifold M has the natural structure of an n-manifold:
if A is a maximal smooth atlas on M , then {φ ∈ A : dom(φ) ⊆ U} is a maximal
smooth atlas on U .

Remark 5.

1. One could also work with manifolds having multiple components of varying
dimension, but we will not have occasion to do so.

2. One can show that the dimension of a manifold is determined by its topo-
logical structure, making the inclusion of n in the definition redundant,
but this fact is not important for our purposes.
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6.3 Smooth maps
Given manifolds M , N , a local map f : M 99K k is smooth if it is smooth with
respect to every pair of charts φ : M 99K km, ψ : N 99K kn in the sense that
the composition

km
φ−1

9999K M
f
99K N

ψ
99K kn

is smooth in the sense of §5.2. WhenM,N are open subsets of Euclidean space,
this notion generalizes the earlier one.

6.4 Coordinate systems
Let M be an m-manifold and let p ∈M be a point. By a coordinate system for
M at p, or more simply a coordinate system at p or local coordinates at p when
the ambient manifold M is clear from context, we shall mean a tuple of smooth
maps x1, . . . , xm : M 99K k arising as the components of a smooth chart φ =
(x1, . . . , xm) : M 99K km on M defined at p. Such a coordinate system allows
us to identify points x ∈ M near p with tuples x = (x1, . . . , xm) and smooth
functions f : M 99K k defined near p with smooth functions f(x1, . . . , xm) of
the local coordinates x1, . . . , xm. In particular, it makes sense to define partial
derivatives ∂f/∂xj ∈ k in this setting. For example, if M is an open subset
of km, then the standard coordinate functions x1, . . . , xm : M → k form a
coordinate system at every point p ∈M .

Given an m-manifold M , an n-manifold N , a smooth map f : M 99K N
and a point p ∈ M at which f is defined, one can choose local coordinates
x1, . . . , xm at p and y1, . . . , yn at f(p). With respect to such coordinates, the
smooth map f identifies with a smooth map (f1, . . . , fn) : km 99K kn defined
at (x1(p), . . . , xm(p)) and Tpf identifies with the matrix of partial derivatives
∂fi/∂xj as in §5.2.

6.5 Tangent spaces
Let M be an open subset of km. A curve on M is a smooth map γ : k 99K M
whose domain is connected and contains 0; the point p := γ(0) ∈M is referred
to as its basepoint and the vector v := γ′(0) ∈ km as its initial velocity. Given
an open subset N ⊆ kn and a smooth map f : M → N , the composition
f ◦ γ : k 99K N is then a curve on N with basepoint f(p); thanks to the chain
rule, its initial velocity is the image (f ◦ γ)′(0) = (Tpf)v of that of the original
curve γ under the derivative of the map f at the basepoint of the original curve.

Remark 6. Observe also that for each point p ∈ M and vector v ∈ km there
exists a curve γ with basepoint p and initial velocity v; for example, one can set
γ(t) := p+ tv and take for the domain of γ any sufficiently small neighborhood
of 0.

We now recall the generalization of the above notion to an arbitrary n-
manifold M :
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Definition 7. Let M be a manifold. A curve on M is defined as above to be
a smooth map γ : k 99K M whose domain is connected and contains 0.

We continue to refer to the point p := γ(0) ∈ M as the basepoint of γ. If
one now ponders how to define “the initial velocity γ′(0)” (e.g., to which space
should it belong?), one is eventually led to introduce the tangent space TpM to
the manifold M at the point p. To motivate the definition, note first that for
any smooth chart φ : M 99K kn defined at p, the composition φ ◦ γ : k 99K kn

is (after suitably shrinking its domain so as to be connected) a curve on kn with
basepoint φ(p) and initial velocity

vφ := (φ ◦ γ)′(0) (38)

in the Euclidean sense defined previously. Moreover, for any other smooth chart
ψ : M 99K kn defined at p, we can use the chain rule in the form

T0(ψ ◦ γ) = T0(ψ ◦ φ−1 ◦ φ ◦ γ) = Tφ(p)(ψ ◦ φ−1) ◦ T0(φ ◦ γ)

to read off the initial velocity vψ of the curve ψ ◦ γ from that of φ ◦ γ:

vψ = Tφ(p)(ψ ◦ φ−1)vφ. (39)

This observation suggests the following definition:

Definition 8. The tangent space TpM to M at p is the set of all tuples v =
(vφ)φ, where φ traverses the set of smooth charts defined at p and the vφ are
elements of kn satisfying the consistency condition (39).

Since the consistency condition is linear, it is clear that TpM is a vector
space. We can also now define, for each curve γ on M with basepoint p = γ(0),
the initial velocity of γ to be the vector γ′(0) ∈ TpM given by v = (vφ)φ, where
the components vφ are as in (38). We have moreover the following:

Lemma 9. For any smooth chart χ on M defined at p, the map v 7→ vχ defines
a linear isomorphism TpM ∼= kn. In particular, dimTpM = dimM .

Proof. The consistency condition (39) implies that v is determined by any one of
its components vχ, so the map in question is clearly injective. Conversely, given
any element u ∈ kn, we may define a tuple v = (vφ)φ by the rule vφ := Tχ(p)(φ◦
χ−1)u. An application of the chain rule to the composition (ψ ◦φ−1) ◦ (φ ◦χ−1)
implies for any smooth charts φ, ψ defined at p that (39) is satisfied, and so v
belongs to TpM . Since vχ = u and u was arbitrary, we deduce that the map in
question is surjective.

Example 10. If M is an open subset of kn, then the inclusion φ : M → kn

is a smooth chart defined at all points of M , and the lemma gives a natural
identification TpM ∼= kn for all p ∈ M . The two senses in which we have
defined the initial velocity γ′(0) of a curve γ on M with basepoint p (first as
the ordinary derivative d

dtγ(t)|t=0, then later as a tuple (vφ)φ) are compatible
under this identification.
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Remark 11. A more customary definition is that TpM is the space of equiv-
alence classes [γ] of curves γ on M with basepoint p, with two curves γ1, γ2

declared equivalent precisely when (φ ◦ γ1)′(0) = (φ ◦ γ2)′(0) for all charts φ
on M defined at p. That definition is isomorphic to the one we’ve used. An
isomorphism from the former to the latter may be given by [γ] 7→ (vφ)φ with
vφ as in (38); this map is well-defined by (39), injective by definition of the
equivalence relation defining [γ], and surjective by Lemma 9 and Remark 6.

6.6 Derivatives
Given a smooth map f : M 99K N of manifolds a point p ∈ M at which f is
defined, a chart φ : M 99K km at p and a chart ψ : N 99K kn at f(p), we can
form the smooth map

fφψ := ψ ◦ f ◦ φ−1 : km 99K kn

and consider its total derivative in the sense of §5.2, which is a linear map

Tφ(p)(fφψ) : km 99K kn.

We can piece these linear maps together to form a linear map

Tpf : TpM → Tf(p)N,

called the derivative of f , by setting, for v = (vφ)φ ∈ TpM ,

(Tpf(v))ψ := Tφ(p)(fφψ)vφ. (40)

An application of the chain rule confirms that the RHS of (40) is independent of
φ and that the the tuple Tpf(v) defined componentwise above actually belongs

to Tf(p)N ; moreover, for a composition L
g
99K M

f
99K N defined at a point

p ∈ L, one has again
Tp(f ◦ g) = Tg(p)f ◦ Tpg. (41)

Remark 12.

1. If M ⊆ km, N ⊆ kn are open and we identify TpM ∼= km, Tf(p)N ∼= kn,
then the derivative Tpf : TpM → Tf(p)N defined just now identifies the
derivative Tpf : km → kn as in §5.2.

2. If M is an n-manifold, p ∈M is a point, and φ is a chart on M at p, then
the map Tφ : TpM → Tφ(p)k

n ∼= kn is just the projection v 7→ vφ.

3. If we had instead defined tangent spaces using equivalence classes of smooth
curves as in Remark 11, then the definition of the derivative of f would
look like: for a curve γ on M with basepoint p and equivalence class [γ],

Tpf([γ]) := [f ◦ γ].

As noted earlier in the Euclidean case, one has the following identity of
elements of Tf(p)N :

(Tpf)γ′(0) = (f ◦ γ)′(0).
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It is occasionally notationally cumbersome to refer explicitly to the basepoint
p in the total derivative Tpf : TpM → Tf(p)N ; when that is the case, we might
denote the latter as simply

df : TpM → Tf(p)N,

with the point p understood by context as the domain of any vector v to which
we apply df . To illustrate, consider a composition of smooth maps of manifolds

φ : K
h−→ L

g−→M
f−→ N.

For a point p ∈ K and a tangent vector v ∈ TpK, the chain rule (41) gives the
slightly unwieldly formula

Tpφ(v) = Tg(h(p))f(Th(p)g(Tph(v)))

which we abbreviate to simply

dφ(v) = df(dg(dh(v))).

6.7 Jacobians
Given an n-dimensional vector space V , we denote by det(V ) := ΛnV its highest
wedge power. It is a one-dimensional vector space. Given a pair V,W of n-
dimensional vector spaces and a linear map f : V →W , one obtains an induced
map det(f) : det(V )→ det(W ). If W = V , then det(f) : det(V )→ det(V ) acts
on the one-dimensional space det(V ) via multiplication by the determinant of
f in the sense of a first course on linear algebra.

In particular, given a manifold M , we obtain for each point p ∈ M a one-
dimensional vector space detTpM . Given a pair of manifolds M,N of the same
dimension, a smooth map f : M 99K N between them, and a point p at which f
is defined, we obtain a linear map det(Tpf) : det(TpM)→ det(Tf(p)N) between
one-dimensional spaces, called the Jacobian determinant of f . In the special
case that M,N are open subsets of kn, we may identify TpM,Tf(p)N with kn

and the Jacobian determinant with the linear map det(kn)→ det(kn) given by
multiplication by the determinant of the Jacobian matrix describing the total
derivative Tpf : kn → kn. In general, one has det(Tpf) 6= 0 if and only if Tpf
is a linear isomorphism.

6.8 Inverse function theorem
We record the generalization of what was given earlier in the Euclidean case.

Definition 13. A smooth map f : M 99K N between n-manifolds is said to be
a local diffeomorphism at a point p ∈M if f is equivalent to an invertible local
map defined at p with smooth inverse, or more verbosely, if there is an open
neighborhood U of p in the domain of f so that f(U) is open and the induced
map f : U → f(U) is a diffeomorphism. In that case, there are coordinate
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systems x1, . . . , xn on M at p and y = (y1, . . . , yn) on N at f(p) with respect to
which p is the origin and so that f is given near p in these coordinates by the
identity map f : (x1, . . . , xn) 7→ (x1, . . . , xn).

For example, if M is an n-manifold, then a map f : M 99K kn is a local
diffeomorphism at p if and only if it is equivalent to a smooth chart at p.

Theorem 14. Let f : M → N be a smooth map of manifolds of the same
dimension. The following are equivalent:

1. Tpf : TpM → Tf(p)N is a linear isomorphism of vector spaces, or equiva-
lently, has nonzero Jacobian determinant det(Tpf).

2. f is a local diffeomorphism near p.

The problem is local, so it suffices to consider the case that M,N are open
subsets kn, in which case the theorem reduces to special case given above in
§5.4.

Here is a particularly useful consequence:

Corollary 15. Let M be an n-manifold and p ∈ M . Let φ : M 99K kn be a
smooth map defined at p. Suppose that det(Tpφ) 6= 0. Then φ is equivalent to a
smooth chart on M at p; in other words, there is a neighborhood p ∈ U ⊆M so
that if we write φ|U = (x1, . . . , xn) for some component functions xi : U → k,
then x1, . . . , xn defines a coordinate system at p.

6.9 Local linearization of smooth maps
6.9.1 Linear maps in terms of coordinates

Suppose given an m-dimensional vector space V an n-dimensional vector W
and a linear map f : V → W between them. Recall that the rank of f is the
dimension of its image, or equivalently, the codimension of its kernel. Denote by
k the rank of f . Then k ≤ m and k ≤ n. One can always find bases e1, . . . , em
of V and ε1, . . . , εn of W so that f(

∑m
i=1 xiei) =

∑k
i=1 xiεi; in coordinates, f

takes the form (x1, . . . , xm) 7→ (x1, . . . , xk, 0, . . . , 0).

6.9.2 The constant rank theorem

Suppose now given an m-manifold M , an n-manifold N , a smooth map f :
M 99K N and a point p in the domain of f .

Definition 16. We say that f is linearizable at p if there are local coordinates
at p with respect to which f is given by a linear map. The rank of f at p is
then the rank of that linear map.

Since any linear map is its own derivative, the rank of f at p is the same
as the rank of Tpf . Denoting that rank by k (necessarily k ≤ min(m,n)), one
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can find local coordinates x1, . . . , xm at p and y1, . . . , yn at f(p), putting both
p and f(p) at the origin, so that f is given in the particularly concrete form

f : (x1, . . . , xm) 7→ (x1, . . . , xk, 0, . . . , 0).

Since a linear map has constant rank, an obvious necessary condition for f to
be linearizable is the following:

Definition 17. We say that f has constant rank at p if the rank of Txf takes
some constant value in a neighborhood of p.

In fact, the two conditions are equivalent:

Theorem 18. f is linearizable at p if and only if f has constant rank at p.

Proof. The interesting direction (showing that if f has constant rank, then it
is linearizable) reduces to the rank theorem from multivariable calculus, whose
proof is similar to that of the implicit function theorem given in §5.5.

6.9.3 The case of maximal rank

Given f : M 99K N as above, the function x 7→ rank(Txf) is lower semicon-
tinuous, i.e., has the property that {x : rank(Txf) ≥ k} is open for all k. This
is because the condition rank(Txf) ≥ k is detected by the nonvanishing of any
k × k minor, which is an open condition. In other words, as x varies, the rank
can only “jump” downwards.

The quantity k0 := min(m,n) is the largest possible value for the rank of f
at any point, i.e., one has rank(Txf) ≤ k0 for all x. It follows from the lower
semicontinuity noted above that the set {x : rank(Txf) = k0} of points at which
f attains its maximal rank is open: if f has rank k0 at some point at some p, it
automatically has rank k0 in some small neighborhood of p. This observation
motivates the utility of the following definition:

Definition 19. For m ≥ n, we say that f is submersive at p if it satisfies any
of the following equivalent conditions:

1. rank(Tpf) = n.

2. Tpf is surjective.

3. dim ker(Tpf) = m− n.

For m ≤ n, we say that f is immersive at p if it satisfies any of the following
equivalent conditions:

1. rank(Tpf) = m.

2. Tpf is injective.

3. dim coker(Tpf) = n−m, where coker(Tpf) := Tf(p)N/ image(Tpf).
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We say that f is a submersion (resp. immersion) if it is submersive (resp.
immersive) at all points p.

Theorem 20. Suppose f : M 99K N as above is submersive at p. Then there
are coordinate systems at p with respect to which f is given by a surjective
linear map. For instance, there are coordinate systems x1, . . . , xm on M at p
and y1, . . . , yn on N at f(p), putting both p and f(p) at the origin, so that f is
given by f : (x1, . . . , xm) 7→ (x1, . . . , xn).

Proof. The statement is local, and reduces to that of §5.5.

Theorem 21. If f as above is immersive at p, then there are coordinate sys-
tems at p with respect to which f is given by an injective linear map. For
instance, there are coordinates x1, . . . , xm on M at p and y1, . . . , yn on N at
f(p), putting both p and f(p) at the origin, so that f is given by (x1, . . . , xm) 7→
(x1, . . . , xm, 0, . . . , 0).

Proof. This reduces to a local statement which can be proved as in §5.5 using
the inverse function theorem.

Corollary 22. Let K be a k-manifold, let g : K 99K M be a continuous map,
and let f : M 99K N be an immersion whose domain contains the image of g.
Suppose that the composition

K
g
99K M

f
99K N

is smooth. Then g is smooth.

Proof. Smoothness can be checked locally, so we may suppose that K is an
open subset of kk. By the local description of f given the previous result, we
may assume that N = kn and M = km ∼= km × {0} ⊆ kn. We are then
given a continuous map kk

g
99K km with the property that the composition

kk
g
99K km ↪→ kn is smooth (i.e., all partials exist). We want to deduce that

kk
g
99K km is smooth (i.e., all partials exist). What we want follows immediately

from the definition.

6.10 Submanifolds
Submanifolds2 are subsets of manifolds that look like vector subspaces up to a
local diffeomorphism. More precisely:

Definition 23. Given an n-manifold M , a subset S of M is said to be a d-
dimensional submanifold if for each p ∈ S, there is a smooth chart φ : M 99K kn

at p so that φ(S) = φ(M) ∩ kd × {0} ⊆ kn (as defined in §4.1.4); said another
way, there is a coordinate system x1, . . . , xn on M at p with respect to which S
is given near p by the equation xd+1 = · · · = xn = 0.

2 What we call submanifold might normally be more verbosely called smooth submanifold.
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The appropriateness of the term “submanifold” requires some justification:

Theorem 24. Let S be a d-dimensional submanifold of an n-manifold M , re-
garded as a topological space with the induced topology. Then S possess a unique
structure of a smooth d-manifold (i.e., a unique maximal smooth atlas) for which
the inclusion map ι : S →M is immersive.

Proof. The uniqueness follows from Corollary 22: if A1,A2 are two maximal
smooth atlases on S with the property that (S, d,A1) and (S, d,A2) are d-
manifolds for which ι is immersive, then each of the inclusions (S, d,Ai) ↪→M is
smooth, so by Corollary 22, the identity maps (S, d,A1)→ (S, d,A2), (S, d,A2)→
(S, d,A1) are smooth two-sided inverses of each other; this shows that any
smooth chart for A1 is also a smooth chart for A2, and vice-versa, so we may
conclude by the maximality of A1 and A2 that they coincide. For the existence,
we can use the local coordinates afforded by the definition of “submanifold”
to define for each p ∈ S a smooth atlas Ap in some neighborhood U of p for
which U ↪→M is an immersion; as p varies, the atlases Ap are compatible with
one another thanks to the uniqueness assertion shown before, hence their union
extends to a maximal smooth atlas on S with the required property.

By Corollary 22, we immediately obtain:

Proposition 25. Let f : M → N be a smooth map of manifolds whose image
is contained in some submanifold S ⊆ N . Then the induced map f : M → S is
also smooth.

Remark 26. A submanifold need not be open (think k1 ↪→ k2) and need not be
closed (think (0, 1) ↪→ R), but is always locally closed in the following equivalent
senses (as follows immediately from its local description):

1. S is open in its closure in M .

2. S is the intersection of a closed subset of M and an open subset of M .

3. For each p ∈ S there is an open neighborhood p ∈ U ⊆ M so that S ∩ U
is closed in U .

Exercise 1. Let S,M be manifolds and let ι : S →M be an injective immersion
with the property:

• for each x ∈M and each open x ∈ U1 ⊆M , there exists an open x ∈ U ⊆
U1 ⊆M so that the open subset ι−1(U) of S is connected.

Show that ι(S) is a submanifold of M and that ι is a diffeomorphism onto its
image.

6.11 A criterion for being a submanifold
In this section we record a handy criterion for determining when a subset is
actually a submanifold. It amounts to the implicit function theorem from mul-
tivariable calculus.
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Proposition 27. Suppose given an n-manifold M and a natural number d ≤ n.
Let S ⊆M be a subset with the property that for each p ∈ S there are m := n−d
smooth functions f1, . . . , fm : M 99K k, defined at p, so that

1. S is given near p by the equation f1 = · · · = fm = 0 (cf. §6.10), and

2. (f1, . . . , fm) : M 99K km is submersive at p.

Then S is a d-dimensional submanifold of M .

Proof. This is immediate from the local description of submersive maps given
in §6.9.3.

Remark 28. The proposition is not an “if and only if.” For example, consider
S := {0} ⊆ M := k. Clearly S is a 0-dimensional submanifold. On the other
hand, one can (unwisely) define S inside M by the equation f1 = 0, where
f1(x) := x2. For this choice, the hypotheses of Proposition 27 fail because f1 is
not submersive at 0: its derivative 2x vanishes there.

6.12 Computing tangent spaces of submanifolds
LetM be an n-manifold and S ⊆M a d-dimensional submanifold. For each p ∈
S, the tangent space TpS then identifies with a d-dimensional vector subspace of
the n-dimensional vector space TpM . The following is computationally helpful:

Proposition 29. Suppose S is given near p ∈ S by a system of smooth equations

f1 = · · · = fm = 0, (42)

where m := n− d and f := (f1, . . . , fm) : M 99K km is defined and submersive
at p. Then Tp(S) coincides with the space ker(Tpf) of solutions to the system
of linear equations obtained by differentiating (42). Thus in local coordinates
x1, . . . , xn at p,

Tp(S) =

(dx1, . . . , dxn) ∈ kn :

n∑
j=1

∂fi
∂xj

(p)dxj = 0 for i = 1..m

 . (43)

Proof. This is again immediate from the local description of submersive maps.

6.13 Summary of how to work with submanifolds
Let M be an n-manifold and S a subset that one expects is a d-dimensional
submanifold. Let’s take a moment to explain how in practice one goes about
verifying this and computing tangent spaces. First of all, the problem is local,
so for each point p ∈ S, one fixes local coordinates x1, . . . , xn for M at p. (If M
is an open subset of kn, then one can just use the default global coordinates.)
Next, one expresses S near p as the solution set of some smooth system f1 =

63



· · · = fm = 0, where m := n − d. Next, one computes by hand the space V of
solutions to the system of linear equations arising in (43). If it happens that
dim(V ) = d, then it follows from Propositions 27 and 29 that dim ker(Tpf) = d,
hence that Tpf is surjective, i.e., that f is submersive at p, hence that S is a
d-dimensional submanifold and that TpS = V as subspaces of TpM ∼= kn.

Example 30. Let M = R3 and

S := {(x, y, z) ∈M : x2 + y2 + z2 = 1}.

Thus S is defined by f = 0, where f(x, y, z) := x2 + y2 + z2− 1. The derivative
of f at a point (x, y, z) ∈ S is the linear map T(x,y,z)f : R3 → R given by

T(x,y,z)f(dx, dy, dz) = 2x dx+ 2y dy + 2z dz.

Since at least one of x, y, z is nonzero, we see that T(x,y,z)f is surjective, hence
that f is submersive at all points of S. Therefore S is a submanifold. Its tangent
space is given at a point (x, y, z) ∈ S by

T(x,y,z)S = {(dx, dy, dz) ∈ R3 : 2x dx+ 2y dy + 2z dz = 0},

which is a translate of (as expected) the plane tangent to S at (x, y, z) in the
familiar geometric sense.

7 Some review of differential equations
The following results will be needed only briefly in the course; we record them
here as a reference for completeness.

Suppose given a continuous map f : k × kn 99K kn, with the first coordi-
nate regarded as the “time” variable, the second as the “position” variable, and
elements of the range as “velocities.” We suppose given an initial time t0 ∈ k
and an initial position y0 ∈ kn for which (of course) (t0, y0) ∈ dom(f), and con-
sider the existence and uniqueness problem for the linear ordinary differential
equation (ODE)

y(t0) = y0, y′(t) = f(t, y(t)) for all t ∈ U. (44)

Example 31. If n = 1 and f(t, y) := y and (t0, y0) := (0, 1), then we are
considering the problem y(0) = 1, y′(t) = y(t), for which it is well-known that
the unique solution is the exponential map y(t) := exp(t) =

∑∞
n=0 t

n/n!.

Theorem 32 (Uniqueness). Assume that f is uniformly Lipschitz in the second
variable:

|f(t, y)− f(t, z)| ≤ C|y − z|.

Then for any convex open set T containing t0, there is at most one continuously
differentiable y : T → kn satisfying (44).
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Proof. If y(t), z(t) are two solutions to (44) defined on U , then their difference
w(t) := y(t)− z(t) satisfies w(t0) = 0 and

|w′(t)| = |f(t, y(t))− f(t, z(t))| ≤ C|y(t)− z(t)| = C|w(t)|.

Our aim is to show that the vanishing set Ω := {t ∈ T : w(t) = 0} is in fact all of
T . Since Ω is nonempty (it contains t0) and closed (w is continuous) and since T
is connected, it will suffice to verify Ω is open. The mean value theorem implies
that for each each t1, t2 ∈ T there is some t on the line segment connecting t1
and t2 so that

|w(t1)− w(t2)| ≤ |w′(t)| · |t1 − t2| ≤ C|w(t)| · |t1 − t2|. (45)

We apply (45) with t1 ∈ Ω (so that w(t1) = 0) and with t2 in a closed ball
B ⊆ T with origin t1 and radius at most 1/(2C) to obtain |w(t2)| ≤ (1/2)M with
M := maxt∈B |w(t)|. Since t2 ∈ B was arbitrary, it follows that M ≤ (1/2)M ,
hence thatM = 0, hence that B ⊆ Ω, hence that Ω is open at t1, as required.

Theorem 33 (Existence). There exists an open ball T with origin t0 and a
continuously differentiable solution y : T → kn to (44). If f is smooth, then so
is y.

Proof. Let T1 be a ball with origin t0 and let Y be a ball with origin y0 so that
f is defined on T1 × Y . Let T be a ball with origin t0 so that

radius(T ) · max
T1×Y

|f | < radius(Y ).

We will show that a solution y exists with domain T . To that end, let ε > 0 be
small. Define as follows a function yε : T → Y ⊆ kn:

1. Set
yε(0) := y0. (46)

2. Define yε on integral multiples nε ∈ T of ε inductively by requiring that

yε((n+ 1)ε) = yε(nε) + εf(nε, y(nε)). (47)

This makes sense: our construction of T implies that y(nε) ∈ Y for all
nε ∈ T . (This is the “Euler method” for solving ODEs.)

3. Define yε(t) for general t ∈ T by rounding t to the nearest integral multiple
nε ∈ T of ε and setting yε(t) := yε(nε).

Using the elementary consequences

yε(t)� 1

and
|yε(t)− yε(s)| � |t− s|+ oε→0(1)
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of the construction of yε and arguing as in the proof of Arzeli–Ascoli, we obtain
a sequence εj → 0 and a bounded Lipschitz function y : T → Y (given by the
uniform limit y(t) = limj→∞ yεj (t)) satisfying y(0) = y0 and, for all t1, t2 ∈ T
with t1 ≤ t2,

y(t2)− y(t1) = lim
j→∞

yεj (t2)− yεj (t1)

= lim
j→∞

∑
n∈Z:

nεj∈[t1,t2]

εjf(nεj , yεj (nεj))

= lim
ε→0

∑
n∈Z:

nε∈[t1,t2]

εf(nε, y(nε))

=

∫ t2

t1

f(t, y(t)) dt.

By the fundamental theorem of calculus, we conclude that y is differentiable
and satisfies (44). Note finally that if f is smooth, then iterated application of
the differential equation implies that y is also smooth.

Example 34. A simple (and well-known) example illustrating the necessity
of taking T sufficiently small is when f : k × k2 → k2 is given by f(t, x) :=
(x2

1, x1x2); for y0 = (u, v) ∈ k2 with u 6= 0 and t0 := 0, the unique solution y to
(44) is given for t in a neighborhood of t0 by

y(t) = (
u

1− tu
,

v

1− tu
),

which blows up as t→ 1/u.

We finally discuss the dependence of the solution y under “smooth deforma-
tion of parameters” in the initial condition or the differential equation.

Theorem 35 (Smooth dependence of solutions). Let Π be an open subset of
some Euclidean space. Let

f : k× kn ×Π 99K kn

y0 : Π 99K kn

be smooth. Suppose given an initial time t0 ∈ k and initial parameter π0 ∈ Π so
that y0 is defined at π0 and f is defined at (t0, y0(π0), π0). Then there exist open
balls T ⊂ k with origin t0 and Π0 ⊆ Π with origin π0 and a smooth solution
y : T ×Π0 → kn to the differential equation

∂

∂t
y(t, π) = f(t, y(t, π), π). (48)

Proof. Arguing as in the proof of Theorem 33 and using only the continuity of
f , we may choose T,Π0 as above and a ball Y ⊆ kn so that

66



1. f is defined on a neighborhood of some compact set containing T×Y ×Π0,

2. y0 is defined on Π0, and

3. for each π ∈ Π0, the ball in kn with origin y0(π) and radius R, where
R := radius(T ) ·maxT1×Y×Π0

|f |, is contained in a compact subset of the
interior of Y .

Running through the proof of Theorem 33, we obtain a function y : Y ×Π→ Y
that is smooth in the first variable and satisfies (48). We now verify that y is
smooth in the second variable. By a compactness argument, it will suffice (after
possibly shrinking Π0 a bit) to verify that each π1 ∈ Π0 is contained in a small
ball Π1 ⊆ Π0 on which y is smooth. To that end, fix d ≥ 1 and consider for
π ∈ Π1 the Taylor series

y0(π) =
∑
α≤|d|

(π − π1)αy
(α)
0 (π1) +O(|π − π1|)d+1,

f(t, y, π) =
∑
α≤|d|

(π − π1)αf (α)(t, y, π1) +O(|π − π1|)d+1.

The errors are uniform thanks to the property (1) of f . Running through
the proof of Theorem 33 and staring at (46) and (47) for a bit, we obtain an
expansion

y(t, π) =
∑
α≤|d|

(π − π1)αy(α)(t, π1) +O(|π − π1|)d+1.

Thus y is smooth in the second variable. By iterating the differential equation
we conclude that y is jointly smooth in both variables.

8 Some review of group theory

8.1 Basic definition
Recall that a group is a tuple (G,m, i, e), often abbreviated simply by G, where

1. G is a set,

2. m : G × G → G is a map called multiplication and abbreviated xy :=
m(x, y),

3. i : G→ G is a map called inversion and abbreviated x−1 := i(x), and

4. e ∈ G is an element called the identity element

and so that the usual axioms of group theory are satisfied; we do not recall them
here. For example, the associativity axiom reads m(x,m(y, z)) = m(m(x, y), z).
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8.2 Permutation groups
One of the first examples of groups encountered in a basic course is the sym-
metric group S(n). More generally, one considers for any set X the per-
mutation group Perm(X), defined to consist of bijections σ : X → X and
with the group law given by composition: σ1σ2 := σ1 ◦ σ2. For example,
S(n) = Perm({1, . . . , n}).

A particularly concrete class of groups are the subgroups of the form G ≤
Perm(X) for some set X. Cayley’s theorem asserts that every group is isomor-
phic to one of this form: indeed, one can take X = G and define G ↪→ Perm(G)
via g 7→ [x 7→ gx]. Moreover, if G is finite, then one can take X to be finite.

8.3 Topological groups
One reason to phrase the definition in the above way is that it places the em-
phasis on the maps m, i. By equipping G with some additional structure and
then requiring that those maps respect such structure, one obtains interesting
classes of groups. For example:

Definition 36. A topological group is defined to be a group G = (G,m, i, e)
equipped with the structure of a topological space and for which the maps m, i
are continuous. A morphism of topological groups f : G → H is a continuous
group homomorphism. An action of a topological group G on a Hausdorff
topological space X is a continuous map α : G × X → X with the property
that α(e, x) = x and α(g1g2, x) = α(g1, α(g2, x)); one typically abbreviates
gx := α(g, x).

This definition is simple, but already fairly rich:

Exercise 2. Let X be a topological space. Let G ⊆ X be a topological group
that is also a subspace of X, equipped with the induced topology. Suppose there
is an open U ⊆ X for which e ∈ U ⊆ G, where e denotes the identity element
of G. Show that G is open in X.

Exercise 3. Let G be a topological group. Let H ≤ G be a subgroup. Suppose
that H is locally closed in G in the sense that there is a neighborhood U ⊆ G of
the identity with the property that H ∩U is closed in U . Show that H is closed
in G.

Exercise 4. Let G be a topological group, and H ≤ G an open subgroup. Show
that H is closed.

Exercise 5. Let G be a connected topological group, and let U be a neighbor-
hood of the identity. Show that U generates G.

Exercise 6. Let G be a topological group, and let H ≤ G be a subgroup. Equip
the set G/H with the quotient topology. Show that the following are equivalent:

1. H is closed.
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2. G/H is Hausdorff.

[Hint: If H is closed, show first that for each g ∈ G−H there is a neighborhood
U of the identity in G so that U−1gU ∩H = ∅.]

Exercise 7. Let G be locally compact topological group, let g ∈ G, and let
V ⊆ G be a neighborhood of g. Show that there is an open neighborhood U ⊆ G
of e so that

1. U is compact,

2. U = U−1,

3. Ung ⊆ V for all n ≤ 100, and

4. gUn ⊆ V for all n ≤ 100.

Here Un := {u1 · · ·un : u1, . . . , un ∈ U}.

Exercise 8. Let G be a second countable topological group. Let U ⊆ G be a
subset with nonempty interior. Show that there is a sequence gn ∈ G so that
G = ∪Ugn = ∪gnU .

Exercise 9. Let G be a topological group, let X be a Hausdorff topological
space, and suppose given a transitive action of G on X. Let U be a compact
subset of G, and let x ∈ X. Show that Ux is closed.

Exercise 10. Say that a topological space X is countable at infinity if X can
be written as a countalbe union of compact subsets.

Show that if X is locally compact and second-countable, then X is countable
at infinity.

Exercise 11. Let G be a topological group, let X be a Hausdorff topological
space, and suppose given a transitive action of G on X. Let x ∈ X. Show that
the stabilizer H := {g ∈ G : gx = x} is a closed subgroup of G. Suppose that

1. G is locally compact and is countable at infinity, and

2. X is locally compact.

Show that the map π : G/H → X given by π(g) := gx is a homeomorphism.
[It suffices to show that π is open. Use some of the previous exercises together
with the following variant of the Baire category theorem: if a locally compact
topological space E is a countable union of closed subsets En, then some En
has nonempty interior.]
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9 Some review of functional analysis

9.1 Definitions and elementary properties of operators on
Hilbert spaces

Definition 37. Recall that an operator on a Hilbert space (real or complex) V
is a linear map T : V → V . It is bounded if supx∈V :|x|=1 ‖Tx‖ <∞, self-adjoint
if 〈Tx, y〉 = 〈x, Ty〉 for all x, y ∈ V , and compact if Txn has a convergent
subsequence whenever xn is a bounded sequence in V . An eigenvector of T
is a nonzero element v ∈ V for which Tv = λv for some scalar λ, called the
eigenvalue.

Lemma 38. Let T be a self-adjoint operator on a Hilbert space V .

1. The eigenvalues of T are real.

2. The eigenspaces of T are orthogonal to one another.

3. If T acts on a subspace U of V , then it acts also on the orthogonal com-
plement U⊥.

Proof.

1. If Tu = λu, then λ〈u, u〉 = 〈Tu, u〉 = 〈u, Tu〉 = 〈Tu, u〉 = λ〈u, u〉.

2. If moreover Tv = λ′v, then λ〈u, v〉 = 〈Tu, v〉 = 〈u, Tv〉 = λ′〈u, v〉, and so
either λ′ = λ or 〈u, v〉 = 0.

3. Suppose Tu ∈ U for all u ∈ U . Let v ∈ U⊥. For u ∈ U , we have Tu ∈ U ,
and so 〈Tv, u〉 = 〈v, Tu〉 = 0. Thus Tv ∈ U⊥.

9.2 Compact self-adjoint operators on nonzero Hilbert spaces
have eigenvectors

Theorem 39. Let V be a nonzero Hilbert space. Let T be a compact self-adjoint
operator on V . Then T has an eigenvector.

The basic idea of the proof can seen most transparently when V is a finite-
dimensional real Hilbert space: if x is an element of the unit sphere in V at
which 〈Tx, x〉 assumes a local maximum, then the first derivative test implies
that for any v orthogonal to x,

0 =
d

dε
〈T (x+ v), x+ v)〉|ε=0 = 〈Tv, x〉+ 〈Tx, v〉 = 2〈Tx, v〉.

It follows that Tx ∈ (x⊥)⊥ = Rx, and so x is the required eigenvector.
To adapt the argument to the infinite-dimensional case, we replace the role

of differential calculus with some artful application of the parallelogram law

4<〈Tx, y〉 = 〈T (x+ y), x+ y〉 − 〈T (x− y), x− y〉.

One of the steps en route to the solution is of independent interest:
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Lemma 40. Let T be a self-adjoint operator on a Hilbert space V . Then

sup
x∈V :|x|=1

|〈Tx, x〉| = sup
x,y:|x|=|y|=1

|〈Tx, y〉|.

Proof. Denote byM the LHS and byM ′ the RHS. ClearlyM ≤M ′. Conversely,
for x, y ∈ V with |x| = |y| = 1 and θ ∈ C(1) chosen so that 〈Tx, θy〉 is real, the
parallelogram law applied to x and θy gives

4θ〈Tx, y〉 = 〈T (x+ θy), x+ θy〉 − 〈T (x− θy), x− θy〉.

From this it follows that M ′ ≤M .

Proof of Theorem 39. Since T is compact, it is bounded, and so the quantity

M := sup
x∈V :|x|=1

|〈Tx, x〉|

is finite. If M = 0, then the self-adjointness of T and the parallelogram law
applied to x ∈ V and y := Tx implies that

4‖Tx‖2 = 〈T (x+ y), x+ y〉 − 〈T (x− y), x− y〉 = 0,

so T is the zero operator and any nonzero element of V is an eigenvector. We
turn to the remaining case M 6= 0. Recall from the lemma that M coincides
with the operator norm supx,y:|x|=|y|=1 |〈Tx, y〉|. There is thus a nonzero real
number λ = ±M and a sequence of unit vectors xn so that

〈Txn, xn〉 → λ,

〈Txn, Txn〉 ≤ λ2.

It follows then from the identity

‖Txn − λxn‖2 = 〈Txn, Txn〉 − 2λ〈Txn, xn〉+ λ2

that
Txn − λxn → 0. (49)

Since T is compact, the sequence Txn has a subsequential limit y. By (49), one
has |y| = |λ|, hence y /∈ 0. By applying T to (49), one obtains Ty = λy. Thus
y is the required eigenvector of T .

Remark 41. A self-adjoint operator on a Hilbert space need not have any
eigenvectors; consider f(x) 7→ xf(x) on L2([0, 1]). In this sense, the compactness
assumption is necessary.
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9.3 Spectral theorem for compact self-adjoint operators
on a Hilbert space

Theorem 42. Let T be a compact self-adjoint operator on a Hilbert space V .
For λ ∈ R, denote by Vλ ≤ V the λ-eigenspace of T . Then V is the Hilbert
space orthogonal direct sum

V = ⊕λVλ (50)

of its kernel V0 = ker(T ) and its eigenspaces Vλ with nonzero eigenvalue λ.
Moreover, for any ε > 0,

dim(⊕λ:|λ|>εVλ) <∞. (51)

Proof. The orthogonal complement of ⊕λVλ is T -stable and contains no eigen-
vectors for T ; by Lemma 50, it is the zero space, giving (50).

For each ε > 0, the space ⊕λ:|λ|>εVλ admits an orthonormal basis of eigen-
vectors for T with eigenvalues of magnitude at least ε; if that basis were to
contain an infinite sequence, then the image of that sequence under T would
have no convergent subsequence, contradicting the compactness of T . This es-
tablishes (51).

9.4 Basics on matrix coefficients

9.5 Finite functions on a compact group are dense
Let G be a compact topological group. Let µ denote the probability Haar mea-
sure on G. We may define L2(G) with respect to µ. Denote by U(L2(G)) the
group of unitary operators on L2(G). We then have the right regular represen-
tation R : G→ U(L2(G)) given by

R(g)f(x) := f(xg)

as well as the left regular representation L : G→ U(L2(G)) given by

L(g)f(x) := f(g−1x).

We may extend the latter map linearly to L : L1(G) → End(L2(G)) given for
φ ∈ L2(G) by

L(φ)f(x) :=

∫
g∈G

φ(g)f(g−1x).

Lemma 43. Let f ∈ L2(G). If the span of the right translates of f is finite-
dimensional, then so is the span of its left translates, and vice-versa.

Proof. Let f1, . . . , fn be an orthonormal basis for the span of the right translates
of f . Then for each g ∈ G there are complex coefficients a1(g), . . . , an(g) so that
for all x ∈ G,

R(g)f(x) = f(xg) =
∑
i

ai(g)fi(x).
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Explicitly, we may take ai := 〈R(g)f, fi〉, which defines a bounded function and
thus an element ai ∈ L2(G). It follows that

L(g)f(x) = f(g−1x) =
∑
i

fi(g
−1)ai(x),

thus the ai span the space of left translates of f .

Definition 44. We say that an element f ∈ L2(G) is finite if the span of its
left and right translates under G is finite-dimensional. Denote by L2(G)fin the
space of finite functions. (Lemma 43 says that to check that a given function
is finite, it suffices to show either that its left translates or its right translates
have finite span.)

The main result of this subsection is as follows.

Theorem 45. Let G be a compact group. Then the finite elements of L2(G)
are dense.

The proof requires a couple lemmas.

Lemma 46. Set V := L2(G). For each v ∈ V and ε > 0 there exists a real-
valued symmetric φ ∈ Cc(G) so that ‖L(φ)v − v‖ < ε.

Proof. By the continuity of the representation L, one has for all g in some small
neighborhood U of the identity in G that ‖L(g)v − v‖ < ε. We may assume
after shrinking U as necessary that U = U−1. By Urysohn’s lemma, there exists
a real-valued φ ∈ Cc(U) ⊆ Cc(G) with µ(φ) = 1. For such a φ, the required
estimate follows from the triangle inequality. We can easily arrange that φ be
symmetric by averaging it with the function x 7→ φ(x−1).

Lemma 47. Let φ ∈ L1(G) ∩ L2(G). Then the operator L(φ) is compact.

Proof. We will use that ∫
g1,g2∈G

|φ(g−1
1 g2)|2 <∞ (52)

as follows from the compactness of G. (The natural context for this result is
thus in the setting of operators defined by kernels in L2(G×G); see any book on
functional analysis.) For concreteness, I’ll give the proof of the compactness of
T := L(φ) in the special case that V := L2(G) is a separable Hilbert space; this
case certainly suffices when G is a compact Lie group (and perhaps somewhat
more generally). We will show that the image under T of the unit ball is
precompact. Let e1, e2, . . . be a Hilbert space basis of V . Write Aij := 〈ei, T ej〉,
so that for v =

∑
aiei ∈ V , one has Tv =

∑
i biei where bi :=

∑
j Aijaj . If

‖v‖ ≤ 1, then Cauchy–Schwartz implies that |bi|2 ≤ Bi where Bi :=
∑
j |Aij |2,

so the image under T of the unit ball is contained in S := {
∑
biei : |bi|2 ≤ Bi}.

Since ∑
Bi =

∑
i,j

|Aij |2 <∞, (53)
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the set S is precompact, as required. (If v(n) =
∑
b
(n)
i ei is a sequence in

S, then we may assume by a diagonlization argument that after passing to a
subsequence, one has b(n)

i → bi for some scalar bi, which obviously satisfies
|bi|2 ≤ Bi; it then follows easily that v :=

∑
biei belongs to V and that v(n) →

v.)

Proof of Theorem 45. By Lemma 46, elements of the form L(φ)v with φ ∈
L1(G), v ∈ L2(G), and with φ real-valued and symmetric, are dense in L2(G),
so it suffices to approximate such elements by finite functions. Thus consider
some such elements φ, v. The operator T := L(φ) is compact and self-adjoint.
Denote by Vλ its eigenspaces. Decompose v =

∑
vλ with vλ ∈ Vλ. For each

ε > 0, we then have L(φ)v = uε + O(ε) where uε :=
∑
λ:|λ|>ε λvλ. Since T

commutes with R(G), the eigenspaces Vλ of T are R(G)-invariant; Theorem 42
implies that dim(⊕λ:|λ|>εVλ) <∞, so the right translates of uε have finite span,
and so uε is a finite element of L2(G). Since it converges to Tv as ε → 0, we
are done.

9.6 Schur orthogonality relations
We continue to assume here that G is a compact group.

Lemma 48. Let (π, V ), (ρ,W ) be finite-dimensional irreducible representations
of G. Then the space

HomG(V,W ) := {φ : V →W |φ(π(g)v) = ρ(g)φ(v) for all v ∈ V, g ∈ G}

of G-equivariant linear maps from V to W satisfies

dim HomG(V,W ) =

{
1 V ∼= W

0 otherwise.

If V ∼= W , then every nonzero element of HomG(V,W ) is an isomorphism
V → W . In particular, HomG(V, V ) is the one-dimensional space consisting of
scalar operators of the form v 7→ cv, c ∈ C.

Proof. For φ ∈ HomG(V,W ), we check that the kernel of φ is an invariant
subspace of V and the image of φ is an invariant subspace of W . So if V is not
the zero map, then its kernel is the zero space (since V is irreducible) and its
image is all of W (since W is irreducible). The conclusion follows.

Lemma 49. Let V,W be finite-dimensional irreducible representations of G.
Let `⊗ v ∈ V ∗ ⊗ V and w ∈W . If V is not isomorphic to W , then

1

dimW

∫
g∈G

`(gv)g−1w = 0. (54)

Otherwise, let us fix an equivariant identification W = V . Then

1

dimW

∫
g∈G

`(gv)g−1w = `(w)v. (55)

74



Proof. Fix `, w, and denote by S : V →W the the linear function of v defined by
the LHS of (56). Then a quick change of variables shows that S is equivariant,
so by Lemma 48, it is the zero map unless V ∼= W ; this establishes (56). We
turn to (55). By Lemma 48, we know that S : V → V is a scalar operator; we
wish to verify that the scalar is `(w). To that end, it will suffice to verify that
trace(S) = (dimV )`(w), or equivalently, that∑

i

∫
g∈G

`(gei)e
∗
i (g
−1w) = `(w)

where (ei) is a basis of V with dual basis (e∗i ) of V ∗. The integrand is indepen-
dent of g (since it is independent of the choice of basis, and the basis dual to
ge1, . . . , gen is e∗1 ◦ g−1, . . . , e∗n ◦ g−1) so we reduce to showing that∑

i

`(ei)e
∗
i (w) = `(w),

which is immediate.

Corollary 50. Let V1, V2 be finite-dimensional irreducible representations of G.
Let `1 ⊗ v1 ∈ V ∗1 ⊗ V1 and `2 ⊗ v2 ∈ V ∗2 ⊗ V2 Then∫

g∈G
`1(gv1)`2(g−1v2) =

{
dim(V1)`1(v2)`2(v1) V1

∼= V2

0 otherwise.
(56)

where `1(v2) and `2(v1) are defined in the first case by fixing an equivariant
identification between V1 and V2.

9.7 Peter–Weyl theorem
Let G be a compact group. Let L2(G)fin denote the subspace of finite elements;
we saw in §9.5 that it is dense in L2(G).

Theorem 51. Let V traverse the set of isomorphism classes of finite-dimensional
irreducible representation of G. Then the canonical morphism of G×G-modules

m : ⊕V ∗ ⊗ V → L2(G)fin

given in terms of matrix coefficients by setting, for `⊗ v ∈ V ∗ ⊗ V ,

m(`⊗ v)(g) := `(gv),

is an isomorphism with inverse

F : L2(G)→ ⊕End(V )

where F = ⊕FV where for u ∈ V ,

FV (f)u :=
1

dim(V )

∫
g∈G

f(g)g−1u.

(The action is as in the proof of Lemma 43.)
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Proof. We first check surjectivity. Let v ∈ L2(G)fin. Its span under the right
regular representation of G is then a finite-dimensional representation W of
G. We “have seen” (the chronology of the lectures differs from that of the
notes) in §16.7 that any finite-dimensional representation of a compact group is
completely reducible. In particular,W is completely reducible. By decomposing
W into irreducibles and v into its irreducilbe components, we reduce to verifying
in the special case in which W is irreducible that v belongs to the image of
W ∗ ⊗W in L2(G)fin. But this follows immediately from the proof of Lemma
43.

We now check that F ◦ m = 1. It suffices to show for each V,W ∈ Irr(G)
and `⊗ v ∈ V ∗ ⊗ V that

FW (m(`⊗ v)) =

{
`⊗ v W = V

0 W 6= V.

Thus, let w ∈W be given. Then

FW (m(`⊗ v))w =
1

dimW

∫
g∈G

`(gv)g−1w,

while (`⊗ v)(w) = `(w)v, so the required conclusion follows from Lemma 49.

Corollary 52. Let G act on L2(G)fin by the right regular representation. Then
as G-representations,

L2(G)fin = ⊕V ⊕ dim(V ).

where V ⊕ dim(V ) is the image of V ∗⊗V , regarded now only as a G-module rather
than as a G×G-module.

10 Some facts concerning invariant measures

10.1 Definition of Haar measures
Let G be a locally compact topological group.

Definition 53. By a Radon measure on G we shall mean a linear functional µ :
Cc(G)→ C for which f ≥ 0 =⇒ µ(f) ≥ 0; thanks to the Riesz representation
theorem, this definition may also be formulated in terms of countably additive
functions on the Borel σ-algebra satisfying certain properties.

For y ∈ G and f ∈ Cc(G), define the left and right translates Lyf,Ryf ∈
Cc(G) by setting L[y]f(x) := f(yx), R[y]f(x) := f(xy).

To interpret some of the statements to follow, we “recall” that it makes sense
to integrate functions taking values in a Banach space. The only spaces we’ll
really need in the end are finite-dimensional vector spaces (where everything
should be familiar) and the Hilbert space L2(G), where one doesn’t lose much
by interpreting everything in a pointwise fashion. (TODO: dfdfd)
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Definition 54. A left (resp. right) Haar measure on G is a nonzero Radon
measure µ with the property µ(L[y]f) = µ(f) (resp. µ(R[y]f) = µ(f)).

We may reformulate this definition in various ways. For example, µ is a left
Haar measure if µ(gE) = µ(E) for all g ∈ G and all Borel subsets E of G, or in
integral form, if ∫

g∈G
f(hg) dµ(g) =

∫
g∈G

f(g) dµ(g)

for all h ∈ G and all f ∈ Cc(G).

10.2 Existence theorem
Theorem 55.

1. There exist left Haar measures and there exist right Haar measures on
any locally compact group G. They need neither coincide nor be scalar
multiples of one another.

2. Any two left (resp. right) Haar measures are positive multiples of one
another.

3. Any left or right Haar measure µ satisfies µ(f) > 0 for any nonzero non-
negative f ∈ Cc(G).

4. There is a continuous homomorphism ∆ : G → R×+ so that for any left
(resp. right) Haar measure µ and f ∈ Cc(G), one has µ(R[g]f) = ∆(g)
(resp. µ(L[g]f) = ∆(g−1)). (TODO: check inverse here.)

5. If G is compact, then {left Haar measures} = {right Haar measures}.

We sketch the idea of one proof; filling in the details may be regarded as an
exercise, or alternatively, looked up somewhere. For each nonnegative nonzero
φ ∈ Cc(G) and each nonnegative f ∈ Cc(G), denote by [f : φ] the infinum of∑
ci taken over all finite tuples of positive coefficients c1, . . . , cn and group ele-

ments g1, . . . , gn with the property that f ≤
∑
ciL[gi]φ. Fix also some nonzero

nonnegative f0 ∈ Cc(G). We may then attempt to define a left Haar measure µ
on G by requiring that µ(f0) = 1 and that

µ(f)

µ(f0)
= lim

φ

[f : φ]

[f0 : φ]
(57)

where φ traverses a net consisting of nonzero nonnegative elements of Cc(G)
with support shrinking to the identity. This turns out to work. Conversely, to
establish uniqueness, it suffices to show that (57) holds for any left Haar measure
µ. The key lemma is that each nonnegative f ∈ Cc(G) may uniformly approxi-
mated by some finite sum ciL[gi]φα as above with support in a fixed compact;
it follows then that µ(f) is approximated by µ(

∑
ciL[gi]φα) = µ(φα)

∑
ci ≈

µ(φα)[f : φ], giving (57).
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Definition 56. A locally compact group is unimodular if {left Haar measures} =
{right Haar measures}, or equivalently, if ∆(g) = 1 for all g ∈ G. On a unimod-
ular group, we may speak unambiguously simply about a Haar measure (without
specifying “left” or “right”). For example, Theorem 55 says that compact groups
are unimodular.

10.3 Unimodularity of compact groups
Note that if G is a compact group, then the image of the continuous homomor-
phism ∆ : G → R×+ is a compact subgroup of R×+; the only such subgroup is
{1}, so ∆ is trivial, which explains why left and right Haar measures coincide
on such a group. It follows that on each compact group, there is a unique (left
and right) invariant probability measure.

10.4 Direct construction for Lie groups
When G is a Lie group, a simpler proof may be given using differential forms.
Let ωe be a nonzero element of det(T ∗eG). Denote by ω the volume form on G
whose components ωg ∈ det(T ∗gG) for g ∈ G are given by the pullback

ωg := R[g−1]∗gωe

under the differential R[g−1]g : TgG → TeG. Then L[g]∗ω = ω for all g ∈ G,
so ω is left-invariant. The map Cc(G) 3 f 7→

∫
G
f ω then defines a left Haar

measure.

10.5 Some exercises
Exercise 12. Let G be a Lie group with left Haar measure dg. Let ∆ : G→ R×+
be the function

∆(g) := det(Ad(g)|g).

Show that ∆(g) dg is a right Haar measure.

Exercise 13. Determine a left and right Haar measure on the Lie group

Aff(R) :=

{(
∗ ∗

1

)}
≤ GL2(R).

Exercise 14. 1. Let G be a locally compact group for which [G,G] is dense
in G. Show that G is unimodular.

2. Let G,B,K be locally compact groups and let φ : B × K → G be a
morphism. Suppose that G is unimodular, K is compact, and φ has dense
image. Let dlb be a left Haar measure on G and let dk be a Haar measure
on K. Show that

µ(f) :=

∫
b∈B

∫
k∈K

f(bk) dlb dk

defines a Haar measure on G.
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10.6 Construction of a Haar measure on a compact group
via averaging

Let G be a compact topological group (not necessarily a Lie group). There is a
nice way to construct the unique Haar probability measure µ on G via averaging.

Definition 57. Let f : G → C be a continuous function on a compact group
G. Let Averages(f) denote the space of functions G→ C of the form

G 3 x 7→
n∑
i=1

cif(λix) ∈ C

for some n ∈ Z≥1 and λ1, . . . , λn ∈ G and some c1, . . . , cn ∈ [0, 1] with c1 + · · ·+
cn = 1.

Lemma 58. There exists a unique constant function in the closure (with respect
to the uniform topology) of Averages(f).

Proof. One should be able to prove this as follows:

1. It suffices to consider the case that f is real-valued.

2. The space of continuous functions on G is closed with respect to the uni-
form topology.

3. For a continuous real-valued function f on G, set

osc(f) := max
g∈G

f(g)−min
g∈G

f(g).

Note that f is constant if and only if osc(f) = 0. Note also that osc(f ′) ≤
osc(f) for all f ′ ∈ Averages(f).

4. Given a continuous real-valued function f on G that is non-constant, show
that there exists f ′ ∈ Averages(f) so that osc(f ′) < osc(f). (Use the
compactness of G and hence the uniform continuity of f . If f is smaller
than typical in some part of G, translate f around a bit to dampen the
contribution from parts of G where f is large.)

5. The family of functions Averages(f) is equicontinuous.

6. The function osc : C(G)→ R≥0 is continuous with respect to the uniform
topology on the domain.

7. To prove the existence part of the theorem, we can take a sequence fi ∈
Averages(f) so that osc(fi) tends to the infinum of osc(h) over all h ∈
Averages(f). After passing to a subsequence and appealing to Arzela–
Ascoli, we get a limit h of the sequence fi. If h is non-constant, then we
can find h′ ∈ Averages(h) for which osc(h′) < osc(h). But one should
then be able to check that h′ lies in the closure of Averages(f), giving the
required contradiction.
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8. To get uniqueness, let c1, c2 be values taken by constant functions in the
closure of Averages(f). Let c′ be a value taken by some constant function
in the closure of the set defined analogously to Averages(f), but using right
translations in place of left translations. Since left and right translations
commute, it’s not so hard to check that ci = c′ for i = 1, 2, hence that
c1 = c2.

We may then define µ(f) =
∫
G
f dµ to be the value taken by the constant

function arising in Lemma 58. It’s not hard to check that this defines a positive
linear functional on the space of continuous functions on G, hence defines a
measure; the key point is to verify additivity, which follows from some of the
assertions made above.

11 Definition and basic properties of Lie groups

11.1 Lie groups: definition
Definition 59. By a Lie group we shall mean a group G equipped with the
structure of a manifold for which the maps m : G × G → G and i : G → G
are smooth. The Lie algebra of G is the vector space Lie(G) := Te(G), often
denoted g, given by the tangent space at the identity; it is a vector space of
dimension equal to the dimension of G. (The word “algebra” appearing in the
term “Lie algebra” will be justified later.)

For Lie groups G,H, a morphism of Lie groups or simply a morphism f :
G→ H is a smooth group homomorphism.

For a Lie group G and a manifold X, an action of G on X is a smooth map
α : G×X → X, abbreviated gx := α(g, x), that satisfies the same assumptions
as in Definition 36.

Exercise 15. It suffices to check that m is smooth; the smoothness of i is
automatic. [Hint: apply the inverse function theorem to the map (x, y) 7→
(x, xy).]

11.2 Basic examples
The additive group (k,+) of the field k is a Lie group, since the addition map
k × k 3 (x, y) 7→ x + y ∈ k has the property that all of its partial derivatives
exist. Similarly, the multiplicative group (k×,×) is a Lie group. A slightly more
interesting example can be obtained by considering any finite-dimensional unital
associative algebra A over k. A good example to keep in mind is when A is the
algebra

A := Mn(k) := Matn×n(k)

of n× n matrices, in which case

A× = GLn(k)
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is the general linear group. The algebra A is a vector space, hence a manifold.
Moreover, the unit group A× is open in A: by Exercise 2, it suffices to verify
that A× contains a neighborhood of the identity element 1, and this follows
from the observation that for x ∈ A small enough, the element 1 +x has inverse
given by the convergent series

∑
n≥0(−x)n. Since the multiplication on A× is

bilinear, it is smooth, and so A× is a Lie group of dimension dim(A). Moreover,
one can naturally identify T0(A) = A and T1(A×) = A, where 1 ∈ A× denotes
the identity element, as in Example 10.

By what was shown above, GLn(k) is an n2-dimensional Lie group with

T1(GLn(k)) = Mn(k). (58)

11.3 Lie subgroups: definition
There are at least a couple different conventions concerning what a “Lie sub-
group” is.

Definition 60. Given a Lie group G, we say that a subset H of G is a Lie
subgroup if it is a subgroup and a submanifold.

Lemma 61. Let G be a Lie group. Let H be a Lie subgroup of G. Then H is
a Lie group.

Proof. We must show that the multiplication map µH : H ×H → H is smooth,
and that it coincides with the restriction µG|H×H : H ×H → G of the smooth
multiplication map µG : G×G→ G. So we reduce to the following: if f : M →
N is a smooth map between manifolds whose image lands in some submanifold
S ⊆ N , then the induced map f : M → S is also smooth. This is given by
Proposition 25.

Definition 62. A linear Lie group is a Lie subgroup G of GLn(k) for some n.
(Essentially all of our examples will be of this form.)

Definition 63. Given a Lie group G, by an immersed Lie subgroup we will
mean a subset H of G so that there exists a pair (Ĥ, ι), where Ĥ is a Lie group
and ι : Ĥ → G is an injective immersion with image H. (We will see much later
in the course that such a pair is essentially uniquely determined by H, at least
if H is connected.)

Example 64. Let G := (R/Z)2 be the two-dimensional torus, let H := R be
the real line, let α ∈ R−Q be an irrational real number, and define ι : H → G
by the formula

ι(x) := (x, αx).

Since α is irrational, the map ι is injective. It is also an immersion, since its
differential is given everywhere by the column matrix

Txι =

(
1
α

)
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which defines an injective linear map k → k2. Thus (H, ι) is an immersed Lie
subgroup of G. On the other hand, ι(H) is not a Lie subgroup because it is
not a submanifold: submanifolds are open in their closure (Remark 26), and
ι(H) = G, but ι(H) is not open in G. On a related note, ι does not define a
homeomorphism onto its image: for instance, there exist sequences xn ∈ R with
xn →∞ for which ι(xn)→ ι(0).

Remark 65. An injective immersion is called an embedding if it defines a
homeomorphism onto its image. (This is not the case in Example 64.) With
this terminology, we could alternatively define a Lie subgroup to be a pair (H, ι),
where H is a Lie group and ι is an embedding.

11.4 A handy criterion for being a Lie subgroup
Here is a very handy criterion for checking that a subgroup of a Lie group is a
Lie subgroup; we shall use it in several examples.

Lemma 66. Let G be a Lie group. Let H ≤ G be a subgroup that is given near
the identity e ∈ G element by a system of equations

f1 = · · · = fm = 0, (59)

where the fi : G 99K k are smooth maps defined near e for which f :=
(f1, . . . , fm) : G 99K km is submersive, i.e., satisfies either of the equiva-
lent conditions rank(Tef) = m or dim(V ) = d, where d := dim(G) − m and
V := ker(Tef) is the vector space given in local coordinates x1, . . . , xn at e ∈ G
(n = dim(G)) by the space of solutions (dx1, . . . , dxn) ∈ kn to the system of
homogeneous linear equations

n∑
j=1

∂fi
∂xj

(e)dxj = 0 (i = 1..m)

obtained by differentiating (59). Then H is a d-dimensional Lie subgroup of G.
Moreover, Lie(H) = TeH is equal to V .

Proof. Thanks to Propositions 27, 29, we need only verify that H is a d-
dimensional submanifold of G. Set n := dim(G). As in the proof of Proposition
27, there is a coordinate system x1, . . . , xn on G at e so that H is given near e
by x1 = · · · = xm = 0. Let p ∈ H, and let ψ : G→ G be the map ψ(x) := p−1x.
Since G is a Lie group, the map ψ is a diffeomorphism with ψ(p) = e, and so
y1 := x1 ◦ψ, . . . , yn := xn ◦ψ defines a coordinate system on G at p. For g ∈ G
near p, the following are then visibly equivalent:

1. y1(g) = · · · = ym(g) = 0

2. x1(p−1g) = · · · = xm(p−1g) = 0

3. p−1g ∈ H
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4. g ∈ H.

In relating the final two steps, we used that H is a subgroup and that p ∈ H.

Example 67. The subgroup H := SLn(k) of G := GLn(k) is defined by the
single equation det(g) = 1. Differentiating this equation and evaluating at the
identity element gives the linear equation

trace(dg) = 0

in the matrix variable dg ∈ Mn(k) = Te(G) (see (58)). Since this equation has
an n2 − 1-dimensional solution space, we deduce from Lemma 66 that H is a
Lie subgroup of G, called the special linear group. Moreover,

Te(SLn(k)) = {dg ∈Mn(k) : trace(dg) = 0}

is the space of traceless n× n matrices.

Exercise 16. Show that the orthogonal group

On(k) := {g ∈ GLn(k) : ggt = 1},

where g 7→ gt denotes the transpose map, is defined by a system of n(n+ 1)/2
equations having full rank at the identity (i.e., satisfying the submersiveness
condition). Deduce that On(k) is a Lie group of dimension n2 − n(n + 1)/2 =
n(n− 1)/2.

11.5 Lie subgroups are closed
Theorem 68. Let G be a Lie group and H ≤ G a Lie subgroup. Then H is
closed in G.

Recalling from Remark 26 thatH is locally closed in G, the proof of Theorem
68 reduces to that of the following:

Lemma 69. A locally closed subgroup H of a topological group G is closed.

Proof. By the continuity of the group operations in G, the closure H is itself a
group. For g ∈ H, the coset gH is then an open subset of H (using here that H
is locally closed). Since H is dense in H, the subsets gH and H intersect. This
means that we can write gx = y for some x, y ∈ H, whence g = x−1y belongs
to H. Since g was arbitrary, we conclude as required that H = H.

11.6 Translation of tangent spaces by group elements
Let G be a Lie group. An element g ∈ G acts on G by the left and right
multiplication maps

L[g] : G→ G

h 7→ gh,
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R[g] : G→ G

h 7→ hg.

One has
L[g1] ◦ L[g2] = L[g1g2], R[g1] ◦R[g2] = R[g2g1]. (60)

These maps are smooth, so it makes sense to differentiate them at an element
h ∈ G to obtain linear maps of tangent spaces

ThL[g] : ThG→ Tgh(G)

ThR[g] : ThG→ Thg(G).

By the chain rule and the identities (60), these maps are in fact linear isomor-
phisms of the tangent spaces. It will be convenient to introduce for X ∈ ThG
and g ∈ G the abbreviations

gX := (ThL[g])(X) ∈ Tgh(G), Xg := (ThR[g])(X) ∈ Thg(G). (61)

These will be used most often when h = 1, so that X ∈ TeG = g. The special
case worth focusing on is when G is a linear Lie group G ≤ GLn(k). In that
case, we can identify the various tangent spaces Th(G) with subspaces ofMn(k);
under this identification, the quantities gX,Xg defined in (61) are given by the
matrix products of g ∈ GLn(k) and X ∈Mn(k).

12 The connected component

12.1 Generalities
Any group may be regarded as a discrete topological group, or even a discrete
0-dimensional Lie group (provided the group is countable, so as to satisfy the
hypothesis of second-countability), but Lie theory has nothing interesting to
say about such Lie groups; its techniques show their true strength only when
the group is connected. Recall, then, that a topological space X is connected
if it cannot be written as a disjoint union of two nonempty closed subsets, or
equivalently, if every continuous map from X to a discrete topological space is
constant. Any topological space X admits a unique decomposition X = tiXi

into maximal connected subsets Xi, called the connected components of X; since
the closure of any connected set is connected, the connected components are al-
ways closed, but need not be open in general. However, if X is locally connected,
that is to say, if each point has a connected neighborhood, then the connected
components are open. In particular, any manifold is locally Euclidean, hence lo-
cally connected, and so is the disjoint union of its connected components which
are in turn open submanifolds. Moreover, since manifolds are locally path-
connected, we know that any connected manifold is necessarily path-connected,
even by smooth paths.

In particular, the connected components of a Lie group G are submanifolds.
It is customary to denote byG0 the connected component of the identity element
of G. Then G0 has the defining property that
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• if C is any connected subset of G that contains the identity element, then
C ⊆ G0.

We have the following:

Theorem 70. G0 is a normal Lie subgroup of G, and the connected components
of G are precisely the cosets of G0.

Proof. We have already observed that G0 is a submanifold. Let g ∈ G. Since left
and right multiplication maps x 7→ gx, x 7→ xg define homeomorphisms from G
to itself, they permute the connected components. The various assertions follow
easily from this:

1. If g ∈ G0, then gG0 is a connected component of G containing g. Since G0

is also a connected component of G containing g, it follows that gG0 = G0.
This implies that G0 is a subgroup.

2. For any g ∈ G, the conjugate gG0g−1 is a connected component of G that
contains gg−1 = 1, hence gG0g−1 = G0. Thus G0 is normal.

3. If C is any connected component of G0, then it is nonempty; if g ∈ C
is any element, then g−1C is a connected component of G0 that contains
g−1g = 1, hence g−1C = G0 and so C = gG0.

12.2 Some examples
In the following table, we list the number of connected components of some Lie
groups. Here k is one of the fields R or C, n ≥ 1 and p ≥ q ≥ 1.

1 component 2 components 4 components
GLn(C) GLn(R) O(p, q)

SLn(k) O(n)

SO(n) SO(p, q)

U(n),SU(n)
U(p, q),SU(p, q)

These Lie groups were defined in lecture. It was proved that GLn(C), SLn(k),
O(n), SO(n), U(n) have the indicated number of connected components; the
remaining cases were left as exercises.

• For the case of SLn(k), we argued using elementary matrices.

• The group GLn(C) is the image of the connected domain C××SLn(C) un-
der the continuous homomorphism (ζ, g) 7→ ζg, which is surjective because
det(ζg) = ζn and the nth power map on C× is surjective.
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• The proof in the case of SO(n) was by induction on n, using that the trivial
group SO(1) = {1} is connected and that SO(n) acts transitively on the
(connected) sphere Sn−1 with SO(n− 1) ↪→ SO(n) as the stabilizer group
of the point en := (0, . . . , 0, 1). Since several people asked for clarifications
regarding this proof, I have written it down in the following subsection.

• The proof in the case of U(n) was to recall that every conjugacy class in
U(n) contains a diagonal element, and that the diagonal elementseiθ1 · · ·

eiθn


are obviously in the connected component of the identity, because (for
instance) they are the values γ(1) of the continuous maps

γ(t) =

eiθ1t · · ·
eiθnt


for which γ(0) = 1 is the identity.

12.3 Connectedness of SO(n)

We verify by induction on n that SO(n) is connected. The group SO(1) = {1}
is trivial, hence connected. Let n ≥ 2. The group SO(n) acts smoothly on the
unit sphere Sn−1 := {x ∈ Rn : |x| = 1}. The action is transitive. In fact, the
connected component already acts transitively:

Lemma 71. Let n ≥ 2. Then SO(n)0 acts transitively on Sn−1.

Proof. Denote by e1, . . . , en the standard basis elements; they all belong to
Sn−1. Let v ∈ Sn−1. We will show that there exists g ∈ SO(n)0 with gen = v.

1. Consider first the case n = 2. Define γ : R→ SO(2) by the formula

γ(θ) :=

(
cos θ sin θ
− sin θ cos θ

)
∈ SO(2).

Since γ is continuous and γ(0) = 1, we see that γ(θ) ∈ SO(2)0 for all θ.
Now let v ∈ S1. We may then write v = (x, y) where x2 + y2 = 1 and
solve x = sin(θ), y = cos(θ) for some θ. Then γ(θ)e2 = (x, y), as required.

2. Suppose now that n ≥ 3. Define γ : R→ SO(n) by

γ(θ) :=


1
· · ·

1
cos(θ) sin(θ)
− sin(θ) cos(θ)

 .
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As above, γ(θ) ∈ SO(n)0 for all θ. Let v ∈ Sn−1. If v belongs to the
line spanned by en, then either v = en (in which case v = gen with
g = 1 ∈ SO(n)0) or v = −en (in which case v = γ(π)en); in either case,
v is of the form v = gen for some g ∈ SO(n)0. If v and en are linearly
independent, we may use Gram–Schmidt to find an orthonormal basis
e′n−1, en for their span. We may then extend this to an orthonormal basis
e′1, e

′
2, . . . , e

′
n−1, en for Rn. We can find g in O(n) taking one orthonormal

basis to the other, so that gv belongs to the span of en−1, en and gen = en
Then gv is of the form (0, . . . , 0, x, y) with x2 + y2 = 1; we can then
solve x = sin(θ), y = cos(θ) as before to obtain γ(θ)en = gv and thus
g−1γ(θ)gen = v. Since SO(n)0 = O(n)0 is normal in O(n), we have
g−1γ(θ)g ∈ SO(n)0.

Lemma 72. The stabilizer group StabSO(n)(en) is isomorphic to SO(n − 1),
with an isomorphism in the opposite direction given by

SO(n− 1)
∼=−→ StabSO(n)(en)

h 7→
(
h

1

)
.

Proof. If g ∈ SO(n) fixes en, then the identity

〈gv, en〉 = 〈v, gten〉 = 〈v, g−1en〉

implies that g−1 and hence g also stabilizes the orthogonal complement 〈en〉⊥ =
〈e1, . . . , en−1〉. We may thus put it in in the block-upper triangular form g =(
h

1

)
for some h ∈ GLn−1(R). The condition ggt = 1 implies hht = 1, hence

that h ∈ SO(n− 1).

Using the above lemmas, we now complete the inductive step in the proof
that SO(n) is connected, i.e., that SO(n) = SO(n)0. Let g ∈ SO(n); we wish
to show that in fact g ∈ SO(n)0. Consider the element gen ∈ Sn−1. By
Lemma 71, we may write gen = γen for some γ ∈ SO(n)0. We then have
γ−1gen = en, i.e., γ−1g ∈ StabSO(n)(en). By Lemma 72, we have γ−1g = h
for some h ∈ SO(n − 1) ↪→ SO(n). By the inductive hypothesis, SO(n − 1)
is connected, hence SO(n − 1) ⊆ SO(n)0. Thus g = γh is the product of two
elements of SO(n)0; since the latter is known to be a group, we conclude that
g ∈ SO(n)0.

Remark 73. One doesn’t actually need to prove Lemma 71 to complete the in-
ductive argument; a slightly softer way to proceed is to make use of the following
general lemma:

Lemma 74. Let G be a topological group that acts on a topological space X
(i.e., we assume given an action α : G×X → X as in Definition 36). Assume
that:
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1. For x0 ∈ X, the orbit map G→ X given by g 7→ gx0 is a quotient map.

2. The action is transitive.

3. X is connected.

4. The stabilizer H in G of some (equivalently, any) point x0 ∈ X is con-
nected.

Then G is connected.

Proof. If not, we may find a non-constant continuous map f : G → D for
some discrete topological space D (e.g., D = {0, 1}). Since H and hence any
coset of H is connected, the restriction of f to any coset of H is constant,
hence f induces a continuous map G/H → D, where G/H is equipped with
the quotient topology. Since the orbit map assumed to be a quotient map, we
obtain a continuous map X → D sending gx0 to f(g). Since X is connected,
this last map must be constant, hence so must the original map f . Therefore G
is connected.

The orbit maps for the action SO(n) � Sn−1 are quotient maps because
(for instance) SO(n) is Hausdorff and Sn−1 is compact. Alternatively, one can
appeal here to Exercise 11, which tells us that the orbits map are open maps,
hence are quotient maps.

13 Basics on the exponential map

13.1 Review of the matrix exponential
Let k be either R of C. Let n ≥ 1 and

A := Mn(k) := Matn×n(k).

It is a finite-dimensional unital associative algebra over k (and the discussion
to follow applies more generally to any such algebra). The operator norm ‖.‖
on A is given by ‖x‖ := supv∈kn:|v|=1 |xv|; it satisfies the submultiplicativity
property ‖xy‖ ≤ ‖x‖‖y‖. The unit group of A is

A× = GLn(k).

For x ∈ A with ‖x‖ < 1, the series
∑
n≥0 x

n converges (by the same proof as
in the one-variable case, using the submultiplicativity). Therefore 1−x has the
inverse

∑
n≥0 x

n and hence belongs to A× whenever ‖x‖ < 1. Therefore A× is
open in A. (One can also see this more directly.) Since A is a Euclidean space,
it follows that we have natural identifications of tangent spaces

T0(A) = A, T1(A×) = A.
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For any x ∈ A, the series

exp(x) :=
∑
n≥0

xn

n!

converges. It satisfies the following properties:

1. exp is smooth

2. exp(0) = 1

3. One has exp(x + y) = exp(x) exp(y) whenever x, y commute (but not in
general otherwise). In particular:

(a) exp(x) exp(−x) = exp(0) = 1, hence exp(A) ⊆ A×.
(b) exp((s + t)x) = exp(sx) exp(tx) for all s, t ∈ k, hence the map k 3

t 7→ exp(tx) ∈ A× is morphism of Lie groups for each x ∈ A.

4. d
dt exp(tx) = x, hence T0 exp : A → A is the identity transformation.
Consequently exp defines a local diffeomorphism at 0, i.e., induces a dif-
feomorphism exp : U → V for some open 0 ∈ U ⊆ A and 1 ∈ V ⊆ A×.

5. An inverse to exp on the subset {1 − x : ‖x‖ < 1} of A× is given by the
logarithm

log(1− x) := −
∑
n≥1

xn

n
.

6. For g ∈ A× and x ∈ A one has exp(gxg−1) = g exp(x)g−1.

For a diagonal matrix, one has

exp(

t1 · · ·
tn

) =

exp(t1)
· · ·

exp(tn)

 .

For a basic nilpotent Jordan block N , given in the case (say) n = 4 by

N =


1

1
1

 ,

one has Nk = 0 for all k ≥ n, hence the series defining exp(N) is finite. The
series defining log(1 + tN) is also finite for any t ∈ k.

Exercise 17. Using the above facts and Jordan decomposition, show that exp :
Mn(C) → GLn(C) is surjective. (The corresponding assertion over the reals is
false for several reasons to be discussed in due course.)
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The exponential map is very rarely injective (away from the origin); for
example, exp(2πi) = 1, and

exp(θ

(
1

−1

)
) =

(
cos θ sin θ
− sin θ cos θ

)
.

Some other good examples to keep in mind are

exp(t

(
1

1

)
) =

(
cosh t sinh t
sinh t cosh t

)
and

exp

0 x z
0 y

0

 =

1 x z + xy/2
1 y

1

 .

13.2 One-parameter subgroups
Let G be a Lie group. Let g := Lie(G) denote its Lie algebra.

Definition 75. By a one-parameter subgroup of G, we shall mean a morphism
of Lie groups Φ : k→ G.

Remark 76.

1. Note the standard but slightly misleading terminology: a “one-parameter
subgroup” Φ is not a subgroup; its image image(Φ) ≤ G a subgroup, but
even if Φ is injective, the datum of Φ contains strictly more information
than that of its image. For example, the one-parameter subgroups Φ(t) :=
t and Φ(t) := 2t in the additive group G = (k,+) have the same image.

2. Note also that a one-parameter subgroup Φ of G is, in particular, a curve
(in the sense of §6.5) with basepoint the identity element e ∈ G. Its initial
velocity Φ′(0) is an element of g.

Example 77. For v ∈ Mn(k), the discussion of §13.1 shows that the map
Φv : k → GLn(k) given by Φv(t) := exp(tv) is a one-parameter subgroup of
the Lie group GLn(k) with initial velocity Φ′v(0) = v. Moreover, the map
Mn(k) 3 v 7→ Φv(1) = exp(v) ∈ GLn(k) is smooth.

For general G, a one-parameter subgroup Φ satisfies the identity Φ(s+ t) =
Φ(s)Φ(t) = Φ(t)Φ(s). Applying d

ds |s=0 to this identity gives the differential
equation3

Φ′(t) = Φ′(0)Φ(t) = Φ(t)Φ′(0). (62)

By the initial condition Φ(0) = 1 and general uniqueness theorem for ODE’s
(§7), it follows that Φ is determined uniquely by its initial velocity Φ′(0) ∈ g. To

3 If the definition of products such as Φ′(0)Φ(t) is unclear, one should either consult §11.6
or (better) assume that G is a linear Lie and interpret such products as as being given by
matrix multiplication.
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put it another way, for each element v ∈ g, there is at most one one-parameter
subgroup Φv of G with initial velocity v. Conversely, we will now show that
such a one-parameter subgroup actually exists, and moreover, that its values
Φv(t) vary smoothly with v. For illustration, we explain a few different ways to
establish existence:

1. In the special case G = GLn(k), one can just take Φv(t) := exp(tv).

2. If G is a linear Lie group, that is to say, if it is a Lie subgroup of GLn(k)
for some n, so that g ≤Mn(k), then it turns out that one can again take
Φv(t) := exp(tv) where exp : Mn(k)→ GLn(k) is as defined above. What
requires proof here is the following:

Lemma 78. Let G be a Lie subgroup of GLn(k). Then exp(g) ⊆ G.

Proof. Let x ∈ g, and let γ : k 99K G be any curve with γ′(0) = x. (Such
a curve exists, more-or-less by definition of the tangent space; see §6.5
and especially Remark 11.) Since G ≤ GLn(k) and γ(t) = 1 + tv+ o(t) as
t → 0, we may take for t small enough the logarithm of γ(t), which then
satisfies log γ(t) = tv + o(t). Taking t := 1/n with n ∈ Z tending off to
∞ gives n log γ(1/n) = n(v/n + o(1/n)) = v + o(1). Exponentiating, one
obtains γ(1/n)n = exp(v+ o(1)). Hence exp(v) = limn→∞ γ(1/n)n. Since
γ is a curve in G and G is a group, we have γ(1/n)n ∈ G for all n. Since
G is closed (see §11.5), it follows that exp(v) ∈ G, as required.

3. For general G, we can appeal to existence theorems for ODE’s (see §7) to
produce a curve γ : k 99K G satisfying

γ(0) = 1 ∈ G, γ′(t) = γ(t)v (63)

for all t in the domain of γ. Moreover, the values of γ vary smoothly with
the initial data v. A priori, the domain of γ might be quite small, but we
can now use the group structure on G, as follows, to enlarge it to all of k.
To that end, it suffices to show that each solution γ to (63) on some ball4
B with the center the origin can be extended to a solution domain the
enlarged ball 2B of twice the radius of B; iterating this, one eventually
obtains a solution on all of k. (Many variations on this argument are also
possible.)

(a) For s ∈ B, the curve γs(t) := γ(s)−1γ(s + t) is defined whenever
s + t ∈ B and satisfies the same initial condition γs(0) = 1 and
differential equation γ′s(t) = γ(s)−1γ′(s + t) = γ(s)−1γ(s + t)v =
γs(t)v as γ(t) does. By the uniqueness theorem cited above, we
deduce that γs(t) = γ(t) and hence that

γ(s+ t) = γ(s)γ(t) provided that s, t, s+ t ∈ B. (64)
4k = R, “ball” means “interval”, of course
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(b) For any s ∈ B, denote by δs the curve in G with domain B + s :=
{t : t − s ∈ B} given by δs(t) := γ(t − s)γ(s). By differentiating
the condition (64) , one sees that δs defines a solution to (63) on
its domain. For any two s1, s2 ∈ B, the identity (64) implies that
δs1 = γ = δs2 on the neighborhood B+ s1 ∩B ∩B+ s2 of the origin,
hence by the uniqueness theorem cited above also that δs1 = δs2 on
B + s1 ∩B + s2. By the smoothness of the group operation in (64),
we see that the values of δs still vary smoothly with v.

(c) Since ∪{B + s : s ∈ B} = 2B, we can patch together the solutions
given in the previous step to obtain a well-defined curve γ̃ : 2B → G
given for t ∈ B + s by γ̃(t) := δs(t− s). This curve solves (63), and
extends γ, as required.

To summarize the above discussion, we have the following:

Theorem 79. Let G be a Lie group with Lie algebra g := Lie(G). For each
x ∈ g there exists a unique one-parameter subgroup Φx of G for which Φ′x(0) = x.
Moreover, the map x 7→ Φx(1) is smooth.

13.3 Definition and basic properties of exponential map
Definition 80. Let G be a Lie group with Lie algebra g. The exponential
map exp : g → G is defined by exp(x) := Φx(1), where Φx denotes the unique
one-parameter subgroup of G having initial velocity Φ′x(0) = x.

The notation is consistent with that discussed in §13.1. We also have the
following immediate consequences of §13.2:

Theorem 81 (Lie’s first theorem). For a Lie group G with Lie algebra g, the
exponential map exp : g→ G has the following properties:

1. exp : g→ G is smooth

2. The derivative T0 exp : g → g is the identity transformation, or equiva-
lently, d

dt exp(tx) = x for all x ∈ g.

3. exp : g→ G is a local diffeomorphism at 0, i.e., there are open 0 ∈ U ⊆ g
and 1 ∈ V ⊆ G so that exp : U → V is a diffeomorphism.

4. For any X ∈ g, the map k 3 t 7→ exp(tx) is the unique one-parameter
subgroup of G with initial velocity x.

5. Let γ be any curve in G with basepoint given by the identity. Set X :=
γ′(0) ∈ g. Then exp(X) = limn→∞ γ(1/n)n.

(The proof of the final assertion proceeds exactly as in the case of linear
Lie groups now that we have the logarithm map on general Lie groups at our
disposal.)

Here is another key consequence:
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Corollary 82. exp(g) generates the connected component G0 of G. In partic-
ular, if G is connected, then G is generated by exp(g).

Proof. We saw earlier that G0 is generated by any neighborhood of the identity,
and saw just now that exp is a local diffeomorphism at 0; in particular, exp(g)
contains a neighborhood of the identity in G.

Remark 83. Even if G is connected, it need not be the case that exp(g) = G.
For example, one can show that(

−1/2
−2

)
/∈ exp(sl2(R)).

It is a non-obvious fact (which we might conceivably see later in the course)
that if G is a compact connected Lie group, then exp(g) = G.

13.4 Application to detecting invariance by a connected
Lie group

In lecture, we explained how the connectedness of SO(n) and Lie’s first theorem
imply that a smooth function f : Rn → R is rotation-invariant (i.e., f(x) de-
pends only upon |x|) if and only if it satisfies the finite system of homogeneous
linear differential equations

xj
∂

∂xi
f(x) = xi

∂

∂xj
f(x) for all 1 ≤ i < j ≤ n. (65)

This is computationally useful; for instance, it applies when f is a polynomial
of large degree in many variables. This is not an earth-shaking fact, and it can
probably be proved directly in various ways, but the proof we will give here
illustrates in a simple way a rather fundamental technique of Lie theory.

To summarize the proof, we noted that the first condition is visibly equivalent
to

f(gx) = f(x) for all g ∈ SO(n), x ∈ Rn (66)

while the second is visibly equivalent to

Xf = 0 for all X ∈ B (67)

where for X ∈ g we set

Xf(x) :=
d

dε
f(exp(−εX)x)|ε=0

and where B is the basis of so(n) given by

B := {Xij : 1 ≤ i < j ≤ n}

where
Xij := Eij − Eji
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where Eij has a 1 in the (i, j) entry and 0’s elsewhere; for instance, when n = 3,
a basis for so(3) is given by

X12

 1
−1

 , X13

 1

−1

 , X23

 1
−1

 .

To relate (65) to (67) we used that

Xijx = xjei − xiej

and hence that

f(x exp(−εXij)x) = f(x− ε(xjei − xiej) +O(ε2))

to compute that

Xijf(x) = −(xj
∂

∂xi
− xi

∂

∂xj
)f(x).

Each of the following conditions is visible equivalent to the next:

1. The condition (66).

2. The condition (66) but restricted to g in a generating set for G.

3. The condition (66) for g ∈ exp(g). (Here we use Lie’s theorem and the
connectedness of G.)

4. The condition that
f(exp(−tX)x)

be independent of t for all x ∈ Rn and all X ∈ g.

5. The condition that
d

dt
f(exp(−tX)x) = 0 (68)

for all x ∈ Rn and all X ∈ g.

6. The condition that Xf = 0 for all X ∈ g. To relate this to the previous
condition, we used the following key calculation:

d

dt
f(exp(−tX)x) =

d

dε
f(exp(−(t+ ε)X)x)|ε=0

=
d

dε
f(exp(−εX) exp(−tX)x)|ε=0

= Xf(exp(−tX)x).

Thus if (68) holds, then Xf(exp(−tX)x) = 0 for all t,X, x, and in par-
ticular for t = 0, giving Xf(x) = 0 and thus Xf = 0. Conversely, if
Xf = 0, then in particular Xf(exp(−tX)x) = 0 for all t,X, x; the above
calculation then implies that (68) holds.
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7. The condition (67). (Here we used that X 7→ Xf is linear to reduce from
testing all X ∈ g to testing those in the basis B.)

Remark 84. It’s not too hard to show that exp : so(n) → SO(n) is actually
surjective (in contrast to the general case mentioned in Remark 83), so we
didn’t really need Lie’s theorem in the above argument, the point of which was
to illustrate a technique in a simple case.

13.5 Connected Lie subgroups are determined by their Lie
algebras

Theorem 85. Let G be a Lie group. Then connected Lie subgroups of G are
classified by their Lie algebra: if H1, H2 are two connected Lie subgroups of G
for which Lie(H1) = Lie(H2), then H1 = H2.

Proof. We know by Exercise 5 that Hi is generated by any neighborhood of the
identity; by Theorem 81, it follows that Hi is generated by exp(Lie(Hi)). Since
H1, H2 are generated by the same set, they are equal.

13.6 The exponential map commutes with morphisms
Theorem 86. The exponential map commutes with Lie group morphisms: If f :
G→ H is a morphism of Lie groups and x ∈ Lie(G) is given, then f(exp(x)) =
exp(df(x)), where df := Tef : g→ h.

For the sake of illustration, we record a few proofs.

Proof #1. It suffices to show that f(exp(tx)) = exp(df(tx)) for all t. But now
both sides, viewed as functions of t, are one-parameter subgroups of H with
inital velocity df(x) = Tef(x): indeed, we have

f(exp(tx)) = f(1 + tx+ o(t)) = 1 + t df(x) + o(t)

and similarly
exp(df(tx)) = 1 + t df(x) + o(t).

By the uniqueness given in Theorem 79, we conclude.

Proof #2. Let γ be any curve on G with basepoint γ(0) = e and initial velocity
γ′(0) = x. The curve f ◦ γ on H then has basepoint e and initial velocity
(f ◦ γ)′(0) = df(x). By the final assertion of Theorem 81, we have

exp(x) = lim
n→∞

γ(1/n)n

and similarly exp(df(x)) = limn→∞ f(γ(1/n))n. Since f is a continuous group
homomorphism, it follows that

f(exp(x)) = f( lim
n→∞

γ(1/n)n) = lim
n→∞

f(γ(1/n))n = exp(df(x)),

as required.
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Example 87. Set f := det : GLn(k) → k×. Since det(1 + εX) = 1 +
ε trace(X) + O(ε2), we have df = trace : Mn(k) → k. The theorem then
implies for X ∈Mn(k) that

det(exp(X)) = f(exp(X)) = exp(df(X)) = exp(trace(X)),

which can also be seen directly via Jordan decomposition.

13.7 Morphisms out of a connected Lie group are deter-
mined by their differentials

Theorem 88. Let G be a connected Lie group and H any Lie group. Then
morphisms f : G→ H are determined by their differentials df : g→ h.

Proof. Since G is connected, it is generated by a neighborhood of the identity,
hence in particular by exp(g). Since f is a homomorphism, it is thus determined
by the quantities exp(X) for all X ∈ g. But by the result of §13.6, we have
f(exp(X)) = exp(df(X)). Hence f is determined by f .

14 Putting the “algebra” in “Lie algebra”

14.1 The commutator of small group elements
Let G be a Lie subgroup of GLn(k). Consider a pair of elements X,Y ∈ g :=
Lie(G) and a corresponding pair of curves ξ, η : k 99K G with basepoints
ξ(0) = η(0) = 1 and initial velocities ξ′(0) = X, η′(0) = Y . For example:

1. One can always take ξ(s) := exp(sX), η(t) := exp(tY ).

2. If G = GLn(k), one could also take ξ(s) := 1 + sX, η(t) := 1 + tY .

We can then consider, for small enough s, t ∈ k, the commutator

Γ(s, t) := (ξ(s), η(t)) := ξ(s)η(t)ξ(s)−1η(t)−1.

From the basepoint condition we have

Γ(0, 0) = Γ(s, 0) = Γ(0, t) = 1,

so every term in the Taylor expansion of Γ(s, t) − 1 is divisible by st. We now
determine the coefficient of st, or equivalently, the derivative ∂s=0∂t=0Γ(s, t).
To compute this, we write

ξ(s)η(t) = Γ(s, t)η(t)ξ(s)

and differentiate both sides, first with respect to s at s = 0, giving

Xη(t) = ∂s=0Γ(s, t)η(t)ξ(0) + Γ(0, t)η(t)X = ∂s=0Γ(s, t)η(t) + η(t)X

and then with respect to t at t = 0, giving after analogous simplifications that

XY = ∂s=0∂t=0Γ(s, t) + Y X,

whence
Γ(s, t) = XY − Y X.
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14.2 The Lie bracket as an infinitesimal commutator
For a general Lie group G, we define the commutator bracket [, ] : g⊗ g→ g by
setting

[X,Y ] := ∂s=0∂t=0Γ(s, t),

with notation as in the previous section. To interpret this properly, we have

∂t=0Γ(s, t) = ∂t=0ξ(s)η(t)ξ(s)−1η(t)−1

This is the initial velocity of a curve passing through the identity element of G
at time t = 0, hence it makes sense to regard it as an element of g. Thus

s 7→ ∂t=0Γ(s, t)

defines a curve in g. Hence its s-derivative at s = 0 defines an element of
g. Similar arguments show that [X,Y ] is independent of the choice of ξ, η;
alternatively, one could always take ξ(s) := exp(sX), η(t) := exp(tY ) in the
definition, but it’s occasionally convenient to make other choices.

The bracket [, ] on the Lie algebra g of a Lie group G has the following
properties:

1. [, ] is bilinear. This is immediate from the definition

2. [X,X] = 0. This is again immediate from the definition. It follows that
[X+Y,X+Y ] = [X,X] + [X,Y ] + [Y,X] + [Y, Y ] = [X,Y ] + [Y,X], hence
that

[X,Y ] = −[Y,X]. (69)

3. It satisfies the Jacobi identity

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0 (70)

which, thanks to (69), can be put in the equivalent forms

[X, [Y,Z]] = [[X,Y ], Z] + [Y, [X,Z]]

or
[[X,Y ], Z] = [[X,Z], Y ] + [X, [Y, Z]].

In the linear case G ≤ GLn(k), one can prove the Jacobi identity by
expanding everything out using the identity [X,Y ] = XY − Y X. In
general, they follow from the associativity of the group law in G in the
form

gh = (ghg−1)g

together with some artful use of the chain rule. We do not give the details
here; we promise instead that a couple more “conceptual” derivations of
the Jacobi identity will be given later.
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14.3 Lie algebras
Definition 89. A Lie algebra L over k is a vector space equipped with a bilinear
form [, ] : L⊗L→ L satisfying the properties mentioned in the previous section.

Here are the basic examples:

1. We’ve seen (modulo verification of the Jacobi identity in general) that for
any Lie group G, what we’ve already called the “Lie algebra” g := Lie(G)
of G is in fact a Lie algebra in the above sense when equipped with the
commutator bracket as we’ve defined it.

2. Any associative algebra A over k becomes a Lie algebra when equipped
with the bracket [x, y] := xy−yx. A notable example is when A = End(V )
for a vector space V . If V = kn, then of course A = End(V ) = Mn(k).

3. If L1 is a Lie algebra and L2 ≤ L1 is a vector subspace with the property
that [x, y] ∈ L2 whenever x, y ∈ L2, then L2 is a Lie algebra when equipped
with the commutator bracket induced from that on L1; it is then (fittingly)
called a Lie subalgebra of L1.

4. Given an algebra A, the space Der(A) of derivation of A (i.e., k -linear
maps D : A → A satisfying D(x · y) = Dx · y + x ·Dy) is a Lie algebra.
(Exercise: check this.) It is a Lie subalgebra of End(A).

When A is finite-dimensional, one can show that Aut(A) is a Lie group
with Lie algebra Der(A), hence that this example is a special case of the
first one. But what we’ve said here applies (usefully) also when A is
infinite-dimensional; see below.

Every finite-dimensional example is already of the above form:

Theorem 90 (Ado). Let L be a finite-dimensional Lie algebra. Then L is
isomorphic to a Lie subalgebra of End(V ) for some finite-dimensional vector
space V .

The proof of this innocent-sounding theorem is not egregiously difficult, but
does seem to require most of the basic structure theory of Lie algebras, and so
will not be proved now. However, it may aid intuition to know up front that
one can always think of any finite-dimensional Lie algebra as a Lie subalgebra
of some matrix algebra.

A special case of the final example mentioned above is when A = C∞(M)
for a manifold M . In that case, it is known that

Der(C∞(M)) ∼= Vect(M)

where Vect(M) denotes the space of vector fields onM , i.e., smooth assignments

X : M → TM := tp∈MTpM
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satisfying Xp := X(p) ∈ TpM for all p ∈ M . Such a vector field induces
a derivation by the rule: for f ∈ C∞(M), the image Xf ∈ C∞(M) under
X ∈ Vect(X) is defined to be

(Xf)(p) := (Tpf)(Xp),

i.e., “the directional derivative of f at p in the direction of the tangent vector
Xp.”

Remark 91. It can be instructive to check for some simple examples of linear
Lie groups G ≤ GLn(k) with Lie algebra g ≤ Mn(k) that the bracket [, ] does
in fact preserve g (as it must). For X,Y ∈ sln(k) we have trace([X,Y ]) =
0; indeed, the trace of any commutator is zero. For X,Y ∈ on(k), so that
X +Xt = 0, Y + Y t = 0, we have [X,Y ]t = (XY )t − (Y X)t = Y tXt −XtY t =
(−Y )(−X)− (−X)(−Y ) = −[X,Y ], hence [X,Y ] ∈ on(k).

14.4 The Lie bracket commutes with differentials of mor-
phisms

Let f : G→ H be a morphism of Lie groups. Then for X,Y ∈ g, one has

df([X,Y ]) = df(∂s=0∂t=0(esX , etY )) (definition of [, ])

= ∂s=0df(∂t=0(esX , etY )) (df is linear)

= ∂s=0∂t=0f((esX , etY )) (definition of df)

= ∂s=0∂t=0(f(esX), f(etY )) (f is a homomorphism)

= ∂s=0∂t=0(edf(sX), et df(sY )) (f ◦ exp = exp ◦df)
= ∂s=0∂t=0(es df(X), et df(Y )) (df is linear)
= [df(X), df(Y )] (definition of [, ]).

Thus df : g→ h is a morphismo f Lie algebras.

15 How pretend that every Lie group is a matrix
group and survive

(TODO: rewrite this section.) For many arguments it is convenient to assume
that a Lie group G is a matrix group, i.e., embeds in GLn(R), so that its
Lie algebra embeds in Mn(R). Then lots of stuff simplifies (in a non-serious
way) because we can just regard everything as a matrix and not worry about
which tangent space stuff belongs to, etc. Not every Lie group is a matrix
group, but they are all close enough to being matrix groups (e.g., up to covering
homomorphisms to be discussed later) that nothing really bad goes wrong if
one pretends that they are. For example, it was convenient in class today to
pretend that G was a matrix Lie group when discussing the proof of Maurer–
Cartan equations.
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However, there is a rigorous trick by which one can always treat a Lie group
G as if it were a matrix group by embedding it in the space GL(C∞(G)) of linear
automorphisms of the (typically infinite-dimensional) vector space C∞(G). The
fact that GL(C∞(G)) is not itself a Lie group doesn’t matter much in practice.
More precisely, one defines an injective homomorphism

G ↪→ GL(C∞(G))

as follows: we identify each g ∈ G with the element of Aut(C∞(G)) that sends
a smooth function ϕ ∈ C∞(G) to the new function gϕ ∈ C∞(G) given by right
translation: for x ∈ G,

gϕ(x) := ϕ(xg).

(This is an action: (g1g2)ϕ = g1(g2ϕ).) It makes sense to differentiate this
action of G element-wise. We obtain in this way induces a morphism X ↪→
End(C∞(G)), whose image actually lies in an easily characterized subspace of
Der(C∞(G)); more on that later. The action of X ∈ g on ϕ ∈ C∞(G) is given
by

Xϕ(x) := ∂t=0ϕ(x exp(tX)).

(This is a Lie algebra representation: [X,Y ]ϕ = XY ϕ − Y Xϕ.) In this way,
one can make perfectly rigorous sense of identities such as

[X,Y ] = XY − Y X

or
Ad(g)X = gXg−1

even when G is not a matrix Lie group: for instance, the products XY in the
above expression are just the compositions taking place inside End(C∞(G)).

16 Something about representations, mostly SL2

16.1 Some preliminaries
We have spoken so far in the course quite a bit about GLn(k) and its Lie algebra
Mn(k). More abstractly, one can work with any finite-dimensional vector space
V over k. Then GL(V ) is a Lie group over k with Lie algebra End(V ). If
V = kn, then GL(V ) = GLn(k) and End(V ) = Mn(k).

When k = C, we can regard GL(V ) either as a complex Lie group or as a
real Lie group.

16.2 Definition
Definition 92. Let k = R or C. For us, a representation of a Lie group G is a
pair (V,R), where

• V is a finite-dimensional vector space and
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• R : G→ GL(V ) is a morphism of Lie groups over k.

We allow the possibility that k = R and V is a complex vector space but
regarded as a real vector space (Cn ∼= R2n). When we wish to be more specific,
we might introduce the following terminology:

1. Let G be a real Lie group. A real representation of G is a morphism of
real Lie groups R : G→ GL(V ) (i.e., an infinitely-real-differentiable group
homomorphism).

2. Let G be a real Lie group. A complex representation of G is a morphism
of real Lie groups R : G → GL(V ) (i.e., an infinitely-real-differentiable
group homomorphism).

3. Let G be a complex Lie group. A holomorphic representation of G is
a morphism of complex Lie groups R : G → GL(V ) (i.e., a complex-
differentiable group homomorphism).

One can also regard a complex Lie group as a real Lie group and consider its
representations in that sense.

A representation of a Lie algebra g is likewise a pair (V, ρ), where V is as
above and ρ : g → End(V ) is a morphism of Lie algebras over k. We can
also speak of real or complex representations of Lie algebras, or of holomorphic
representations of complex Lie algebras.

The action of a representation R : G → GL(V ) is often abbreviated gv :=
R(g)v and likewise that of ρ : g→ End(V ) by Xv := ρ(X)v.

Given two representations R1 : G → GL(V1) and R2 : G → GL(V2), a
morphism of representations or equivariant map Φ : V1 → V2 is a linear map that
commutes with the action, i.e., so that Φ(R1(g)v) = R2(g)Φ(v) for all g ∈ G,
v ∈ V ; one defines similarly the analogous notion for g-representations. An
isomorphism of representations or equivariant isomorphism is a morphism with
a two-sided inverse (equivalently, a bijective morphism), and two representations
are said to be isomorphic if there is an isomorphism between them.

By what we’ve seen above, a representation R : G→ GL(V ) of a Lie group
G induces a representation

dR : g→ End(V )

of its Lie algebra g, given explicitly by for X ∈ g by

Xv := dR(X)v :=
d

dt
R(exp(tX))v|t=0.

Example 93. Let G := GLn(k). Let V := C[x1, . . . , xn](d) be the space of
homogeneous polynomials of degree d in the variables x1, . . . , xn. One then has
a representation R : G → GL(V ) sending g ∈ G to the element R(g) ∈ GL(V )
that acts on a polynomial φ ∈ V by the formula

gφ(x) := (R(g)φ)(x) := φ(xg),
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where x = (x1, . . . , xn) is regarded as an n-tuple of variables and xg denotes the
right multiplication of the matrix g against the row vector x. This is already
an interesting representation. The differential dR : g→ End(V ) is given on the
standard basis elements Eij of g = gln(k)

Eijφ(x) := (dR(Eij)φ)(x) = xi
∂

∂xj
φ(x).

(To see this, note that xEij = xiej and thus φ(x(1+εEij)) = φ(x)+xi
∂φ
∂xj

(x)ε+

O(ε2).) The same definition makes sense and similar considerations apply more
generally when G is any subgroup of GLn(k).

16.3 Matrix multiplication
Let R : G → GL(V ) be a representation of a Lie group G. Fixing a basis (vi)
for V , one can express a representation of G in matrix form

R(g) = (Rij(g))i,j ,

where Rij(g) denotes the coefficient of the basis element vi in R(g)vj . It’s a fact
of life that pretty much every special function of mathematics or physics is of
the form Rij(g). Identities such as the consequence∑

j

Rij(g)Rjk(h) = Rik(gh)

of the homomorphism property R(g)R(h) = R(gh) can be of use. For example,
let G := R, V := R2,

R : G→ GL2(R)

R(θ) :=

(
cos θ sin θ
− sin θ cos θ

)
.

Then

cos(θ+φ) = R11(θ+φ) = R11(θ)R11(φ)+R12(θ)R21(φ) = cos(θ) cos(φ)−sin(θ) sin(φ),

which makes for a nice way to remember addition laws for trigonometric func-
tions.

16.4 Invariant subspaces and irreducibility
Definition 94. Let G be a Lie group, and let R : G → GL(V ) be a finite-
dimensional representation of G. A subspace W of V is said to be invariant (or
stable or G-invariant or G-stable) if R(g)W ⊆W for all g ∈ G.

Similarly, given a representation ρ : g → End(V ) of a Lie algebra g, we say
that a subspace W of V is invariant (or stable or g-invariant or g-stable) if
ρ(X)W ⊆W for all X ∈ g.

We say that a representation (R, V ) of a Lie group or a representation (ρ, V )
of a Lie algebra is irreducible if V 6= {0} and if V has no nonzero proper invariant
subspaces (i.e., none other than {0} and V ). Otherwise, it is said to be reducible.
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Exercise 18. Let G be a Lie group and R : G → GL(V ) an n-dimensional
representation. Fix a basis of V and hence an identification V := Cn. Let m
be an integer satisfying 0 < m < n, and let W := Cm regarded as a subspace of
V via the standard inclusion (x1, . . . , xm) 7→ (x1, . . . , xm, 0, . . . , 0). Denote by

Pm(V ) the subgroup of GL(V ) given by matrices of the form
(
a b
0 d

)
, where a

is an m×m matrix, b is an m× (n−m) matrix, and d is an (n−m)× (n−m)
matrix. Show that the following are equivalent:

1. R is reducible.

2. There exist 0 < m < n and γ ∈ GL(V ) so that R(G) ⊆ γPm(V )γ−1.

Theorem 95. Let G be a Lie group, and let R : G → GL(V ) be a finite-
dimensional representation of G.

1. Any G-invariant subspace of V is also g-invariant.

2. If G is connected, then any g-invariant subspace of V is also G-stable.

3. If G is connected, then V is irreducible if and only if it is nonzero and
contains no proper g-stable subspaces.

Proof. If W ≤ V is G-invariant, then for each X ∈ g and v ∈ W and t ∈ R, we
have

R(exp(tX))v − v
t

∈W

(because W is a vector space), hence upon differentiating that

dR(X)v ∈ V

(because W is closed). This shows that W is g-invariant. Conversely, if W ≤ V
is g-invariant and G is connected, then

R(exp(tX))v = exp(t dR(X))v =
∑
n≥0

tn

n!
dR(X)nv ∈W,

hence W is exp(g)-invariant, hence (because G is connected and thus generated
by exp(g)) W is G-invariant. Etc.

16.5 Polynomial representations of SL2(C)
Here we specialize Example 93 to G = SL2(C). Let Wn denote the space
of homogeneous polynomials φ ∈ C[x, y] of degree n. Then Wn is an (n + 1)-
dimensional vector space with basis given by the monomials xn, xn−1y, . . . , xyn−1, yn.

As motivation, one can check that for g =

(
cos θ sin θ
− sin θ cos θ

)
, the matrix coef-

ficients Rij(g) of this representation with respect to the above basis give the
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classical spherical polynomials (e.g., when n is even, the coefficient of xnyn in
R(g)xnyn is essentially the Legendre polynomial Pn/2(cos θ)).

By specializing the calculation of Example 93, we see that the basis elements

X :=

(
1
)
, Y :=

(
1

)
, H :=

(
1
−1

)
of g act by

dR(X) = x∂y, dR(Y ) = y∂x, dR(H) = x∂x − y∂y.

Their effects on the basis elements is thus given by Xxn = 0, Y yn = 0 and in
all other cases by

Xxn−kyk = kxn−k+1yk−1, Y xn−kyk = (n−k)xn−k−1yk+1, Hxn−kyk = (n−2k)xn−kyk.

In lecture, we drew a picture in which the basis elements yn, xyn−1 . . . , xny, xn

were lined up from left to right and indicated by circles in which we indicated
their H-eigenvalues −n,−n+ 2, . . . , n− 2, n. The action of X may be depicted

yn
n−→ xyn−1 n−1−−−→ x2yn−2 n−2−−−→ · · · 2−→ xn−1y

1−→ xn → 0.

The action of Y may be depicted

0← yn
1←− xyn−1 2←− x2yn−2 3←− · · · n−1←−−− xn−1y

n←− xn.

Explicitly, when n = 3, we may represent the various actions with respect to
the basis x3, x2y, xy2, y3 by

dR(X) =


1

2
3

 ,

dR(Y ) =

3
2

1

 ,

dR(H) =


3

1
−1

−3

 .

As we saw in Homework 4, the relation

[X,Y ] = H

implies that
[dR(X), dR(Y )] = dR(H).
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It is an instructive exercise to verify this directly from as many perspective as
possible (e.g., by direct inspection of the action, by staring at the action on
basis vectors using the graph-theoretic depiction described above, by explicitly
computing the commutators of the above 4× 4 matrices, etc.).

Theorem 96. Wn is an irreducible representation of G = SL2(C).

By Theorem 95, it is equivalent to show thatWn is irreducible as a represen-
tation of g = sl2(C). There are a couple ways to show this. Firstly, given any
nonzero invariant subspaceW ofWn and take a nonzero element v ∈W , then it
follows from the above description of the action that there is a k ≥ 0 for which
Xk+1v = 0, and moreover, that if k is the smallest integer with this property,
then Xkv is a nonzero multiple of xn; then Y mXkv is a nonzero multiple of
xn−kyk. Since W is invariant, it contains Y mXkv, hence contains all the basis
elements for Wn, and so W = Wn, i.e., Wn is irreducible.

Another way to structure part of the argument is to use the following ele-
mentary consequence of the invertibility of the Vandermonde determinant:

Lemma 97. If V is a representation of g and W is an invariant subspaces and
v ∈ W is a vector that may be expressed as a sum v = v1 + · · · + vn where
Hvi = λivi for some λi ∈ C with λi 6= λj whenever i 6= j, then each vi also
belongs to W .

This shows that any invariant subspace W of Wn contains the components
of each of its vectors wrt the standard basis, and one can then argue as above
to get all the basis elements.

16.6 Classifying finite-dimensional irreducible representa-
tions of SL2(C)

One cares to do this because it shows up all over the place (in studying special
functions, in classifying Lie groups and Lie algebras, in studying representations
of other Lie groups thanks to the various ways that SL2(C) may be embedded
in them, in quantum mechanics, Hodge theory, etc.)

Theorem 98. Let V be any finite-dimensional irreducible representation of
G = SL2(C). Then V is isomorphic to one of the representations Wn considered
in the previous section for some n ≥ 0.

By arguing as in the proof of Lemma 95, it suffices to show this for g-
representations instead of G-representations, which makes the problem a bit
easier.

Lemma 99. Let T be a linear transformation on a nonzero finite-dimensional
complex vector space V . Then T has an eigenvector, i.e., a nonzero vector v ∈ V
so that Tv = λv for some λ ∈ C.

Proof. The characteristic polynomial det(x − T ) is monic of degree dim(V ) ≥
1, hence has a root λ; then det(λ − T ) = 0, so T − λ is non-invertible, so
ker(T − λ) 6= 0, i.e., T has an eigenvector.

105



Definition 100. Let V be a representation of g = sl2(C), and let λ ∈ C. We
say that a nonzero vector v ∈ V has weight λ if v is an eigenvector for H with
eigenvalue λ, i.e., Hv = λv.

Example 101. The vector xn−kyk ∈Wn has weight n− 2k.

Remark 102. In what follows, we write (for instance) HX as an abbreviation
for dR(H)dR(X); this differs from the matrix product of H and X, which we
shall have no occasion to refer to.

Lemma 103. Suppose v ∈ V as above has weight λ. Then Xv has weight λ+ 2
and Y v has weight λ− 2.

Proof. We will use that

[H,X] = 2X, [H,Y ] = −2Y.

We have

HXv = (HX −XH)v +XHv

= [H,X]v +XHv

= 2Xv +X(λv)

= (λ+ 2)Xv,

and similarly HY v = (λ− 2)Y v.

Lemma 104. Let V be a finite-dimensional representation of g = sl2(C). Then
there is a nonzero v ∈ V and λ ∈ C so that

Hv = λv,

Xv = 0.

Proof. By Lemma 99, there exists some nonzero u ∈ V with some weight µ ∈ C.
The vectors Xku have weight µ+ 2k. Since V is finite-dimensional, H has only
finitely many eigenvalues, so we have Xk+1u = 0 for large enough k. Choosing
k minimal with this property and taking v := Xku gives Hv = (µ + 2k)v and
Xv = 0, as required.

Remark 105. Although Lemma 103 is basically trivial, it is one of the most
frequently applied calculations in Lie theory, and deserves careful study.

To prove Theorem 98, we now take for V any irreducible finite-dimensional
representation of g = sl2(C) and let v0 ∈ V be a nonzero element satisfying

Hv = λ0v, Xv = 0.

Such a vector exists by the previous lemma. For k ≥ 0, set

vk := Y kv0.
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Then vk has weight λ0 − 2k, so the various vk are all linearly independent. Let
W := ⊕Cvk be the span of the vk. We claim that W is g-invariant. To that
end, it suffices by the linearity of the action to show for each basis element
Z ∈ {H,X, Y } of g and basis element vk of W that Zvk ∈W . Clearly

Hvk = (λ0 − 2k)vk ∈W

and
Y vk = vk+1 ∈W.

We now verify by induction on k that

Xvk = ckvk−1 ∈W

with ck := k(λ0 − k + 1) and (by convention) v−1 := 0. When k = 0, this
is clear. For k ≥ 0, it follows by our inductive hypothesis and using the trick
XY = (XY − Y X) + Y X as in the proof of Lemma 103 that

Xvk+1 = XY vk

= [X,Y ]vk + Y Xvk

= Hvk + Y ckvk−1

= (λ− 2k + ck)vk.

We conclude by checking that ck+1 = λ− 2k + ck.
Since W is nonzero and g-invariant and since V is assumed irreducible, we

must have W = V . Since V is finite-dimensional, we have vn+1 = 0 for some n.
Choosing n minimal with this property implies that

vn 6= 0

and
vn+1 = 0

whence
0 = Xvn+1 = cn+1vn = (n+ 1)(λ0 − n)vn.

Since n+ 1 6= 0 and vn 6= 0, it follows that λ0 = n.
In summary, we have shown that V has the basis v0, . . . , vn on which the

action is given by

Hvk = (n− 2k)vk,

Y vk = vk+1,

Xvk = k(n− k + 1)vk−1.

But it is easy to check that Wn has the basis w0, . . . , wn with wk := Y kxn on
which the action is described in the same way. Thus the linear map V → Wn

extending vk 7→ wk is an isomorphism of g-representations, as required.
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16.7 Complete reducibility
It is interesting to ask whether one can classify all finite-dimensional represen-
tations of a group such as SL2(C) rather than just the irreducible ones as done
in §16.5. For example, can we break arbitrary representations up into sums
of irreducible ones? We can also ask the same question for more general Lie
groups G: how can we understand general representations R : G → GL(V ) in
terms of the irreducible ones? This was a basic question of late 19th century
mathematics known nowadays as classical invariant theory; the representations
of interest were as in Example 93.

Definition 106. Let G be any Lie group and R : G → GL(V ) a finite-
dimensional representation. We say that V is completely reducible if there are
irreducible invariant subspaces V1, . . . , Vn of V so that V = V1 ⊕ · · · ⊕ Vn.

Definition 107. Similarly, let g be a Lie algebra and ρ : g→ End(V ) a finite-
dimensional representation. We say that V is completely reducible if there are
irreducible invariant subspaces V1, . . . , Vn of V so that V = V1 ⊕ · · · ⊕ Vn.

Lemma 108. Let G be a connected Lie group, let R : G → GL(V ) a finite-
dimensional representation, and let dR : g→ End(V ) be the induced representa-
tion of the Lie algebra g of G. Then V is completely reducible as a representation
of G if and only if V is completely reducible as a representation of g.

Proof. Indeed, the invariant subspaces of G and g are the same, thanks to
Lemma 95.

Example 109. The zero representation V := {0} is completely reducible (take
n := 0). Any irreducible representation is completely reducible (take n :=
1, V1 := V ).

Lemma 110. Let R : G→ GL(V ) be a finite-dimensional representation. The
following are equivalent:

1. V is completely reducible.

2. Every invariant subspace W of V has an invariant complement W ′.

Recall here that a subspaceW ′ ≤ V is said to be a complement of a subspace
W ≤ V if V = W ⊕W ′, that is to say, if every v ∈ V may be expressed as
v = w + w′ for some unique w ∈W,w′ ∈W ′.

Example 111. Suppose that R : G → GL(V ) has the property that there is
an inner product 〈, 〉 on V that is invariant by G in the sense that

〈R(g)u,R(g)v〉 = 〈u, v〉 (71)

for all g ∈ G and all u, v ∈ V . (In other words, after choosing an orthonormal
basis of V and using that basis to identify V ∼= Cn, we are assuming that R(G) is
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contained in the unitary group U(n).) Then every invariant subspace W has an
invariant complement W ′: one can just take for W ′ the orthogonal complement

W⊥ := {v ∈ V : 〈v, w〉 = 0 for all w ∈W}

of W . It follows from the definition of an inner product that the orthogonal
complement is in fact a complement; what needs to be checked is that it is
invariant. Thus, let v ∈ W⊥ and g ∈ G; we want to check that R(g)v ∈ W⊥,
i.e., that 〈R(g)v, w〉 = 0 for all w ∈W . But (71) implise that

〈R(g)v, w〉 = 〈R(g−1)R(g)v,R(g−1)w〉 = 〈v,R(g−1)w〉,

and the invariance of W implies that R(g−1) ∈ w, hence that 〈v,R(g−1)w〉 = 0,
as required.

We turn to the proof of Lemma 110, which we split into two parts.

Existence of invariant complements implies complete reducibility. Assume first
that every invariant subspace of V has an invariant complement; we aim then
to show that V is completely reducible. (In following this argument, it may
be helpful to pretend that we are in the setting of Example 111.) If V = {0},
then we are done. Since dim(V ) <∞, there exists a minimal nonzero invariant
subspace V1 of V . If V1 = V , then we are done. Otherwise, let V ′1 be an invariant
complement of V1; by assumption, V ′1 6= 0 and

V = V1 ⊕ V ′1 .

Let V2 be a minimal nonzero invariant subspace of V ′1 . If V2 = V ′1 , then V =
V1 ⊕ V2 is a sum of invariant irreducible subspaces, so we are done. If not, let
W2 ≤ V be an invariant complement to V2, and let V ′2 := W2 ∩ V1 ≤ V ′1 be its
intersection with V ′1 , which is then invariant and satisfies V ′1 = V2 ⊕ V ′2 (check
this; it’s easy), hence

V = V1 ⊕ V2 ⊕ V ′2 .
By assumption,W2 is nonzero, hence V ′2 is nonzero. Let V3 be a minimal nonzero
invariant subspace of V ′2 . If V3 = V ′2 , then we are done as before. If not, let
V ′3 := V ′2 ∩W3 ≤ V ′2 be the intersection with V ′2 of some invariant complement
W ′3 ≤ V of V ′2 ; then, as before,

V = V1 ⊕ V2 ⊕ V3 ⊕ V ′3 .

Proceed as above, and invoke that dim(V ) <∞ to know that the process must
eventually terminate.

(The argument just presented is “obvious” and fairly natural, but somewhat
suboptimal. I’ll leave it as an exercise for the interested reader to make it
“slicker” by considering in the first step an invariant subspace W of V that is
maximal with respect to the property of being a direct sum of irreducible invari-
ant subspaces, and deriving a contradiction ifW 6= V . This “slicker” formulation
of the argument has certain advantages; for instance, it works without any fuss
in the infinite-dimensional setting.)
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Complete reducibility implies existence of invariant complements. Okay, now let’s
show that if V is completely reducible, then every invariant subspace W of V
has an invariant complementW ′. Thus, suppose we can write V = V1⊕· · ·⊕Vn
as a sum of irreducible invariant subspaces. Let I be a subset of {1, . . . , n} that
is maximal with respect to the property that

W ∩ (⊕i∈IVi) = {0}.

(Note that the empty set satisfies this property, and there are only finitely many
subsets, so such an I exists.) Set W ′ := ⊕i∈IVi. We claim that V = W ⊕W ′.
By construction, we haveW ∩W ′ = {0}, so it suffices to show that V = W+W ′.
To that end, it suffices to show for each j ∈ {1, . . . , n} that

Vj ⊆W +W ′. (72)

If j ∈ I, then Vj ⊆ W ′, so 72 holds, so suppose j /∈ I. If (72) fails, then
Vj ∩ (W +W ′) is a proper invariant subspace of Vj , hence

Vj ∩ (W +W ′) = 0,

or in other words, there is no nontrivial solution to the equation v = w + w′

with v ∈ Vj , w ∈ W,w′ ∈ W ′, or equivalently (upon replacing w, v by their
negatives), there is no nontrivial solution to the equation w = w′ + v with
v ∈ Vj , w ∈W,w′ ∈W ′, i.e.,

W ∩ (W ′ ⊕ Vj) = 0,

which says that W ∩ (⊕i∈I∪{j}Vi) = 0, contradicting the assumed maximality
of I.

Remark 112. The natural setting for Lemma 110 is the theory of semisimple
modules over a ring.

Example 113 (A representation that is not completely reducible). Consider

the Lie subgroup P of SL2(C) consisting of matricse of the form
(
a b
0 d

)
. Let

R : P → GL(V ) be the standard representation of P on V := C2, thus

R(

(
a b

d

)
)

(
x
y

)
:=

(
ax+ b
dy

)
.

Then V is not completely reducible. Indeed, consider the subspace W := Ce1 ≤
V consisting of column vectors of the form(

x
0

)
.

It is easy to check that W is invariant, and that every complement W ′ of W
has the form

W ′ =

{(
cy
y

)
: y ∈ C

}
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for some c ∈ C. But it is equally clear that W ′ is not invariant; for instance,
one has (

1 1
1

)
∈ P,

(
c
1

)
∈W,

(
1 1

1

)(
c
1

)
=

(
c+ 1

1

)
/∈W.

Thus not all representations are completely reducible.
One gets more general examples of this sort by replacing P by the stabilizer

P of any nontrivial flag of vector spaces 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vr = Cn.

Example 114. The representation

R→ GL2(R)

x 7→
(

1 x
1

)
is not completely reducible, for the same reason as in the previous example.
Similarly for the representation C → GL2(C) defined by the same formula.
Likewise for the representation

R× → GL2(R)

x 7→
(

1 log |x|
1

)
.

Likewise for the representation

GLn(R)→ GL2(R)

g 7→
(

1 log |det(g)|
1

)
.

Definition 115. Let G be a Lie group. We say that G is linearly reductive if
every finite-dimensional representation of G is completely reducible.

Example 116. We have seen that the groups P from Example 113 are not
linearly reductive. Similarly, we see from Example 114 that the real Lie groups
R and GLn(R) and the complex Lie group C are not linearly reductive.

A minor caution regarding terminology: We are working here in the category
of Lie groups over the field k = R or C. When we speak of any property of
a Lie group, it matters which we field we regard it as being defined over. For
example, we will show eventually that C×, regarded as a complex Lie group is
linearly reductive. However, if we instead regard C× as a real Lie group, then
it is not linearly reductive: the representation

C× 3 z 7→
(

1 log |z|
1

)
is not completely reducible. That representation is not smooth in the complex
sense (i.e., is not holomorphic), and so does not define a representation of C×
when we regard it as a complex Lie group.
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Similarly, although we are working in this course in the category of Lie
groups, we could instead work in the category of algebraic groups, which are
obtained by replacing manifolds with solution spaces to polynomial equations
(called varieties) and replacing smooth maps between manifolds with maps de-
scribed by polynomials (called morphisms of varieties). The group GLn(R) can
be regarded either as a Lie group or as an algebraic group. In the category
of Lie groups, it is not linearly reductive. But the counter-example we gave
involved the logarithm function, which is not algebraic. It turns out that when
GLn(R) is regarded as an algebraic group, it is linearly reductive. This means
that one can’t construct non-completely-reducible representations of GLn(R)
using only polynomials; to put it another way, it turns out that any represen-
tation R : GLn(R)→ GLN (R) whose matrix coefficients Rij(g) are polynomial
functions of the coordinates gkl is completely reducible.

16.8 Linear reductivity of compact groups
Theorem 117 (Maschke). Any finite group G is linearly reductive.

Proof. Let V be a complex vector space, and let R : G → GL(V ) be a repre-
sentation. We wish to show that V is completely reducible. There are a couple
ways to phrase the argument; I’ll record both for the sake of variety.

First, by Lemma 110 and Example 111, it will suffice to show that there
exists a invariant inner product on V . To show this, let 〈, 〉0 be any inner
product on V (just fix a linear isomorphism V ∼= Cn and take the standard
one), and then define the averaged inner product 〈, 〉 by the formula

〈u, v〉 :=
1

|G|
∑
g∈G
〈R(g)u,R(g)v〉0.

It is then easy to check that 〈, 〉 is the required an invariant inner product.
We now phrase the argument another way by making more direct use of the

criterion of Lemma 110. It will suffice to show that each invariant subspace W
of V has an invariant complement. To that end, it will suffice to construct an
equivariant projection p : V → W . (A projection from a vector space V to a
subspace W is a linear map p : V → W whose restriction to W is the identity
map. A linear map p between representations is said to be equivariant if it
is a morphism of representations, i.e., if p(gv) = gp(v) for all v ∈ V, g ∈ G.)
Assuming we have constructed such a projection, we may take W ′ := ker(p).
Since p is a projection, we then have

V = W ⊕W ′.

On the other hand, since p is equivariant, its kernelW ′ is invariant. We thereby
obtain the required invariant complement of W , assuming the existence of an
equivariant projection.

To produce an equivariant projection, start with any projection φ0 : V →W
(e.g., by taking a basis e1, . . . , ed for W , extending it to a basis e1, . . . , en for
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V , and defining φ0(ej) to be ej if j ≤ d and 0 otherwise) and define the average
φ : V →W by

φ(v) :=
1

|G|
∑
g∈G

R(g)φ0(R(g)−1v).

Then it is easy to check that φ is still a projection, and also that φ is equivariant:
for h ∈ G, one obtains using the change of variables g 7→ hg on G and the
homomorphism property of representations that

φ(R(h)v) =
1

|G|
∑
g∈G

R(g)φ0(R(g)−1R(h)v)

=
1

|G|
∑
g∈G

R(g)φ0(R(h−1g)−1v)

=
1

|G|
∑
g∈G

R(hg)φ0(R(g)−1v)

= R(h)φ(v),

so φ is equivariant, as required.

Theorem 118. Any compact Lie group G is linearly reductive. More generally,
if G is a compact topological group and R : G→ GL(V ) is any continuous finite-
dimensional representation, then R is completely reducible.

Proof. We will use the following fact, whose proof is sketched in §10, §10.4,
§10.6: there is a unique Radon probability measure µ which is left and right
invariant under G in the sense that µ(Eg) = µ(gE) = µ(E) for all Borel subsets
E ⊆ G and g ∈ G, or equivalently,∫

g∈G
f(g) dµ(g) =

∫
g∈G

f(hg) dµ(g) =

∫
g∈G

f(gh) dµ(g)

for all h ∈ G and all continuous functions f : G → C. For example, if G is a
finite group, one can take for µ the normalized counting measure. We may then
argue exactly as in either of the proofs of Theorem (117) by replacing averaging
over the group with averaging with respect to µ, i.e., taking

〈u, v〉 :=

∫
g∈G
〈R(g)u,R(g)v〉0 dµ(g)

or
φ(v) :=

∫
g∈G

R(g)φ0(R(g)−1v) dµ(g)

instead of what we did above.

The tools of §17 will give us a number of examples of linearly reductive
complex Lie groups (GLn(C), SLn(C), SOn(C), etc.) and also linearly reductive
real Lie groups (SLn(R), SO(p, q)0 for (p, q) 6= (1, 1)) in addition to the compact
groups (U(n),SO(n), etc.) already covered above. The following result was
established in the above, and is of independent interest:

113



Theorem 119. Let R : G → GL(V ) be a finite-dimensional representation of
a compact group G. Then there exists an invariant inner product on V .

The proofs given above were self-contained except that we punted the ex-
istence of the Haar measure µ to §10. Here we record a self-contained way
(learned from Onishchik–Vinberg) to “get around” constructing such a µ. (I
put “get around” in quotes because the ideas here are similar to those used in
§10.6 to construct such a µ; however, they are somewhat simpler in the present
context.)

Theorem 120. Let S be a finite-dimensional vector space, let G be a compact
group, and let α : G → GL(S) be a representation. Let M ⊆ S be a nonempty
convex G-invariant subset. Then M contains a fixed point of G.

Proof. We reduce first to the case that M is bounded by replacing M as neces-
sary by the convex hull of some orbit of G on M ; such an orbit is compact be-
cause of the compactness ofG. The idea is then thatM has a well-defined “center
of mass” which, being canonically defined, will turn out to be G-invariant.

Turning to details, let W ≤ S denote the span of all differences of pairs of
elements of M . Let P denote the smallest plane containing M , or equivalently,
the union of all lines in S containing at least two elements of M . Then P is
a coset of W . Since M is G-invariant and the associations M 7→ W,P are
canonical, we know that W and P are G-invariant, too. The vector space W
has a Lebesgue measure µ. For g ∈ G, let J(g) denote the Jacobian of the linear
transformation of W induced by R(g). Then J : G→ R×+ is a homomorphism.
Since G is compact, J is trivial. Thus the Lebesgue measure µ is G-invariant.
By fixing a basepoint on P , we can transfer µ to a measure ν on P , which is
again G-invariant. The center of mass

c(M) :=

∫
x∈M x dν(x)

ν(M)

of M then makes sense (because M is bounded) and is G-invariant (because ν
is G-invariant). Since M is convex, we have moreover that c(M) belongs to M :
this is clear if M is a point, while otherwise the interior M0 of M (as defined
using the topology on P ) is nonempty, so if c(M) /∈M , then (by the separating
hyperplane theorem, i.e., Hahn–Banach in finite dimensions) there is an affine-
linear function ` : S → R satisfying `(M0) ⊆ R>0 but `(c(M)) = 0, which leads
to a contradiction upon applying ` to the definition of c(M). Thus c(M) ∈ M
gives the required G-fixed point.

Example 121. Let G be a compact group, let R : G → GL(V ) be a finite-
dimensional representation, let W ≤ V be an invariant subspace, and let S
denote the set of all linear maps V → W and M ⊆ S the subset consisting
of projections φ : V → W . Then G acts on S by the rule g · φ := R(g) ◦ φ ◦
R(g)−1, and M is a nonempty convex G-invariant subset. A projection φ ∈M
is equivariant if and only if it is a fixed point for this action, so Theorem 120
tells us that an equivariant projection exists. Using this, we can complete the
proof of Theorem 118 without directly establishing the existence of µ.
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Example 122. Let G be a compact group, let R : G → GL(V ) be a finite-
dimensional representation, let S be the space of hermitian forms on V , and let
M ⊆ S be the subset of positive definite hermitian forms (i.e., inner products).
Then G acts on S by (g ·B)(v1, v2) := B(R(g)−1v1, R(g)−1v2), and the subspace
M is convex, nonempty and G-invariant. An inner product B ∈ M is G-
invariant in the present sense if and only if it is invariant in the sense defined
above, so Theorem 120 tells us that an invariant inner product exists.

16.9 Constructing new representations from old ones
16.9.1 Direct sum

Given a pair of representations V1, V2 of a Lie group G, we get a representation
on their direct sum V1 ⊕ V2 by

g(v1 ⊕ v2) := gv1 ⊕ gv2.

Similarly for representations of a Lie algebra. The two constructions are com-
patible under differentiation.

16.9.2 Tensor product

Given a pair of representations V1, V2 of a Lie group G, we get a representation
on their tensor product V1 ⊗ V2 by

g(v1 ⊗ v2) := gv1 ⊗ gv2.

If V1, V2 are instead representations of a Lie algebra g, then the natural action
to take on their tensor product is

X(v1 ⊗ v2) := Xv1 ⊗ v2 + v1 ⊗Xv2.

One of the homework problems for this week is to check that this in fact defines
a Lie algebra representation. We checked in class that if we differentiate the
first action, we get the second:

d

dt
(exp(tX)v1 ⊗ exp(tX)v2)|t=0 = Xv1 ⊗ v2 + v1 ⊗Xv2.

16.9.3 Symmetric power representations

Given a complex vector space V and t ∈ Z≥0, the symmetric power Symt(V ) is
the space of homogeneous polynomials of degree t on the dual space V ∗. Each
element of V may be identified with a linear polynomial on V ∗. Any element
of Symt(V ) may be written as a finite linear combination of monomials v1 · · · vt
with each vj ∈ V . If e1, . . . , en is a basis for V , then the polynomials ei1 · · · eit
taken over all indices satisfying 1 ≤ i1 ≤ · · · ≤ it ≤ n form a basis for Symt(V ).
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Given a representation R : G → GL(V ) of a Lie group G, one obtains a
symmetric power representation Symn(R) : G→ GL(Symn(V )) by setting: for
v1, . . . , vt ∈ V ,

(Symn(R)(g))v1 · · · vt := (R(g)v1) · · · (R(g)vt).

(See Wikipedia or Google for more details on this construction.)

16.10 Characters
For each representation V of g := sl2(C), define the character of V to be the
Laurent polynomial

ch(V ) ∈ A := Z[z, z−1]

given by
ch(V ) :=

∑
m∈Z

(dimV [m])zm,

where V [m] := {v ∈ V : Hv = mv} with H =
(

1
−1

)
∈ g as before. (By

this point in lecture, we saw that the action of H on any finite-dimensional
representation is diagonalizable, so V = ⊕V [m].) For example, for the irre-
ducible representationsWm (m ∈ Z≥0) considered in lecture, we have ch(Wm) =∑
−m≤j≤m:j≡m(2) z

m = zm + zm−2 + · · ·+ z−m. Such functions are symmetric
(i.e., invariant under z 7→ z−1.) The Weyl denominator is the element

D := z − z−1 ∈ A.

It is the simplest example of an anti-symmetric element of A. One has

D · ch(Wm) = zm+1 − z−(m+1).

In other words, as V traverses the set of isomorphism classes of irreducible
representations, D · ch(V ) traverses the “obvious” basis for the space of anti-
symmetric elements of A.

For a finite-dimensional representation R : G→ GL(V ) of G := SL2(C), one
has

ch(V )|z=eiθ = trace(R(

(
eiθ

e−iθ

)
)).

The character satisfies

ch(V1 ⊕ V2) = ch(V1) + ch(V2),

ch(V1 ⊗ V2) = ch(V1) ch(V2).

This is easily seen by taking a basis e1, . . . , em of H-eigenvectors for V1 and a
basis f1, . . . , fm of H-eigenvectors for V2 and using that e1, . . . , em, f1, . . . , fm
is then a basis of H-eigenvectors for V1 ⊕ V2 while ei ⊗ fj give a basis of H-
eigenvectors for V1 ⊗ V2.
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If we’re given a representation V of g, we know that we can decompose

V ∼= ⊕m≥0W
µ(m)
m

for some multiplicities µ(m) ≥ 0. We can determine the multiplicities easily if
we know the character of V , and particularly easily if we multiply first by the
Weyl denominator: we have

D · ch(V ) =
∑
m≥0

µ(m)D · ch(Wm) =
∑
m≥0

µ(m)(zm+1 − z−m−1),

so we can read off the multiplicity µ(m) of Wm inside V as the coefficient of
zm+1 in the anti-symmetric Laurent polynomial D · ch(V ). For example, in this
way (or in others) we can easily derive the Clebsh–Gordon decomposition

Wm ⊗Wn
∼= Wm+n ⊕Wm+n−2 ⊕ · · · ⊕W|m−n| = ⊕|m−n|≤j≤m+n:

j≡m+n(2)

Wj

from the polynomial identity: for m ≥ n (say),

(zm+1 − z−m−1)(zn + zn−2 + · · ·+ z−n) =
∑

m−n≤j≤m+n:
j≡m+n(2)

(zj+1 − z−j−1).

We can make this more explicit, e.g., the isomorphism

W2 ⊕W0
∼= W1 ⊗W1

can be given by identifying W2 = C[z, w](2) and W0 = C and W1 = C[x, y](1)

(where a subscripted (n) denotes homogeneous elements of order n) and the
map

W0 →W1 ⊗W1

is given by
1 7→ (x⊗ y − y ⊗ x)/2

and the map
W2 →W1 ⊗W1

by
z2 7→ x⊗ x,

w2 7→ y ⊗ y,

zw 7→ (x⊗ y + y ⊗ x)/2.

See any introductory textbook on quantum mechanics for more on the impor-
tance of these sorts of decompositions in physics.
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17 The unitary trick
Definition 123. Let g be a complex Lie algebra. Let h be a real Lie algebra.
We say that

• h is a real form of g, or equivalently, that

• g is the complexification of h,

if h is (isomorphic to) a real Lie subalgebra of g for which

g = h⊕ ih,

or equivalently, for which the natural map h ⊗R C → g is an isomorphism. In
other words, every z ∈ g may be expressed uniquely as x+ iy with x, y ∈ h.

Example 124. sln(R) and su(n) are real forms of sln(C); so(n) is a real form of
son(C). gln(R) and u(n) are real forms of gln(C). A bit less obviously, so(p, q)
is (isomorphic to) a real form of son(C) (try to check this!).

Lemma 125. Let L be any complex Lie algebra. Let g be a complex Lie algebra
and h a real form of g. Then the natural restriction map{

morphisms of complex Lie algebras
Φ : g→ L

}
→

{
morphisms of real Lie algebras

φ : h→ L

}

is a bijective.

Proof. Given Φ, one defines φ by restriction. Given φ, one defines Φ(x+ iy) :=
φ(x) + iφ(y). One checks that the associations φ 7→ Φ and Φ 7→ φ are mutually
inverse, and that one defines a Lie algebra morphism (over the relevant field)
if and only if the other does. (One could alternatively take the conclusion of
this lemma as the definition of real form/complexification, as in the functorial
characterization of tensor product.)

Example 126. Suppose L = End(V ) for a complex vector space V . Then
Lemma 125 says that for a complex Lie algebra g with real form h, the following
sets are in natural bijection:

1. holomorphic representations ρ : g→ End(V ).

2. representations ρ0 : h→ End(V ).

Moreover, the invariant subspaces W for ρ and ρ0 are the same. In particular,
ρ is irreducible if and only if ρ0 is irreducible, and also ρ is completely reducible
if and only if ρ0 is completely reducible.

Definition 127. Let G be a connected complex Lie group. A real form of G is
a connected real Lie subgroup H ≤ G with the property that the Lie algebra h
of H is a real form of the Lie algebra g of G.
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Example 128. GLn(R) and U(n) are real forms of GLn(C). SLn(R) and SU(n)
are real forms of SLn(C). SO(n) and SO(p, q)0 (p + q = n) are real forms of
SOn(C).

Theorem 129. Let G be a connected complex Lie group. Suppose that G has
a compact (connected) real form. Then G is linearly reductive.

Proof. Let H be a compact (connected) real form of G, and denote Lie algebras
in the usual way. Let R : G→ GL(V ) be a finite-dimensional representation of
G. We wish to show that V is completely reducible under G. We have seen in
Lemma 108 that V is completely reducible under G if and only if it is under g,
and likewise that V is completely reducible under H if and only if it is under h.
By Lemma 125, we know that V is completely reducible under g if and only if
it is under h. In summary, V is completely reducible under any one of G, g, h, H
if and only if it is under all of them. Since compact Lie groups as linearly
reductive (Theorem 118), we know that V is completely reducible under H, so
we are done.

Example 130. It follows that the groups GLn(C) (e.g., C×) SLn(C), SOn(C)
are linearly reductive.

Remark 131. Let G be a connected complex Lie group which has a com-
pact (connected) real form, then we have seen that G, as well as its compact
(connected) real form, is linearly reductive. However, it need not be the case
that every real form H of G is linearly reductive; consider for instance the case
G = C×, H = R×. (This is another example where things become nicer by
working in the category of algebraic groups; compare with Remark 116.)

In the proof of Theorem 129, the notion of “completely reducible” relevant
for the representation V of h is that there exist no invariant complex subspaces.
One can ask what happens if one works instead with invariant real subspaces:

Exercise 19. Let V be a complex vector space and End(V ) the Lie algebra of
C-linear endomorphisms of V . Let h be a real Lie algebra and ρ : h→ End(V )
a morphism.

Let W ≤ V be a real subspace (i.e., a subspace of the real vector space
underlying V ).

1. Show that if W is invariant or irreducible (under the action by h), then
so is iW .

2. Suppose that W is invariant and irreducible. Show that either

(a) W = iW , in which case W is an invariant irreducible complex sub-
space, or

(b) W ∩ iW = {0}, in which case W + iW is an invariant irreducible
complex subspace.
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Deduce that if V decomposes as a direct sum of invariant irreducible real
subspaces, then it also decomposes as a direct sum of invariant irreducible
complex subspaces.

Let us work out the complexification ofH := SO(p, q)0. Recall that SO(p, q) =
{g ∈ SLp+q(R) : gIp,qg

t = Ip,q} where Ip,q := diag(1, . . . , 1,−1, . . . ,−1), thus

h = {X ∈ SLp+q(R) : XIp,q+Ip,qX
t = 0} =

{(
A B
C D

)
∈Mp+q(R) : At = −A,Dt = −D,Bt = C

}
.

The complexification is given by

h⊗RC ∼= h⊕ih =

{(
A B
C D

)
∈Mp+q(C) : At = −A,Dt = −D,Bt = C

}
⊆Mp+q(C).

If ε := diag(i, . . . , i, 1, . . . , 1), then we can check easily that

ε(h⊕ ih)ε−1 = sop+q(C).

Thus the complexification of so(p, q) is isomorphic to sop+q(C). Similarly,
SO(p, q)0 is (isomorphic to) a real form of SOp+q(C); just consider

εSO(p, q)0ε−1 ≤ SOp+q(C) ≤ SLp+q(C).

To cook up some more interesting examples, let

H :=

{(
z w
−w z

)
: z, w ∈ C

}
⊆M2(C)

denote Hamilton’s quaternion algebra over the reals. (It is an associative algebra
with center R and of dimension 4 over its center.) There is a natural involution
x 7→ x∗ on H, given by x∗ := xt, or equivalently,(

a b
c d

)∗
=

(
d −b
−c a

)
.

Then H× is a Lie group and

Lie(H×) = H.

The space Mn(H) of n × n matrices with quaternionic entries can be regarded
as a subspace of M2n(C). Set

SLn(H) := Mn(H) ∩ SL2n(C)

and
Un(H) := {g ∈Mn(H) : gg∗ = 1}.

Recall that SU(p, q) = {g ∈ SLp+q(C) : gIp,qg
t = Ip,q}.
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Exercise 20. Determine the complexifications of the Lie algebras of the fol-
lowing real Lie groups:

1. SLn(H)

2. SU(p, q)

3. Um(H)

(Each is isomorphic to a classical complex Lie group we’re already familiar with.)

It turns out that with this exercise and the examples given previously, we’ve
found all of the real forms of the complex Lie algebras sln(C), son(C).

Exercise 21. Let h := sln(C), but regarded as a real Lie algebra rather than
a complex one. (Concretely, we can think of h as a real Lie subalgebra of
sl2n(R).) Show that one has an isomorphism of complex Lie algebras h⊗R C ∼=
sln(C)⊕ sln(C).

Remark 132. Let h be a real form of a complex Lie algebra g. Then h is the
fixed point set of the automorphism σ : g→ g given by identifying g with h⊗RC
and requiring that for X ∈ h and z ∈ C, one has σ(X ⊗ z) := X ⊗ z; in other
words, if we identify g with h⊕ih, then σ(x+iy) := x−iy for x, y ∈ h. Then σ is
an involution on g (i.e., σ2 is the identity transformation); moreover, σ is a Lie
algebra automorphism that is anti-linear with respect to scalar multiplication
by complex numbers, i.e., for all c ∈ C, Z ∈ g, σ(cZ) = cσ(Z), and satisfies
σ2 = 1.

Conversely, given an anti-linear involution σ : g→ g, we claim that its fixed
point subspace h : {X ∈ g : σ(X) = X} is a real form of g. Well, since σ is a
real Lie algebra automorphism, we know at least that h is a real Lie subalgebra.
Observe that ih = {X ∈ g : σ(X) = −X}. Since g is the sum of the +1 and −1
eigenspaces of σ, we deduce that g = h⊕ ih. Hence h is a real form.

18 Ad and ad

18.1 Basic definitions
When one learns basic group theory (say of finite groups), one studies groups G
acting on sets X. A particularly important action is the conjugation action of G
on itself, given by (g, x) 7→ gxg−1. The orbits for this action are the conjugacy
classes in G. Much nontrivial information about G can be extracted from a
careful study of the conjugation action of G on itself. For example, the Sylow
theorems are proved in this way.

When G is a Lie group, one can again consider the conjugation action of G
on itself, but it turns out to be more useful to differentiate this action a bit, so
that tools from linear algebra become at our disposal.
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Definition 133. Given a Lie group G with Lie algebra g, the adjoint represen-
tation of G is the map

Ad : G→ GL(g)

is defined by
Ad(g)X := gXg−1,

where the RHS may be interpreted in various ways:

1. If G is a subgroup of GLn(k), then g is a subalgebra of Mn(k), and so we
can interpret gXg−1 as a product of matrices.

2. We can use the trick of §15 (“pretending that every Lie group is a matrix
Lie group”) to embed both G and g inside End(C∞(G)); in that optic, the
product gXg−1 is given by composition.

3. (I don’t recommend spending too much time studying this interpretation.)
In general, for g ∈ G and x0 ∈ G and X ∈ Tx0

(G), we can define gX ∈
Tgx0(G) to be the image of X under the differential of left translation by
g, i.e.,: if ψ : G → G is the map ψ(x) := gx, then gX := (Tx0ψ)(X)
where Tx0

ψ : Tx0
(G)→ Tgx0

(G) is the derivative. We can similarly define
Xg ∈ Tx0g(G) using right translations. This makes sense in particular
when x0 = e is the identity element, so that TeG = g; then for X ∈ g we
have gX ∈ TgG and thus (gX)g−1 ∈ g. Alternatively, we may first form
Xg−1 ∈ Tg−1G and then g(Xg−1) ∈ g. The two answers are the same
because left and right translations commute with one another. (See §11.6
for related discussion.)

4. For any g ∈ G and X ∈ g, the map k 3 t 7→ g exp(tX)g−1 is a one-
parameter subgroup, so its initial velocity is an element of the Lie algebra:

gXg−1 = ∂t=0g exp(tX)g−1.

It is clear that Ad : G→ GL(g) is a morphism of Lie groups.
Note that if G is a real Lie group, then Ad is a real representation, not a

complex representation of the sort that we have primarily been considering. If
G is a complex Lie group, then Ad is a holomorphic representation.

Exercise 22. Let g ∈ G,X ∈ g. Show that

g exp(X)g−1 = exp(Ad(g)X).

Hint: one can either

1. appeal to uniqueness of one-parameter subgroups (§13.2), or

2. apply the result of §13.6 to f : G→ G given by f(a) := gag−1.

Since the Lie algebra g of a Lie group is a vector space, we may form its
linear dual g∗ := Homk(g,k). From some perspectives (which we might discuss
eventually), the following action is better behaved than the adjoint action:
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Definition 134. The coadjoint representation of a Lie group G is the map

Ad∗ : G→ GL(g∗)

given for g ∈ G,λ ∈ g∗, X ∈ g by

(Ad∗(g)λ)(X) := λ(Ad(g)−1X).

Exercise 23. Check that Ad∗ is a representation, but that it wouldn’t be in
general had we omitted the inverse in the definition.

Definition 135. Given any Lie algebra g with Lie bracket g, we can define

ad : g→ End(g)

by the formula
(ad(X))(Y ) := [X,Y ].

We usually abbreviate the LHS to ad(X)Y . We might sometimes also abbreviate
adX := ad(X), so that adX Y = [X,Y ]. Recall that the Jacobi identity may be
written in the following equivalent ways:

[[X,Y ], Z] = [[X,Z], Y ] + [X, [Y,Z]], (73)

[X, [Y, Z]] = [[X,Y ], Z] + [Y, [X,Z]]. (74)

The first identity (73) may be interpreted as saying that ad : g → End(g) is a
morphism of Lie algebras, that is to say, that

ad([X,Y ]) = [ad(X), ad(Y )],

since indeed ad([X,Y ])Z = [[X,Y ], Z] and [ad(X), ad(Y )]Z = ad(X) ad(Y )Z −
ad(Y ) ad(X)Z = ad(X)[Y,Z] − ad(Y )[X,Z] = [X, [Y,Z]] − [Y, [X,Z]]. The
second identity may be interpreted as saying that that adX is a derivation for
each X ∈ g, i.e., that

adX [Y,Z] = [adX Y,Z] + [Y, adX Z],

i.e., that ad(g) ⊆ Der(g). So in summary, ad defines a morphism of Lie algebras

ad : g→ Der(g).

One can already get huge mileage out of this simple statement (see the tricky
problem on this week’s homework). Note in particular that it contains two
different interpretations of the Jacobi identity.
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18.2 Relationship between Ad and ad

The above definitions are related as follows:

Lemma 136. Let G be a Lie group with Lie algebra g. Then the differential
dAd : g → End(g) of the morphism of Lie groups Ad : G → GL(g) is the
morphism of Lie algebras ad : g → End(g), that is to say, dAd = ad, or more
verbosely, for any X,Y ∈ g,

∂s=0 Ad(exp(sX))Y = ad(X)Y.

Proof. The RHS is ad(X)Y = [X,Y ]. We expand out its definition and com-
pute, obtaining

[X,Y ] := ∂s=0∂t=0(esX , etY )

= ∂s=0∂t=0e
sXetY e−sXe−tY

= ∂s=0(esXY e−sX − Y )

= ∂s=0 Ad(esX)Y,

as required.

18.3 Interpretation of the Jacobi identity
Remark 137. Let G be a Lie group. When we defined its Lie algebra g and
defined the Lie bracket [, ], we promised that the Jacobi identity followed from
the associativity of the group law on G, but didn’t prove it. We can now give a
rigorous and fairly conceptual proof: Recall that we proved that any morphism
f : G → H of Lie groups induces a morphism df : g → h of Lie algebras.
Applying this fact with H := GL(g) to the adjoint representation f := Ad
implies that ad = dAd is a morphism of Lie algebras. But we saw above that
this last assertion is equivalent to the Jacobi identity. (Exercise: check carefully
that we haven’t used circular reasoning here.)

18.4 Ad, ad are intertwined by the exponential map
Let G be a Lie group with Lie algebra g. One has maps

exp : g→ G

and also a map
exp : End(g)→ GL(g)

(the matrix exponential). The adjoint maps defined above are intertwined by
these exponential maps, that is to say, Ad ◦ exp = exp ◦ ad, or more verbosely,
for each X ∈ g,

Ad(exp(X)) = exp(ad(X)) :=

∞∑
n=0

ad(X)n

n!
,
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or even more verbosely, for each X,Y ∈ g,

exp(X)Y exp(−X) = Ad(exp(X))Y =

∞∑
n=0

ad(X)nY

n!
=

∞∑
n=0

[X, [X, . . . , [X,Y ]]]

n!

where there are n copies of X in the iterated commutator on the RHS. One
can prove this by writing the LHS and RHS as Φ1(1) and Φ2(1) respectively,
where Φ1(t) := Ad(exp(tX)) and Φ2(t) := exp(ad(tX)) = exp(t ad(X)) are one-
parameter subgroups in GL(g); by Lemma 136, we have Φ′1(0) = dAd(X) =
ad(X) = Φ′2(0), hence by the uniqueness of one-parameter subgroups the two
sides coincide. This identity is already not entirely obvious in the matrix case
G = GLn(k); it is instructive to verify it directly in that case.

18.5 Some low-rank exceptional isomorphisms induced by
the adjoint representation

The adjoint representation Ad of the groups SL2(C),SU(2),SL2(R) induce the
exceptional isomorphisms

PSL2(C) := SL2(C)/{±1} ∼= SO3(C),

SU(2)/{±1} ∼= SO(3),

PSL2(R) := SL2(R)/{±1} ∼= SO(1, 2)0.

We explained this in detail in class for the first two examples and left the third
as an exercise. The adjoint representations ad of the corresponding Lie algebras
likewise induce isomorphisms

sl2(C) ∼= so3(C),

su(2) ∼= so(3),

sl2(R) ∼= so(1, 2).

(Note that Lie(PSL2(C)) = Lie(SL2(C)), etc., because {±1} is discrete.)
We spent some time in class introducing some terminology for interpreting

the above isomorphisms in a natural way.

Definition 138. Let k be a field, perhaps of characteristic 6= 2. A (non-
degenerate) quadratic space V over k is a pair V = (V,Q), where

1. V is a finite-dimensional k-vector space, and

2. Q is a map Q : V → k for which the map B := BQ : V × V → k defined
by B(x, y) := Q(x+ y)−Q(x)−Q(y) has the properties:

(a) B is bilinear, i.e., B(a1x1+a2x2, b1y1+b2y2) =
∑
i=1,2

∑
j=1,2 aibjBQ(xi, yj)

for all ai, bj ∈ k and xi, yj ∈ V ;
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(b) B is non-degenerate in the sense that for each nonzero x ∈ V there
exists a nonzero y ∈ V so that B(x, y) 6= 0; equivalently, the map
x 7→ B(x, ·) defines a linear isomorphism from V to its linear dual
V ∗.

A morphism of quadratic spaces f : (V1, Q1) → (V2, Q2) is a linear map f :
V1 → V2 so that Q2 ◦ f = Q1. Two such quadratic spaces are thus isomorphic
if there exists a linear isomorphism f : V1 → V2 satisfying Q2 ◦ f = Q1.

Example 139. If k = C and n ∈ Z≥0, then V := Cn with Qn(x) :=
∑n
i=1 x

2
i

is a quadratic space, called the standard n-dimensional quadratic space over C.

Example 140. If k = R and p, q ∈ Z≥0, then V := Rp+q with Qp,q(x) :=∑p
i=1 x

2
i −

∑q
j=1 x

2
p+j is a quadratic space, called the standard quadratic space

over R of signature (p, q).

Theorem 141. Over k = R or C, every quadratic space is isomorphic to one
of the above examples.

Definition 142. Given a quadratic space V = (V,Q) over k (take k = R
or C for the purposes of this course, although the construction applies more
generally) we may define its orthogonal group O(V ) = {g ∈ GL(V ) : Q(gv) =
Q(v) for all v ∈ V } and special orthogonal group SO(V ) = O(V ) ∩ SL(V ).

If two quadratic spaces are isomorphism, it is clear that their (special) or-
thogonal groups are likewise isomorphic. The above definition thus introduces
no new groups beyond the examples On(C), O(n), O(p, q), SOn(C), SO(n),
SO(p, q) that we have already seen, but it is sometimes convenient to be able to
refer to them in a coordinate-free manner.

Example 143. Over k = C, the space sl2(C) with the quadratic form det is a
quadratic space. In fact, the linear map j : C3 → sl2(C) given by

(x, y, z) 7→
(

ix y + iz
−y + iz −ix

)
∈ sl2(C) (75)

satisfies det(j(x, y, z)) = x2+y2+z2, and hence induces an explicit isomorphism
of quadratic spaces

(C3, Q3) ∼= (sl2(C),det).

Thus, in particular,
SO(sl2(C),det) ∼= SO3(C).

Example 144. Over k = R, the space su(2) with the quadratic form det is a
quadratic space. In fact, the linear map j : R3 → su(2) given by (75) satisfies
det(j(x, y, z)) = x2 + y2 + z2, and hence induces an explicit isomorphism of
quadratic spaces

SO(su(2),det) ∼= SO(3).
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One of the homework problems for this week is to work out something similar
for sl2(R).

Consider now the adjoint map

Ad : SL2(C)→ GL(sl2(C)).

Since det(Ad(g)X) = det(X) for all g ∈ SL2(C) and X ∈ sl2(C), we have in
fact

Ad(SL2(C)) ⊆ O(sl2(C),det) ∼= O3(C).

Since (as we have shown) SL2(C) is connected, so is its image under Ad, thus
in fact

Ad(SL2(C)) ⊆ SO3(C).

Similarly
ad(sl2(C)) ⊆ so(sl2(C),det) ∼= so3(C).

We may check easily that ker(Ad) = {±1} and ker(ad) = {0}; from this and a
dimensionality check it follows that ad is a linear isomorphism and hence (using
that SO3(C) is connected and that the exponential map has the properties
that it has) that Ad : SL2(C) → SO3(C) is surjective. We thereby obtain an
isomorphism

SL2(C)/{±1} ∼= SO3(C).

Similar arguments give the other isomorphisms claimed above. The homework
problems for this week give some other interpretations.

Remark 145. One can check that the inverse isomorphism so3(C)
∼=−→ sl2(C)

is not of the form df for some morphism f of Lie groups SO3(C) → sl2(C); we
shall return to this point later.

Using the above exceptional isomorphisms, together with the fact that −1 ∈
SL2(C) acts on the irreducible representation Wn by the sign (−1)n, we deduce
that the irreducible representations of SO3(C) are given by the W2n for all
n ≥ 0; the action of g ∈ SO3(C) onW2n is defined to be R(g̃) for some preimage
g̃ ∈ SL2(C). We should see next time a bit more explicitly how this goes.

19 Maurer–Cartan equations and applications

19.1 The equations
Let G be a Lie group and a smooth map

g : k2 99K G.

We can think of g as a smooth parametrized surface, or as a family of (possibly
disconnected) curves t 7→ g(t, s) indexed by a deformation parameter s. The
velocity of the curve with parameter s may be described by the smooth map

ξ : k2 99K g
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characterized by the equation
∂g

∂t
= gξ.

Similarly, for a fixed time t, the velocity of the deformation is quantified by the
map

η : k2 99K g

characterized by
∂g

∂s
= gη.

Since g is smooth, we have
∂2g

∂s∂t
=

∂2g

∂t∂s
.

Equating the two expressions obtained by expanding out the LHS and RHS
and making use of the definition of the Lie bracket give what is known as the
Maurer–Cartan equation.

For the remaining discussion, we either assume that G is a matrix Lie group
(so that everything is a matrix for us to multiply willy-nilly) or use the trick of
§15. Then

∂2g

∂s∂t
=
∂(gξ)

∂s
= gηξ + g

∂ξ

∂s
,

while
∂2g

∂t∂s
=
∂(gη)

∂t
= gξη + g

∂η

∂t
.

Equating the two and using the key relation

gηξ − gξη = g[η, ξ]

now gives
∂η

∂t
− ∂ξ

∂s
= [η, ξ], (76)

which we may expand a bit more verbosely as

∂

∂t
(g−1 ∂g

∂s
)− ∂

∂s
(g−1 ∂g

∂t
) = [g−1 ∂g

∂s
, g−1 ∂g

∂t
]. (77)

One can rewrite everything we’ve said here in the language of differential
geometry in terms of derivatives of a certain natural g-valued 1-form on G; see
Google for details.

19.2 Lifting morphisms of Lie algebras
Theorem 146. Let G,H be Lie groups. Consider the natural map j : Hom(G,H)→
Hom(g, h) given by f 7→ df .

1. If G is connected, then j is injective.

2. If G is simply-connected, then j is surjective.
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We have already shown the first part. It remains to show when G is simply-
connected that for each morphism φ : g → h of Lie algebras that there is a
morphism f : G→ H of Lie groups so that df = φ.

To construct f , start with an element x ∈ G. Since G is connected, we can
find a smooth curve γ in G with γ(0) = e, γ(1) = x. This curve will satisfy a
differential equation

∂γ

∂t
= γξ

for some ξ : R 99K g. We take φ(ξ) := φ ◦ ξ : R 99K h and consider the
curve δ : R 99K H satisfying the initial condition δ(0) = e and the differential
equation

∂δ

∂t
= δφ(ξ);

this can always be solved, by an argument similar to that used to construct the
exponential map. We now attempt to define

f(x) := δ(1).

The issue is that this definition is not obviously independent of the choice of
path γ.

However, since G is simply-connected, we can join any two such paths γ0, γ1

by a smooth homotopy g : R2 99K G satisfying

g(t, 0) = γ0(t), g(t, 1) = γ1(t), g(0, s) = e, g(1, s) = x.

It will again satisfy a differential equation

∂g

∂t
= gξ

now for some ξ : R2 99K g. We can take the composition φ(ξ) : R2 99K h and
solve for a function h : R2 99K H satisfying the initial condition h(0, s) = e and
the differential equation

∂h

∂t
= hφ(ξ). (78)

Then h(t, 0) = δ0(t) and h(t, 1) = δ1(t) where δ0, δ1 are attached to γ0, γ1 as
above. Our aim is to show that δ0(1) = δ1(1). To that end, it will suffice to
show that

h(1, s) is independent of s. (79)

We can express what we are given and what we want to show more succinctly
in terms of the deformation velocities η : R2 99K g of g and ζ : R2 99K h
characterized by

∂g

∂s
= gη (80)

and
∂h

∂s
= gζ. (81)
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With this notation, what we are given is that

η(1, s) = 0 (82)

and what we want to show is that

ζ(1, s) = 0. (83)

The required implication will follow in a slightly stronger form if we can show
that

ζ = φ(η). (84)

We are given the compatible inital conditions

ζ(0, s) = 0 = φ(η)(0, s). (85)

The Maurer–Cartan equation now gives

∂η

∂t
− ∂ξ

∂s
= [η, ξ]. (86)

and
∂ζ

∂t
− ∂φ(ξ)

∂s
= [ζ, φ(ξ)].

By applying φ to (86) and using that φ preserves brackets, we obtain

∂φ(η)

∂t
− ∂φ(ξ)

∂s
= [φ(η), φ(ξ)].

Thus for each s, the functions t 7→ ζ(t, s) and t 7→ φ(η)(t, s) satisfy the same
initial conditions at t = 0 and the same differential equation. The required
identity (84) follows finally from the basic uniqueness theorem for ODEs.

We’ve shown that the map f : G → H is well-defined, i.e., independent of
the choice of path.

Exercise 24. Show that f is a group homomorphism, i.e., f(g1g2) = f(g1)f(g2).
[Hint: use the uniqueness of paths involved in the definition of f .]

It’s also not hard to verify that f is smooth.

20 The universal covering group
We record the basic definitions and results from class (in the order essentially
opposite to that in which they were presented)

Definition 147. Let p1 : X1 → Y and p2 : X2 → Y be a pair of maps. A map
f : X1 → X2 will be said to commute with p1 and p2 if the only conceivable
condition relating the three maps is satisfied: p1 = p2 ◦ f .
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Definition 148. Let Z be a manifold and let Y be a connected manifold. The
trivial fiber bundle over Y with fiber Z is the map pr1 : Y × Z → Y given
by taking the first coordinate. More generally, a trivial fiber bundle over Y
with fiber Z is a smooth map of manifolds p : X → Y such that there exists a
diffeomorphism ι : X → Y × Z commuting with p and pr1.

Definition 149. Let Z be a manifold and let Y be a connected manifold. A
locally trivial fiber bundle over Y with fiber Z is a map p : X → Y , where X is
a manifold and p is a smooth map with the property that each element of Y is
contained in an open neighborhood U for which the induced map p : p−1(U)→
U is a trivial fiber bundle over U with fiber Z.

Definition 150. Let X,Y be connected manifolds. A cover p : X → Y is a
locally trivial fiber bundle with discrete fiber. This means more concretely that
every element of Y has an open neighborhood U so that p−1(U) is a disjoint
union of open subsets Vα with the property that p : Vα → U is a diffeomorphism.
(A picture involving a “stack of pancakes” is appropriate here.)

Remark 151. One can speak about covers of much more general topological
spaces; we won’t ened such notions here.

Example 152. The natural map p : R → R/Z ∼= U(1) ∼= S1 is a non-trivial
locally trivial fiber bundle over the circle S1 with fiber Z.

Definition 153. A morphism f : G → H between connected Lie groups is a
covering morphism if it is a morphism of Lie groups that is also a cover in the
above sense.

Exercise 25. The following are equivalent for a morphism f : G→ H between
connected Lie groups:

1. f is a cover in the sense of Definition 150, i.e., a locally trivial fiber bundle.

2. ker(f) is discrete and f is onto.

3. f is a local homeomorphism.

4. df : g→ h is an isomorphism.

(In all cases, f is surjective.)

Lemma 154. If N is a discrete normal subgroup of a connected Lie group G,
then N is contained in the center of G.

In particular, the kernel of any covering morphism is a discrete subgroup of
the center

Proof. Let n ∈ N . To show that n belongs to the center of G, we must verify
that the set S := {gng−1 : g ∈ G} ⊆ N satisfies S = {n}. Indeed, S is a subset
of the discrete topological space N that contains n, but S is the continuous
image under the map g 7→ gng−1 of the connected topological space G, so S is
connected and thus S = {n}.
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The following key result classifies connected Lie groups as quotients of simply-
connected Lie groups by discrete central subgroups:

Theorem 155. Let G be a connected Lie group. Then there exists a simply-
connected (connected) Lie group G̃ and a covering morphism p : G̃ → G. The
kernel N of p is a discrete subgroup of the center of G. One has π1(G) ∼= N .
The pair (G̃,N) is unique up to isomorphism.

By combining with the result from last lecture, together with the (not proved
yet and not obvious) fact that every finite-dimensional Lie algebra arises as the
Lie algbebra of some Lie group, we obtain:

Corollary 156. The category of simply-connected Lie groups is equivalent to
the category of finite-dimensional Lie algebras, that is to say:

• Every simply-connected Lie group has a finite-dimensional Lie algebra,
and every finite-dimensional Lie algebra arises (up to isomorphism) in
this way.

• If G,H are simply-connected Lie groups with Lie algebras g, h, then the
map f 7→ df induces a bijection Hom(G,H) = Hom(g, h). In particular,
G ∼= H if and only if g ∼= h.

In lecture we gave the following examples:

1. G = R/Z ∼= U(1) ∼= S1, G̃ = R, N = Z

2. G = SO(3), G̃ = SU(2), N = {±1}.

3. G = C×, G̃ = C, p = exp : G̃→ G, N = 2πiZ

We gave a few other similar examples. See the homework for further examples.
The proof of the theorem relies on the construction of the universal cover

p : X̃ → X of a connected manifold X, which is a cover in the sense of Definition
150 with the property: for any cover q : Ỹ → Y and any smooth map f : X → Y
and any x ∈ X, y ∈ Y, x̃ ∈ X̃, ỹ ∈ Ỹ satisfying the compatibility conditions
x = p(x̃) and y = f(x) = q(ỹ) there exists a unique smooth map f̃ : X̃ → Ỹ
such that

1. f̃ lifts f in the sense that q ◦ f̃ = p ◦ f , and

2. f̃(x̃) = ỹ.

The construction of p : X̃ → X (which is not terribly important for our pur-
poses) is as follows: One fixes a basepoint x0 ∈ X and defines X̃ as a set to be
the set of all pairs (x, [γ]), where x ∈ X and [γ] is a homotopy class of smooth
paths γ : [0, 1]→ X with γ(0) = x0 and γ(1) = x. The map p : X̃ → X is given
by p((x, [γ])) := x. We must now define a smooth structure on X̃ and verify
that it is indeed a locally trivial fiber with discrete fiber and that the univer-
sal property is satisfied. We will content ourselves here to define the smooth
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structure; the verifications are then routine. Given a point x1 ∈ X, there is a
small open neighborhood U of x1 that is diffeomorphic to an open Euclidean
ball B. For each x ∈ U , each homotopy class [γ] of paths γ from x0 to x may
be factored uniquely as [δx ◦γ1], where δx is given by the straight line from x to
x1 (under the identification U ∼= B) and [γ1] traverses the set A of homotopy
classes of paths γ1 from x0 to x1. We obtain in this way an identification of
sets p−1(U) =

⊔
α∈A Vα, where each Vα identifies naturally with B. We use this

identification to define the smooth structure on p−1(U).
Given a connected Lie group G, one obtains first a cover of manifolds p :

G̃ → G. To define the group structure on G̃, one first selects an arbitrary
preimage ẽ ∈ G̃ of the identity element e ∈ G. Using the universal property,
one obtains unique lifts m̃ : G̃ × G̃ → G̃ and ĩ : G̃ → G̃ of the multiplication
and inversion maps m : G × G → G and i : G → G satisfying m̃(ẽ, ẽ) = ẽ and
ĩ(ẽ) = ẽ. One can now check that the usual axioms (associativity, smoothness,
etc.) are satisfied, and that p : G̃ → G is a covering morphism. The kernel N
of p is obviously discrete, so by Lemma 154, it is central.

One can also check, using the universal property, that π1(G) ∼= N : The
isomorphism j : π1(G)→ N is obtained by defined by taking a homotopy class
[γ] of loops γ in G with basepoint e, using the universal property to lift them
uniquely to paths γ̃ : G̃ → G̃ with γ̃(0) = ẽ, and setting j([γ]) := γ̃(1). This
is well-defined. Conversely, given n ∈ N , we can take a path γ̃ in G̃ from ẽ to
n ∈ N and project it down via p to obtain a loop γ in G based at the identity
element e ∈ G. The maps π1(G)→ N and N → π1(G) constructed in this way
are mutually inverse group homomorphisms.

For more details, I recommend consulting the first reference listed on the
course homepage.

21 Quotients of Lie groups
Theorem 157. Let G be a Lie group and H a Lie subgroup. There is a unique
smooth structure on the set G/H so that the natural map G → G/H is a sub-
mersion, or equivalently, a quotient map in the smooth category. If moreover
H is a normal subgroup, then G/H is naturally a Lie group and G → G/H
is a surjective morphism of Lie groups. Moreover, the map G → G/H is a
locally trivial fiber bundle with fiber H (and also what is known as a “principal
H-bundle”). Moreover, if the Lie group G acts transitively on a smooth manifold
X and if H is the stabilizer in G of some point x ∈ X, then the natural map
G/H → X given by gH 7→ gx is a diffeomorphism.

The final assertion that G/H ∼= X is related to Exercise 11; its proof in the
present setting requires the second-countability assumption on our manifolds.
We sketched the construction of the smooth structure on G/H in some detail
in lecture, leaving the verification of the properties as an exercise; see the first
reference on the course webpage for more details.

The argument here is very similar (basically “dual to”) that concerning sub-
manifolds given by Theorem 24. In this analogy, “immersion” is to “submanifold”
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as “submersion” is to “quotient manifold.”
By an argument dual to that of Corollary (25), we know that a smooth

surjection p : X → Y is a submersion if and only if it is a quotient map in
the category of smooth manifolds, that is to say, if and only if smooth maps
of manifolds Y → Z are in natural bijection with smooth maps X → Z that
factor set-theoretically through p. (This is easy to see in local coordinates,
using the local description of submersions as surjective linear maps.) The proof
of uniqueness of smooth structure on G/H is then dual to that given in the
proof of Theorem 24.

For existence, one first takes a small enough submanifold S of G that is
transversal to H at the identity element (draw a picture). By the inverse func-
tion theorem, the multiplication map µ : S ×H → G is then a local diffeomor-
phism at the identity, and is in particular injective in a neighborhood of the
identity. (In a bit more detail: the transversality assumption says that that the
derivative T(e,e)µ : TeS×h→ g is an isomorphism, hence by the inverse function
theorem, it is a diffeomorphism in a neighborhood of the origin.)

It follows that if S is small enough, then µ is actually a diffeomorphism
onto its image: for else we may (as explained in more detail in lecture) find
arbitrarily small distinct s1, s2 ∈ S for which s−1

1 s2 ∈ H, contrary to the local
injectivity of µ. In particular, after shrinking S as necessary, the map of sets
π : S → G/H is injective. Denote by U ⊆ G/H the image of S and by gU
the image of the translate gS by an element g ∈ G. We equip gU with the
smooth structure transferred from gS. Then π is a submersion over gU . The
sets gU cover G/H, and the smooth structures on their overlaps are compatible
thanks to the uniqueness established before (compare with the proof of Theorem
24). One can check using the definition of quotient maps that the natural
map G × G/H → G/H is smooth, and that if H is normal, then the induced
multiplication map on G/H is smooth, so G/H is naturally a Lie group.

22 Homotopy exact sequence
If G,H are Lie groups with G connected, one has an exact sequence

π2(G/H)→ π1(H)→ π1(G)→ π1(G/H)
δ−→ H/H0 → 0

where δ sends the homotopy class [γ] of a loop γ : [0, 1] → H based at the
identity element to δ([γ]) := γ̃(1)−1, where γ̃ : [0, 1]→ G is the unique lift of γ
to a path in G satisfying γ̃(0) = e.

Corollary 158. If π1(G/H) = π2(G/H) = 0, then π1(G) ∼= π1(H).

Corollary 159. If π1(G) = 0, then π1(G/H) ∼= H/H0.

We explained how this may be used to compute inductively the fundamental
groups of the classical groups; see the first reference on the course webpage for
more details.
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23 Cartan decomposition
Let G be a real Lie subgroup of GLN (C) with the property that Θ(G) = G,
where Θ : GLN (C) → GLN (C) is the involution given by inverse conjugate
transpose:

Θ(g) := tg−1.

Then the set
K := {g ∈ G : Θ(g) = g} = U(N) ∩G

of elements in G fixed by Θ, or equivalently, belonging to the unitary rgoup,
may be shown to be a real Lie subgroup with Lie algebra

k = {X ∈ g : θ(X) = X}

where θ := dΘ is given by
θ(X) := −Xt

.

Set
p := {X ∈ g : θ(X) = −X}.

Then g = k⊕p. In words, k consists of the skew-hermitian elements of g, while p
consists of the hermitian elements of g; the assumption Θ(G) = G implies also
that θ(g) = g, hence (easily) that such a decomposition exists.

Example 160. If G = GLn(C), then K = U(n) and p consists of all hermitian
matrices and exp(p) consists of all positive-definite hermitian matrices.

In particular, if n = 1, then G = C×,K = U(1), and p consists of all 1 × 1
real matrices.

Example 161. If G = GLn(R), then K = O(n) and p consists of all symmetric
matrices and exp(p) consists of all positive-definite symmetric matrices.

Example 162. One of the homework problems this week is to verify that if
G = O(p, q), then K = O(p)×O(q).

Definition 163. We say that G is (real) algebraic if it may be defined inside
GLN (C) by a system of polynomial equations in the real and imaginary parts of
group elements and their inverses. (Every example we’ve seen has this property.)

Theorem 164 (Cartan decomposition). Let G,K be as above. Assume that G
is algebraic. Then the natural map

K × p→ G

(k, Y ) 7→ k exp(Y )

is a diffeomorphism.

Remark 165. If G has finitely many connected components, then the assump-
tion that G is algebraic turns out to hold automatically in this setup (TODO:
double-check this), but we probably won’t have time to prove this. In any event,
it’s true in all of the examples we’ve seen.
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Example 166. In the context of Example 160, this amounts to the “polar
decomposition” of an invertible complex matrix g as a product of a unitary
matrix k and a positive-definite hermitian matrix exp(Y ). In the special case
n = 1, this is just the polar decomposition of a nonzero complex numbers as
eiθr (writing r = ey, y ∈ R).

Corollary 167. Let G,K be as above. Then K is a deformation retract of G.
In particular, πi(G) ∼= πi(K) for all i ≥ 0.

(One of the homework problems involves applying this last corollary in the
special case i = 0 to relate the connected components of G and K.)

Remark 168. This corollary “explains” some of the “coincidences” such as

π1(SL2(R)) ∼= Z ∼= π1(SO(2)),

π1(SLn(R)) ∼= Z/2 ∼= π1(SO(n)) for n ≥ 3,

π1(SU(n)) ∼= {0} ∼= π1(SLn(C)),

π1(U(n)) ∼= Z ∼= π1(GLn(C)),

π1(SOn(C)) ∼= π1(SO(n))

that we observed empirically at the beginning of the lecture.

Remark 169. Let G be a connected complex Lie group, and suppose it has
a compact real form K, so that g ∼= k ⊕ ik. The point of this remark is to
indicate briefly (as is evident in all examples) why the Cartan decomposition
should always apply to G and K. It turns out (as we’ll show later in the course)
that we may always realize K as a subgroup of U(N) for some N . We can
then realize G as a subgroup of GLN (C) in such a way that g = k ⊕ ik; given
what we’ve seen in the course, we can verify this already in the special case G
is simply-connected (by lifting the inclusion map g ↪→ glN (C)), and by the end
of the course we should also be able to reduce the general case to that special
one. Then K = G ∩U(N).

We briefly indicate the proof of Theorem 164. One basically takes the
proof of the special case (see Example 166) concerning polar decomposition on
GLN (C) (perhaps seen in a linear algebra course?) and checks that it descends
to G. So, let’s see. There are a few things to check.

1. The map K × p 3 (k, Y ) 7→ k exp(Y ) ∈ G is bijective.

2. The map Y 7→ exp(Y ) is a diffeomorphism onto its image.

Using the first two assertions and the inverse function theorem, one gets that
the map (k, Y ) 7→ k exp(Y ) is itself a diffeomorphism onto its image. To verify
the second assertion, we should first compute the differential of the exponential
map (a result of independent interest). The answer is that for any X,Y ∈ g,

exp(−X)
d

dt
exp(X + tY )|t=0 = Ψ(adX)Y (87)
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where

Ψ(z) :=

∞∑
n=1

(−z)n−1

n!
=

1− exp(−z)
z

.

This is obtained by applying Homework 9 to the map f : R → g given by
f(t) := X + tY ; one then has f(0) = X and f ′(0) = Y , and so (87) follows
from Homework 9. It follows from the second description of Ψ that (d exp)X is
injective provided that adX has no eigenvalues of the form 2πik with k a nonzero
integer. Since hermitian matrices have real eigenvalues (under the standard
representation as well as the adjoint representation), it follows in particular
that exp : p → GLN (C) is everywhere regular. Finally, we observe that every
positive hermitian matrix g may be written uniquely as the exponential of a
symmetric matrix: any such matrix is diagonal with respect to some basis and
has positive real entries on the diagonal, etc. In summary, exp : p → GLN (C)
is a diffeomorphism onto its image, as required.

All that remains now is the bijectivity. We verify first the injectivity, which
will serve as useful motivation. Suppose that g = k exp(Y ). Since Θ(k) = k and
Θ(exp(Y )) = exp(θ(Y )) = exp(−Y ) = exp(Y )−1 and Θ is a homomorphism, it
follows that g−1Θ(g) = exp(2Y ). Since exp : p → exp(p) is bijective, it follows
that Y is uniquely determined by g, hence so is k = g exp(−Y ).

We turn finally to surjectivity. Given g ∈ G ≤ GLN (C), we can verify
directly that Θ(g)−1Θ(g) is a positive definite hermitian matrix, and so we can
define Y ∈ glN (C) to be the unique hermitian matrix for which exp(2Y ) =
Θ(g)−1Θ(g). It is then not hard to verify that k := g exp(−Y ) is unitary, i.e.,
Θ(k) = k. This gives the required decomposition in the Lie group GLN (C);
the problem is to show that in fact k ∈ K and Y ∈ p, or equivalently, that
k ∈ G and Y ∈ g. Since exp(g) ⊆ G and because of the way k was defined, it
will suffice to verify that Y ∈ g. What we know (from our assumptions g ∈ G
and Θ(G) = G) is that exp(2Y ) ∈ G. Since G is a group, we can raise the
last assertion to any integer power t ∈ Z to see that exp(2tY ) ∈ G. Since Y
is hermitian, we may choose a basis with respect to which it is diagonal and
suppose that Y = diag(y1, . . . , yN ) for some real numbers y1, . . . , yN ∈ R. Since
G was assumed to be algebraic (defined by polynomial equations), the condition
exp(2tY ) ∈ G is then a system of polynomial equations involving the positive
real numbers exp(2ty1), . . . , exp(2tyN ). Since this polynomial system is satisfied
for all integers t, one can show (see below) that it is satisfied also for all real
numbers t. Thus exp(2tY ) ∈ G for all t ∈ R. By differentiating this last fact we
deduce as required that Y ∈ g.

For completeness, we record the algebraic fact that we used in the proof:

Exercise 26. Let a1, . . . , an ∈ R and let F ∈ R[x1, . . . , xn] be a polynomial
satisfying

F (ea1t, . . . , eant) = 0 (88)

for all t ∈ Z. Show that (88) holds also for all t ∈ R.

(We apply this with n := 2N and (a1, . . . , an) := (y1, . . . , yN ,−y1, . . . ,−yN ).)
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24 BCHD
Let G1, G2 be Lie groups.

Definition 170. We say that G1, G2 are locally isomorphic if there are open
neighborhoods Ui ⊆ Gi of the identity elements and a diffeomorphism f : U1

∼=−→
U2 so that whenever x, y, xy ∈ U1, one has f(xy) = f(x)f(y). In that case, f is
said to be (guess!) a local isomorphism.

Example 171.

1. Any covering homomorphism f : G1 → G2 induces a local isomorphism.

2. If G1 is the connected component of G2, then the inclusion G1 ↪→ G2

defines a local isomorphism.

3. The relation of being locally isomorphic is obviously an equivalence rela-
tion, i.e., is reflexive and transitive. In verifying this it is convenient to
note that one can always shrink the subsets U1, U2 suitably.

Theorem 172. G1, G2 are locally isomorphic if and only if g1, g2 are isomor-
phic.

Proof. The forward direction is easy: given f : U1 → U2 with inverse f−1 :
U2 → U1 as in the definition of “locally isomorphic,” the differentials at the
identity df : g1 → g2 and d(f−1) : g2 → g1 define morphisms of Lie algebras
(by the same proof as in §14.4) which are mutually inverse.

The converse direction is more subtle, but follows from what we have seen
already. Namely, let G0

1 denote the connected component and G̃0
1 its simply-

connected covering group. Then g1 = Lie(G1) = Lie(G0
1) = Lie(G̃0

1). Let φ :

g1 → g2 be an an isomorphism. Then φ is of the form df for some f : G̃0
1 → G2.

Since φ is an isomorphism, we know by (for instance) Exercise 25 that f is a
covering morphism. By Example 171, it follows that G1 is locally isomorphic
to G0

1 which is in turn locally isomorphic to G̃0
1 which is finally (via f) locally

isomorphic to G2, as required.

It is natural to ask for a more “local” proof of Theorem 172 that does not
require topological considerations or global constructions involving universal
covers, etc. The BCHD formula gives such a proof. To motivate that, recall
that exp : g → G is a local diffeomorphism near the origin; for this reason, it
makes sense to define for small enough x, y ∈ g the quantity

x ∗ y := log(exp(x) exp(y)).

(We explained this in somewhat more detail in class.) Thus x ∗ y is the group
law on G expressed in local coordinates defined via the exponential map. One
has identities like

x ∗ (y ∗ z) = (x ∗ y) ∗ z
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whenever all involved quantities make sense (e.g., whenever x, y, z are all small
enough). We also have

x ∗ (−x) = 0,

etc. If G is abelian, then x ∗ y = x + y. In general, it is somewhat more
complicated. (See the homework problems this week for some examples where
it isn’t too complicated.)

Exercise 27. If φ : g → h is the differential of some morphism of Lie groups
G→ H and x, y ∈ g are small enough, then

φ(x) ∗ φ(y) = φ(x ∗ y).

Suppose now temporarily that G = GLn(R), so that g = Mn(R). Using the
series expansions log(z) =

∑
m≥1(−1)m−1(z−1)m/m and exp(x) =

∑
p≥0 x

p/p!,
we obtain

exp(x) exp(y)− 1 =
∑
p,q≥0:

(p,q)6=(0,0)

xpyq

p!q!

and thus

x ∗ y =
∑
m≥1

(−1)m−1

m

∑
p1,q1,...,pm,qm≥0

(pj ,qj)6=(0,0)

xp1yq1 · · ·xpmyqm
p1!q1! · · · pm!qm!

. (89)

For n ≥ 1, let zn denote the nth homogeneous component of the sum on the
RHS, so that

x ∗ y =
∑
n≥1

zn. (90)

If we play around for a bit (as done in class), we find quickly that

z1 = x+ y,

z2 =
1

2
[xy]

where [xy] := [x, y]. The verification of this involved a “miraculous” coincidence
of the shape (

x2

2
+ xy +

y2

2

)
− 1

2
(x2 + xy + yx+ y2) =

xy − yx
2

.

We indicated that with more work one can show that

z3 =
1

12
([x[xy]] + [y[yx]])

and
z4 =

1

24
[y[x[yx]]].

139



Theorem 173 (BCH “formula”). Let G be a Lie group with Lie algebra g. Then
for small enough x, y ∈ g, the identity (90) holds for some degree n Lie polyno-
mial zn in x, y (i.e., zn is a linear combination of iterated n-fold commutators
as above).

There is a more explicit version of this:

Theorem 174 (BCHD formula). Let G be a Lie group with Lie algebra g. Then
for small enough x, y ∈ g, the identity (90) holds with

zn =
1

n

∑
m≥1

(−1)m−1

m

∑
p1,q1,...,pm,qm≥0

(pj ,qj)6=(0,0)
p1+q1+···+pm+qm=n

[xp1yq1 · · ·xpmyqm ]

p1!q1! · · · pm!qm!
(91)

where, for instance,

[x3y2x4y1] := [x[x[x[y[y[x[x[x[xy]]]]]].

The similarity between (89) and (91) is no coincidence:

Exercise 28. Convince yourself that the problem involving commutators on
Homework 6 (known as something like Dynkin’s lemma) allows one to deduce
Theorem 174 from Theorem 173.

To prove Theorem 173, define

f(t) := x ∗ ty

for small t ∈ R. Then f is smooth, and

x ∗ y = f(1) = f(0) +

∫ 1

t=0

f ′(t) dt.

Since exp f(t) = exp(x) exp(ty) we have ∂t exp f(t) = f(t)y and thus by Home-
work 9,

y = exp(−f(t))∂t exp(f(t)) = Ψ(adf(t))f
′(t),

where

Ψ(z) =

∞∑
m=1

(−z)m−1

m!
=

1− exp(−z)
z

.

We form the inverse power series

Ψ(z)−1 =
z

1− exp(−z)
= 1 +

z

2
+ · · · .

We then have
f ′(t) = Ψ(adf(t))

−1y.

Using Exercise 27, we have

adf(t) = adx ∗ adty = log(ead(x)et ad(y))),
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hence
Ψ(adf(t))

−1 = ψ(ead(x)et ad(y))

where
ψ(w) := Ψ(log(w))−1 =

w logw

w − 1
= 1 + (w − 1)/2 + · · ·

(whose coefficients are what are called Bernoulli numbers). In summary,

x ∗ y = x+

∫ 1

t=0

ψ(ead(x)et ad(y))y dt.

We can now expand the integrand out into a power series and integrate term-
by-term; we then obviously get an analytic expression of the required form. (In
fact, it’s not too hard to push this analysis a bit further to derive (91) directly,
without using Dynkin’s trick; just expand everything out.)

Remark 175. The most “conceptual” perspective on the BCH theorem in its
qualitative form may be found in Serre’s book on Lie algebras and Lie groups
in one of the final chapters on Lie algebras; see also around p72 of the book by
Onischik–Vinberg–Gourbatsevich.

Note that Theorem 172 follows directly from the BCHD formula: if x, y ∈
gi are small enough then the product exp(x) exp(y) is determined entirely by
the Lie bracket on gi, so an isomorphism g1

∼= g2 obviously lifts to a local
isomorphism between neighborhoods of the identity elements in G1, G2.

There is a lot more to say about the BCHD formula; a taste is given on the
homework set for this lecture. For some problems it may help to note that for
any fixed norm |.| on g and x, y small enough, one has

x ∗ y = O(|x| |y|).

Next lecture we should state some further consequences of BCHD.

25 Some more ways to produce and detect Lie
groups

25.1 Summary
Recall that we have called a subgroup H of a Lie group G a Lie subgroup if it
is a submanifold, and that for this to hold, it suffices to verify that H is locally
a submanifold near the identity element of G. Checking this condition over and
over again eventually becomes tedious, so we ask for some more systematic ways
to detect it. Here are a few, to be developed in detail throughout this section:

1. It was observed in §11.5 that Lie subgroups are automatically closed.
Much more interestingly and perhaps surpririnsgly, the converse is true
over k = R: any closed subgroup H of a real Lie group G is automatically
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a Lie subgroup (Theorem 176). This is very powerful, and implies most
of the criteria discussed below.

This criterion does not apply directly to complex Lie groups: for instance a
real Lie subgroup of a complex Lie group is seldom a complex Lie subgroup
(think R ↪→ C or GLn(R) ↪→ GLn(C)). But it’s not hard to verify (e.g., by
inspecting the proof of what we are talking about) that if H is a real Lie
subgroup of a complex Lie group G with the property that h is a complex
vector space of g, then H is a complex Lie subgroup of G. A fairly good
rule of thumb is that if a subgroup H of a complex Lie group G has the
properties

(a) H is closed, and

(b) the definition of H does not make reference to the real numbers,
complex conjugation or similar “non-holomorphic” notions,

then H is probably a complex Lie subgroup.

Some of the methods used to prove the criteria to be given below are of
independent interest, even in the real case, because they give convenient
ways to compute Lie algebras in many common situations.

2. “Stabilizers” of any sort (of points in a manifold, of vectors in a represen-
tation, etc.) are, in practice, obviously closed, hence are Lie subgroups
by the previous item. Moreover,their Lie algebras tend to be “the obvious
thing.” Many subgroups can be somehow interpreted as stabilizers:

(a) kernels of morphisms of Lie groups,

(b) stabilizers of subspaces in representations,

(c) intersections of Lie subgroups,

(d) etc.

3. An interesting result that does not follow from the above criteria is that in
a simply-connected Lie group G, the commutator subgroup G′ := [G,G] is
a Lie subgroup. This conclusion fails in general, although it remains true
that the commutator subgroup is an immersed Lie subgroup.

4. Given a Lie subgroup H of a Lie group G, one can naturally construct the
quotient manifold G/H; if H is normal, then G/H is also a Lie group.

25.2 Closed subgroups of real Lie groups
25.2.1 Statement of the key result

Theorem 176. Let G be a real Lie group, and let H ⊆ G be a subset. The
following are equivalent:

1. H is a closed subgroup of G, that is to say,
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(a) H is a closed subset of G, and

(b) e ∈ H, and h−1, h1h2 ∈ H whenever h, h1, h2 ∈ H.

2. H is a Lie subgroup of G, that is to say,

(a) H is a submanifold of G, and

(b) e ∈ H, and h−1, h1h2 ∈ H whenever h, h1, h2 ∈ H.

25.2.2 A toy example

One can already illustrate the basic idea behind Theorem 176 in the case G = R,
where it amounts to the following:

Theorem 177. Let H be a closed subgroup of the real line R. Then exactly one
of the following possibilities occur:

• H = R, or

• H is discrete, or equivalently, one has (−ε, ε) ∩H = {0} for some ε > 0.

Proof. If the second possibility does not occur, then we can find a sequence
xn ∈ H with xn → 0 and xn 6= 0. Let x ∈ R be given. We can find a sequence
of reals cn so that cnxn → x; for instance, one can take cn = x/xn. But since
xn → 0, the conclusion cnxn → x is unaffected by rounding cn to the nearest
integer. We can thus find a sequence of integers cn so that cnxn → x. Since H
is a subgroup, we then have cnxn ∈ H for all n. Since H is closed, it follows
that x ∈ H. Since x was arbitrary, we conclude as required that H = R.

25.2.3 Proof of the key result

Proof of Theorem 176. Thanks to ??? and ???, all we need to show is that if H
is a closed subgroup of G, then H is locally a submanifold of G at the identity.
Let g denote the Lie algebra of g. Set

h :=
{
x ∈ g : ∃cn ∈ R, xn ∈ g ∩ exp−1(H) so that xn → 0, cnxn → x

}
.

Two quick remarks before continuing with the proof:

• If we somehow knew already that H were a Lie subgroup, then h would
of course be its Lie algebra, as any xn in the definition would belong to h
for n large enough.

• A good “enemy scenario” to keep in mind is when G = (R/Z)2 and H
is the image of the map x 7→ (x, αx), where α ∈ R − Q. Then H is a
subgroup (indeed, an immersed Lie subgroup), but fails to be closed. The
set h defined as above is all of g, and so has nothing to do with the Lie
algebra of H. The argument to follow will need to rule out this scenario.

We show now that
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h is a vector subspace of g for which exp(h) ⊆ H.

1. It is clear that h is stable under scalar multiplication.

2. Let x ∈ h, so that x = lim cnxn for some cn, xn as in the definition of
h. The condition xn → 0 implies that rounding cn to the nearest integer
does not affect the condition cnxn → x, so we may assume without loss
of generality that cn ∈ Z. Since H is a closed subgroup, we then have
exp(x) = lim exp(xn)cn ∈ H.

3. Let x, y ∈ h. For n large enough, set zn := log(exp(x/n) exp(y/n)). By the
previous item, exp(zn) = exp(x/n) exp(y/n) ∈ H. As we’ve seen earlier
in the course (during the discussion of the exponential map; what we need
here also follows easily from BCH), we have zn = x/n + y/n + O(1/n2),
hence zn → 0 and nzn → x+ y. Therefore x+ y ∈ h.

Let h′ ≤ g be any vector space complement to h, so that g = h ⊕ h′. The
map g = h ⊕ h′ 3 (v, w) 7→ exp(v) exp(w) has derivative 1 at the origin, hence
is a local diffeomorphism. There is thus a small open neighborhood U of the
identity element in G and a smooth chart

(α, α′) : U → h⊕ h′

characterized by the identity

g = exp(α(g)) exp(α′(g)) for all g ∈ U.

We claim that if U is small enough, then

U ∩H = {g ∈ U : α′(g) = 0}.

This shows that H is locally a submanifold of G at the identity, as required.
To prove the claim, note first that if α′(g) = 0, then g = exp(α(g)) ∈

exp(h) ⊆ H. This establish one inclusion.
Conversely, if the reverse inclusion fails for arbitrarily small U , then we can

find a sequence hn ∈ U ∩H with hn → 1 so that α′(hn) 6= 0. Set

xn := α′(hn).

Since exp(xn) belongs to the group generated by h ∈ H and exp(α(hn)) ∈
exp(h) ⊆ H, it belongs to H, and so

xn ∈ h′ ∩ exp−1(H), xn → 0, xn 6= 0.

By passing to a subsequence, we have |xn|−1xn → x for some nonzero x ∈ h′,
but then also x ∈ h; since h ∩ h′ = 0, we obtain the required contradiction.

A simple corollary that already illustrates the basic idea is the following:

Corollary 178. Let H be a closed subgroup of Rn. Then there is a vector space
V ≤ Rn and an open neighborhood 0 ∈ U ⊆ Rn so that H ∩ U = V ∩ U .
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Proof. We take G := Rn and note that g = Rn and that the exponential map
g→ G is the identity. The conclusion then follows from Theorem 176.

Exercise 29. Write down a direct proof of Corollary 178. (The proof of Theo-
rem 176 simplifies a bit in this special case while retaining its basic flavor; it is
instructive to work out exactly how it simplifies.)

25.3 Stabilizers
25.3.1 The basic result

Let M be a manifold and G a Lie group acting on M , i.e., equipped with a
smooth map G ×M → M satisfying the usual requirements of an action (see
Definition 59). Let x ∈M . Consider the orbit map α : G→M given by α(g) :=
gx. A crucial property of this map is that it has constant rank. Indeed, its rank
at g2 is the same as its rank at g1g2 thanks to the identity α(g1g2) = α(g1)α(g2)
and the fact that α(g1) is a diffeomorphism. Using the constant rank theorem
from multivariable calculus, it follows that α is linearizable in a neighborhood
of any point of G, and in particular, near the identity element. It follows that

StabG(x) = {g ∈ G : α(g) = x}

is a submanifold of G, hence a Lie subgroup, with Lie algebra

stabg(x) := {X ∈ g : dα(X) = 0}.

25.3.2 Application to kernels

If f : G → H is a morphism of Lie groups, then we may regard G as acting
on H via g · x := f(g)x. The stabilizer of the identity element of H under this
action is then the kernel of f , so by the result of the previous section,

ker(f) = {g ∈ G : f(g) = e}

is a Lie subgroup of G with Lie algebra

ker(df) : {X ∈ g : df(X) = 0}.

25.3.3 Application to preimages

Given a morphism f : G → H of Lie groups and a Lie subgroup H1 of H,
the preimage f−1(H1) may be interpreted as the stabilizer in G of the identity
element in the quotient manifold H/H1 under the action afforded by f . Thus
f−1(H1) is a Lie subgroup of G with Lie algebra (df)−1(h1) ≤ g.

25.3.4 Application to intersections

If H1, H2 are Lie subgroups of a Lie group G, then H1 ∩H2 is the preimage of
H2 under the inclusion map H1 ↪→ G, and is thus itself a Lie subgroup.
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25.3.5 Application to stabilizers of vectors or subspaces in represen-
tations

Let G be a Lie group and R : G → GL(V ) a representation. For v ∈ V , we
know by §25.3.1 that StabG(v) is a Lie subgroup with Lie algebra stabG(v).
For a subspace U of V , we can apply the considerations of §25.3.1 to a suitable
Grassmannian manifold (consisting of subspaces of V of given dimension) to see
that

{g ∈ G : R(g)U ⊆ U} (92)

is a Lie subgroup of G with Lie algebra

{X ∈ g : dR(X)U ⊆ U}.

Alternatively, we can note that {g ∈ GL(V ) : gU ⊆ U} is a Lie subgroup of
GL(V ) (consisting of block upper-triangular matrices); it follows then from from
the discussion of §25.3.3 that its preimage (92) is a Lie subgroup of G with Lie
algebra as indicated.

25.4 Commutator subgroups
For a general Lie group G, the subgroup G′ := [G,G] of commutators need
not be closed, hence need not be a Lie subgroup. But if G is simply-connected,
then G′ is indeed a Lie subgroup. To see this, denote by g the Lie algebra of
G and by g′ := [g, g] the subalgebra generated by the commutators. Then g/g′

is an abelian Lie algebra, hence is the Lie algebra of a vector space V . Since
G is simply-connected, the natural Lie algebra morphism df : g → g/g′ lifts
to a Lie group morphism f : G → V . Then ker(f) is a Lie subgroup with Lie
algebra g′; moreover, it is clear that ker(f) ⊇ G′. In the opposite direction,
we can play around with commutators of paths near the identity in G and the
inverse function theorem to see that G′ contains a neighborhood of the identity
in ker(f). It follows that G′ and ker(f) coincide near the identity. In particular,
G′ is a Lie subgroup.

In fact, since G/ ker(f) ∼= V is a vector space, it follows from the short exact
sequence · · · → π1(G/ ker(f)) → π0(ker(f)) → 0 that π0(ker(f)) = 0, i.e., that
ker(f) is connected. So we actually have G′ = ker(f).

26 Immersed Lie subgroups
We’ve described thus far a fair bit of the basic Lie-theoretic dictionary: simply-
connected Lie groups correspond to Lie algebras, etc. We’ve also seen that for
a Lie group G, the connected Lie subgroups H of G are determined by their Lie
algebras h ≤ g. It’s natural to ask which h arise in this way. The subtlety of
the problem can be seen by considering simple examples such as G = R2 and
G = (R/Z)2, as in lecture.

An easier question is to ask whether arbitrary Lie subalgebras h ≤ g of
the Lie algebra g of a Lie group G correspond to “something” involving G.
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The answer is that they are in natural bijection with connected immersed Lie
subgroups H of G (recall Definition 63, which I’ve gone back in the notes and
modified since we started the course in order to make things work here). By
definition, the latter are abstract subgroups H of G with the property that there
exists a manifold structure on H with respect to which H is a Lie group and so
that the inclusion H → G is an injective (immersive) morphism of Lie groups.

To put it a bit more verbosely: a subset H of a Lie group G is an immersed
Lie subgroup if there exists a Lie group Ĥ and an injective immersion ι : Ĥ → G
with image H. In that case dι : Lie(Ĥ) → g is an injective morphism of Lie
algebras whose image h we define to be the Lie algebra of H. This gives one
direction of the above correspondence.

The reverse direction is more subtle: given a subalgebra h of g, one takes
for H the subgroup generated by the image of h under the exponential map.
One then attempts to define a manifold structure on H to be that generated for
small open 0 ∈ U ⊆ h and h ∈ H by the charts h exp(U) 3 h exp(X) 7→ X ∈ U .

Another part of the correspondence is that the Lie group structure on any
immersed Lie subgroup H ≤ G is uniquely determined by the subset H.

See Chapter 1, Sections 2.4 and 5.3 of the first reference on the course page
for more details.

27 Simple Lie groups
Recall that a subset H of an abstract group G is called

• a subgroup if e ∈ H and h1, h2 ∈ H =⇒ h1h2 ∈ H and h ∈ H =⇒
h−1 ∈ H, and is in that case called

• normal if gHg−1 ⊆ H for all g ∈ G,

• trivial if H = {1},

• proper if H 6= G,

and that G is called simple if it has no nontrivial proper normal subgroups. For
Lie theory, a slightly modified definition turns out to be convenient.

Definition 179. Let g be a Lie algebra, thus g is a vector space (over k = R
or C, say) equipped with a bracket operation [, ] that is bilinear, antisymmetric,
and satisfies the Jacobi identity. A vector subspace h of g is called

• a subalgebra if [h, h] ⊆ h, and is

• an ideal if [g, h] ⊆ h.

Here [g, h] denotes the span of the commutators [x, y] with x ∈ g, y ∈ h. It is
clear that an ideal is a subalgebra.

We denote the relationship that h is an ideal of g symbolically by h / g.
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Henceforth denote by G a connected Lie group and by g its Lie algebra.
Recall that there is a natural bijection

{ subalgebras h of g} ∼= { connected virtual Lie subgroups H of G }

given in the forward direction by h 7→ H := 〈expG(h)〉.

Exercise 30. Let H be a connected virtual Lie subgroup of G with Lie algebra
h. The following are equivalent:

1. H is a normal subgroup of G.

2. h is an ideal in g.

[Use the standard differentiation/exponentiation technique.]

Definition 180. g is abelian if [g, g] = 0.

Exercise 31. G is abelian if and only if g is abelian. [Use the standard differ-
entiation/exponentiation technique.]

Definition 181. g is simple if it is non-abelian and has no nontrivial proper
ideals.

Definition 182. G is simple if it is non-abelian it has no nontrivial proper
normal connected virtual Lie subgroups.

Lemma 183. The following are equivalent:

(i) G is simple.

(ii) g is simple.

(iii) Every proper normal subgroup of G is discrete.

Proof. The equivalence of (i) and (ii) is immediate from Exercise 30. It is clear
that (iii) implies (i): if every proper normal subgroup of G is discrete, and if H is
a proper normal connected virtual Lie subgroup, thenH is in particular a proper
normal subgroup, hence is discrete; since H is then discrete and connected, it
is trivial, and since H was arbitrary we conclude that G is simple.

The interesting implication is thus that (i) and (ii) imply (iii). To see that,
let K be a normal subgroup of G that is not discrete; we wish to show that
K = G. The closure K of K is (by continuity) a closed normal subgroup of G.
Since K is not discrete, neither is K, hence neither is the connected component
K

0
. Since K

0
is a characteristic subgroup of K, it is a closed normal subgroup

of G, hence a non-discrete normal Lie subgroup of G; since G is simple, the only
possibility is that K

0
= G, hence K = G.

In summary, K is dense in G. We claim that there is k ∈ K and X ∈ g
so that Ad(k)X 6= X. If not, then it would follow by continuity that Ad(G)
is trivial, hence that g is abelian, contrary to our assumption that g is simple,
hence non-abelian.
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Consider the curve γ(t) := (k, expG(tX)), where (, ) denotes the commuta-
tor. We then have γ(0) = e, γ(t) ∈ K for all t, and Y := γ′(0) = Ad(k)X−X 6=
0. Since g is simple, its center z(g) = {Z ∈ g : [Z, g] = 0} is trivial (for else its
center would be a nontrivial ideal, hence g would coincide with its center, i.e.,
g would be abelian; contradiction). In particular, [Y, g] 6= 0. It follows by the
standard differentiate/exponentiate technique that the subspace a of g spanned
by Ad(G)Y is a nonzero ideal (check this). Since g is simple, it follows that
a = g. We can thus find g1, . . . , gn ∈ G, where n = dim(G), so that the elements
Ad(g1)γ′(0), . . . ,Ad(gn)γ′(0) span g. Also, the curves t 7→ Ad(gj) exp(tX) all
lie in K, since exp(tX) ∈ K and K is normal. The map

(t1, . . . , tn) 7→ (Ad(g1) exp(t1X)) · · · (Ad(gn) exp(tnX))

then has differntial at (0, . . . , 0) given by an invertible linear map, hence (by the
inverse function theorem) defines a local diffeomorphism; since its image lies in
K, we deduce that K contains a neighborhood of the identity in G, and since
G is connected, it follows that K = G, as required.

Thus apart from excluding abelian examples and possible discrete normal
subgroups, the notions of a connected Lie group being simple as an abstract
group or simple as a Lie group are the same.

In the rest of the lecture, we described which classical Lie groups/algebras
are simple and what the isomorphisms between them are. This will be discussed
in subsequent lectures.

28 Simplicity of the special linear group

28.1 Some linear algebra
Let V be a complex vector space (not necessarily finite-dimensional, for now).
Given an operator x ∈ End(V ) and λ ∈ C, we may define the eigenspace

V λ := {v ∈ V : xv = λv}.

Lemma 184. The spaces V λ are linearly independent, that is to say, if n ≥ 1
and λ1, . . . , λn are distinct complex numbers and v1 ∈ V λ1 , . . . , vn ∈ V λn satisfy
v1 + · · ·+ vn = 0, then v1 = · · · = vn = 0.

Proof. We induct on n. When n = 1, the required conclusion is clear: if v1 ∈
V λ1 satisfies v1 = 0, then certainly v1 = 0. Suppose now that n ≥ 2, and let
v1,∈ V λ1 , . . . , vn ∈ V λn with v1 + · · ·+ vn = 0. Then certainly

0 = λn(v1 + · · ·+ vn)

and also
0 = x(v1 + · · ·+ vn) = λ1v1 + · · ·+ λnvn,
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hence upon taking differences,

(λ1 − λn)v1 + (λ2 − λn)v2 + · · ·+ (λn−1 − λn)vn−1 = 0.

By our inductive hypothesis, (λj−λn)vj = 0 for j = 1, . . . , n−1. Since λj 6= λn,
it follows that v1 = · · · = vn−1 = 0 and hence also that vn = 0, as required.

Thus the sum
∑
λ∈C V

λ is in fact a direct sum ⊕V λ.

Definition 185. An operator x ∈ End(V ) is semisimple (or diagonalizable, or
completely reducible; depending upon my mood I alternate between the various
terminologies) if

V = ⊕λ∈CV λ.

Assume henceforth that V is finite-dimensional.

Definition 186. For x ∈ End(V ), we say that a subspaceW ≤ V is x-invariant
if xW ⊆W .

Exercise 32. The following are equivalent:

1. x is semisimple.

2. There is a basis of V with respect to which x is represented by a diagonal
matrix.

3. In the Jordan decomposition of x as a sum of Jordan blocks Jordan blocks
λ 1

λ 1
· · · · · ·

λ 1
λ

 ,

only 1× 1 blocks appear.

4. The characteristic polynomial and minimal polynomial of x are the same.

5. Every x-invariant subspace W ≤ V has an x-invariant complement W ′,
i.e., a subspace W ′ ≤ V for which V = W ⊕W ′.

6. The minimal polynomial of x is squarefree, i.e., of the form (X−a1) · · · (X−
ar) for some distinct complex numbers a1, . . . , ar.

7. There exists a squarefree polynomial that annihilates x.

(1) iff (2): take as the basis for V a union of arbitrary bases of V λ. (2) iff (3):
clear. (3) iff (4): clear. (1) iff (5): argue as in the proof of Lemma 110. It is
clear that (4), (6) and (7) are equivalent.

Exercise 33. Suppose x ∈ End(V ) is semisimple.

150



1. For each eigenvalue λ of x, let Wλ be a subspace of the λ-eigenspace V λ
of x. Verify that ⊕λWλ is an x-invariant subspace of V .

2. Let W ≤ V be an x-invariant subspace. Show that W is of the form
⊕λWλ, where Wλ = W ∩ V λ is a subspace of V λ. [Hint: one can either
appeal to the previous lemma or argue as in the proof of Lemma 184;
other arguments are probably also possible.]

3. Let W ≤ V be an x-invariant subspace.

4. Show that x|W is semisimple.

Theorem 187. Let x1, . . . , xn ∈ End(V ) be semisimple commuting elements.
Then there is a basis of V with respect to which all of x1, . . . , xn are diagonal-
izable.

Proof. We induct on n. For n = 1, everything is clear, so suppose n ≥ 2. Let
V = ⊕V λ be the decomposition of V into eigenspaces for x1. For j ∈ {2..n},
we claim that xjV λ ⊆ V λ. Indeed, for v ∈ V λ, we have x1xjv = xjx1v =
xjλv = λxjv, hence xjv ∈ V λ, as required. By Exercise 33, the restrictions to
V λ of the operators x2, . . . , xn are semisimple (and commuting), hence by our
inductive hypothesis may be simultaneously diagonalized; we now conclude by
taking a union over λ of bases of V λ with respect to which the x1, . . . , xn are
diagonalized.

28.2 Recap on sl2(C)
Recall that g = sl2(C) has the basis elements

H =

(
1
−1

)
, X =

(
1
)
, Y =

(
1

)
which satisfy the relations

[X,Y ] = H, ad(H)X = 2X, ad(H)Y = −2Y.

We can view
h = CX ⊕ CH ⊕ CY

as the eigenspace decomposition of ad(H) with eigenvalues 2, 0,−2.

Theorem 188. Let ρ : g → End(V ) be a finite-dimensional representation.
Then ρ(H) is semisimple.

Proof. Since V decomposes as a direct sum of the irreducible representations
Wm, we may assume V = Wm. Then the elements xm, xm−1y, . . . , ym give a
basis of V with respect to which ρ(H) is diagonal.

We record for future reference that the element

w := e−XeY e−X =

(
−1

1

)
∈ SL2(C) (93)

has the property that
Ad(w)H = −H. (94)
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28.3 Reformulation in terms of representations of abelian
Lie algebras

In this section all Lie algebras are finite-dimensional over the complex numbers
and all vector spaces are complex and finite-dimensional. Recall that a Lie
algebra h is abelian if [h, h] = 0.

Let h be an abelian Lie algebra and ρ : h → End(V ) a representation. Let
h∗ := Hom(h,C) denote the dual vector space. For λ ∈ h∗, define the eigenspace

V λ := {v ∈ V : Hv = λv for all H ∈ h}

where we abbreviate Hv := ρ(H)v.

Lemma 189. The spaces V λ are linearly independent, i.e.,
∑
λ∈C V

λ = ⊕λ∈CV λ.

Proof. Same proof as Lemma 184.

Lemma 190. Let h be an abelian Lie algebra and ρ : h→ End(V ) a represen-
tation. The following are equivalent:

1. ρ(H) is semisimple for all H ∈ h.

2. There is a basis of V with respect to which every element of ρ(h) is diag-
onal.

3. V = ⊕V λ.

Proof. Take a basis H1, . . . ,Hn and consider x1 := ρ(H1), . . . , xn := ρ(Hn) ∈
End(V ). If each xj is semisimple, then Theorem 187 tells us that there is a basis
with respect to which they are (and hence every element of ρ(h) is) diagonal.
The converse and the equivalence with V = ⊕V λ are left to the reader.

Definition 191. We say that a representation ρ : h → End(V ) of an abelian
Lie algebra h is semisimple if teh equivalent conditions of the previous lemma
are satisfied.

Definition 192. Let ρ : h → End(V ) be a representation of an abelian Lie
algebra h. A weight of ρ is an element λ ∈ h∗ for which V λ 6= 0. The space V λ
is then called the weight space of weight λ. (The definition is most interesting
when ρ is semisimple, so that V = ⊕V λ.)

Example 193. Let V = Cn, let h be the space of diagonal matrices inMn(C) =
End(V ), and let ρ : h → End(V ) be the identity map. Then the weights of ρ
are the functionals λ1, . . . , λn : h→ C giving diagonal coordinates on h, i.e.,

H =

λ1(H)
· · ·

λn(H)

 .

The corresponding weight spaces V λj are the one-dimensional subspaces Cej
spanned by the standard basis elements e1, . . . , en of Cn.

152



28.4 Roots of an abelian subalgebra
Let g be a Lie algebra (always finite-dimensional and over the complex numbers,
for the present purposes) and h ≤ g an abelian subalgebra.

Recall that adjoint representation ad : g → End(g) given by ad(X)Y :=
[X,Y ]. We restrict this to h to obtain a representation

ad : h→ End(g).

The set R of roots of the pair (g, h) is defined to be the set of nonzero weights
of this representation. (We might more verbosely write R = R(g, h) when we
wish to make explicit the dependence.) In other words, for λ ∈ h∗, set

gλ := {X ∈ g : [H,X] = λ(H)X for all H ∈ h} .

Then
R = {α ∈ h∗ − {0} : gα 6= 0}. (95)

For α ∈ R, we call gα the corresponding root space.

Exercise 34. Write 0 ∈ h∗. Then

h ⊆ g0.

Here is a very useful general observation:

Lemma 194. For any α, β ∈ h∗, one has

[gα, gβ ] ⊆ gα+β .

Proof. It is probably easier to work this out as an exercise than to read
the proof. It suffices to show for all X ∈ gα and Y ∈ gβ that [X,Y ] ∈ gα+β ,
i.e., that for all H ∈ h, one has ad(H)[X,Y ] = (α + β)(H)[X,Y ]. This follows
from the Jacobi identity in the form

ad(H)[X,Y ] = [ad(H)X,Y ] + [X, ad(H)Y ], (96)

like so:

ad(H)[X,Y ] = [α(H)X,Y ] = [X,β(H)Y ] = (α(H)+β(H))[X,Y ] = (α+β)(H)[X,Y ].
(97)

More generally:

Lemma 195. Let ρ : g → End(V ) be any linear representation. For λ ∈ h∗,
set V λ := {v ∈ V : ρ(H)v = λ(H)v for all v ∈ V }. Let α, λ ∈ h∗. Then

ρ(gα)V λ ⊆ V α+λ.
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Proof. This is essentially the same proof as the previous lemma, but with the
adjoint representation replaced by ρ; it should also remind the reader of stuff we
did awhile ago involving raising/lowering operators acting on representations of
sl2(C):

It is probably easier to work this out as an exercise than to read
the proof. Let X ∈ gα and v ∈ V λ. To establish the required mem-
bership ρ(X)v ∈ V α+λ, we must verify for each H ∈ h that ρ(H)ρ(X)v =
(α+ λ)(H)ρ(X)v. Indeed,

ρ(H)ρ(X) = ρ([H,X]) + ρ(X)ρ(H).

Since [H,X] = α(H)X and ρ is linear, we have

ρ([H,X])v = ρ(α(H)X)v = α(H)ρ(X)v.

Since ρ(H)v = λ(H)v by assumption and ρ(X) is linear, we have

ρ(X)ρ(H)v = ρ(X)λ(H)v = λ(H)ρ(X)v.

Summing up, we obtain

ρ(H)ρ(X) = α(H)ρ(X)v + λ(H)ρ(X)v,

which simplifies to give the required identity.

In other words, weight spaces V λ are permuted by root spaces gα and root
spaces gα, gβ interact nicely with respect to the commutator. Note that Lemma
194 is the specialization of 195 to the adjoint representation.

28.5 The roots of the special linear Lie algebra
Let g := sln(C). Let h ≤ g be the subspace of diagonal matrices. One has
dim(h) = n− 1. Every element H ∈ h is of the form

H =

λ1(H)
· · ·

λn(H)

 (98)

with λ1(H) + · · ·+ λn(H) = 0. The functionals λ1, . . . , λn ∈ h∗ defined by (98)
span h∗ and satisfy the relation λ1 + · · ·+ λn = 0.

For j, k ∈ {1..n}, let Ejk ∈Mn(C) denote the elementary matrix with entries
(Ejk)mn := δjmδkn. If j 6= k, then Ejk ∈ g. One has in general Ejj − Ekk ∈ g,
but Ejj 6= g (by the trace condition). In general,

[Eij , Ekl] = δjkEil − δilEkj . (99)

For H ∈ h and any j, k, we compute directly that HEjk = λj(H)Ejk and
EjkH = λk(H)Ejk, hence

ad(H)Ejk = (λj(H)− λk(H))Ejk. (100)
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Thus for all j 6= k, we see that λj − λk is a root. Observe also that

g0 = h; (101)

said another way, h is a maximal abelian subalgebra of g. Since

g = h⊕ (⊕j 6=kCEjk) (102)

we see that
R = {λj − λk : j 6= k}. (103)

We may rewrite (102) in either of the forms

g = ⊕λ∈Cgλ (104)

or
g = h⊕ (⊕α∈Rgα). (105)

In particular:

Lemma 196. ad : h→ End(g) is semisimple.

Lemma 197. The set R of roots spans h∗.

Proof. We must verify that if H ∈ h satisfies α(H) = 0 for all α ∈ R, then
H = 0. Indeed, given such an H, we have (by taking α = λj − λk) that
λj(H) = λk(H) for all i 6= j, hence all the entries of H are the same; since H
has trace zero, it follows as required that H = 0.

For α = λj − λk ∈ R, the corresponding root space is

gα = CXα where Xα := Ejk.

Note that
α ∈ R =⇒ −α ∈ R (106)

since indeed −α = λk − λj for α = λj − λk, but that

nα /∈ R for any n ∈ Z− {±1}.

Define Yα := Ekj ∈ g−α; by (99), the element

Hα := [Xα, Yα]

is given explicitly by Hα = Ejj − Ekk ∈ h and satisfies

α(Hα) = 2

because α(Hα) = (λj−λk)(Ejj−Ekk) = 1−(−1) = 2. (One has here that Yα =
X−α, but what matters most is that they both span the same one-dimensional
space.) One has

H−α = −Hα for all α ∈ R.
It is easy to see that ∑

α∈R
CHα = h, (107)

but that the sum is not direct for n > 2.
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Lemma 198. Each gα is one-dimensional. For all α, β ∈ R,

[gα, gβ ] =


gα+β if α+ β ∈ R
CHα if α+ β = 0

0 otherwise.

Proof. This reduces to an explicit computation using (99). It is instructive to
note the consistency with the conclusion [gα, gβ ] ⊆ gα+β of Lemma 194 and the
identity (101).

Here are some basic consequences:

Lemma 199. 1. If α, β, α+ β are all roots, then the map

ad(Xβ) : gα → gα+β

is an isomorphism (of one-dimensional vector spaces).

2. If α, β, α− β are all roots, then the map

ad(Yβ) : gα → gα−β

is an isomorphism (of one-dimensional vector spaces).

3. For any roots α, β, the composition

ad(Xβ) ◦ ad(Xα) : g−α → gβ

is an isomorphism (of one-dimensional vector spaces) if and only if β(Hα) 6=
0.

4. For any roots α, β, the composition

ad(Yβ) ◦ ad(Yα) : gα → g−β

is an isomorphism (of one-dimensional vector spaces) if and only if β(Hα) 6=
0.

Proof. The first two assertions are immediate from Lemma 198. For the third
assertion, we factor the map of interest as

g−α
ad(Xα)−−−−−→ CHα

ad(Xβ)−−−−−→→ gβ

and observe (using Lemma 198) that ad(Xα) : g−α → CHα is always an
isomorphism of one-dimensional vector spaces and noting that ad(Xβ)Hα =
−[Hα, Xβ ] = −β(Hα)Xβ , which vanishes if and only if β(Hα) = 0.

The proof of the fourth assertion is similar: we factor the map gα → g−β in
question as

gα
ad(Yα)−−−−→ CHα

ad(Yβ)−−−−→→ g−β ,

observe that the first map in this composition is always an automorphism, and
then observe that the second map sendsHα to [Yβ , Hα] = −[Hα, Yβ ] = β(Hα)Yβ .
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One can check directly using (103) that for all α, β ∈ R,

β(Hα) = 0 ⇐⇒ α(Hβ) = 0. (108)

Definition 200. Two roots α, β are called orthogonal if either of the equivalent
conditions (108) hold. They are called non-orthogonal if β(Hα) 6= 0 (equiva-
lently, α(Hβ) 6= 0).

Explicitly, if α = λi − λj and β = λk − λl, then α, β are orthogonal if and
only if {i, j} ∩ {k, l} = ∅.

Lemma 201. Suppose given roots β, α1, . . . , αr ∈ R with the property that
β + α1 + · · · + αr is a root and that for each s = 1, 2, . . . , r, the partial sum
β + α1 + · · · + αs is either a root, or is zero, and if it is zero that the roots
αs, αs+1 are non-orthogonal. Then the compositions

gβ
Xα1−−−→ gβ+α1

Xα2−−−→ · · · Xαr−−−→ gβ+αr

gβ+αr
Yαr−−→ · · ·

Yα2−−→ gβ+α1
Yα1−−→ gβ

(where we abbreviate X−→ for
ad(X)−−−−→, etc) are isomorphisms of one-dimensional

vector spaces.

Proof. Follows immediately by repeated application of Lemma 199.

28.6 The simplicity of sln(C)
Set g := sln(C). Let h denote its diagonal subalgebra, and R the set of roots
for (g, h).

Lemma 202. Set
λmax := λ1 − λn ∈ R.

Let β ∈ R. Then there is a nonnegative integer r ≥ 0 and roots α1, . . . , αr so
that

β + α1 + · · ·+ αr = λmax

and so that for s ∈ {1..r− 1}, the partial sum β+α1 + · · ·+αs is either a root,
or zero, and if it is zero, then the roots

αs+1(Hαs) 6= 0, αs(Hαs+1) 6= 0, (109)

i.e., the roots αs, αs+1 are non-orthogonal in the sense of Definition 200. (We
can always take r ≤ 2, but that doesn’t matter so much.)

Proof. Write β = λj − λk. The proof is basically to stare at the diagrams

λj − λk
λk−λn−−−−→ λj − λn

λ1−λj−−−−→ λ1 − λn

157



and
λj − λk

λ1−λj−−−−→ λ1 − λk
λk−λn−−−−→ λ1 − λn.

We omit µ−→ from the above diagrams if µ = 0. What needs to be checked is that
for each j, k, at least one of the above diagrams has the property that whenever
it looks like

λj − λk
µ−→ 0

ν−→, λ1 − λn,

the roots µ and ν are non-orthogonal, i.e., satisfy µ(Hν) 6= 0.
We turn to the details:

• If k = n and j = 1, we take r = 0.

• If k = n and j > 1, we take r := 1 and α1 := λ1 − λj ∈ R; then
β + α1 = λmax.

• If k < n and j = 1, we take r := 1 and α1 := λk − λn ∈ R; then
β + α1 = λmax.

• If k < n and 1 < j < n, we take r := 2 and α1 := λk − λn ∈ R
and α2 := λ1 − λj ∈ R. Then β + α1 + α2 = λmax. The partial sum
β + α1 = λj − λn is always a root, since j < n.

• If k < n and j = n, we take r := 2 and α1 := λ1 − λj ∈ R and α2 :=
λk−λn ∈ R. Then β+α1 +α2 = λmax. The partial sum β+α1 = λ1−λk
is either a root or zero; it is zero iff k = 1, in which case

α2(Hα1
) = (λk − λn)(E11 − Ejj) = 2 6= 0,

α1(Hα2
) = (λ1 − λj)(Ekk − Enn) = 2 6= 0,

so the roots α1, α2 are non-orthogonal in that case, as required.

Theorem 203. g is simple.

Proof. In lecture we gave a more “brute force” proof; here we will clean it up a
bit by appeal to Lemmas 199 and 202.

Let a ≤ g be a nonzero ideal, or equivalently, an ad(g)-invariant subspace.
We must show that a = g.

Suppose first that a ⊆ h, and let 0 6= H ∈ a be given. Since the set R of
roots spans h∗ (Lemma 197), we can find α ∈ R so that α(H) 6= 0. But then
Xα ∈ gα (see §28.5) has the property that [H,Xα] = α(H)Xα is a nonzero
element of gα. On the other hand, we have [H,Xα] ∈ a ⊆ h because a is an
ideal. Since h ∩ gα = 0, we obtain the required contradiction.

Suppose next that a is not contained in h. By the semisimplicity of ad : h→
End(g) (see Lemma 196) and the fact that ad(h)-semisimplicity is preserved
upon passage to ad(h)-invariant subspaces (see Exercise 33), we have

a = (a ∩ h)⊕ (⊕α∈Ra ∩ gα). (110)
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Since a is not contained in h, there is some β ∈ R for which have a intersects
and hence contains the one-dimensional space gβ .

We claim now with notation as in Lemma 202 that gλmax ⊆ a. To see this,
let us write

β + α1 + · · ·+ αr = λmax (111)

as in Lemma 202. We know that a is an ideal, i.e., is ad(g)-invariant, and that
a contains gβ , so it will suffice to show that the composition

gβ
Xα1−−−→ gβ+α1

Xα2−−−→ · · ·
Xαr−1−−−−→ gβ+α1+···+αr−1

Xαr−−−→ gλmax (112)

is an isomorphism (because then a ⊇ gλmax), which follows from Lemma 201.
Now let β ∈ R be arbitrary; we will show that a ⊇ gβ . We again write

(111) as in Lemma 202. Since we already know that a ⊇ gλmax and since a is
ad(g)-stable, it will suffice to show that the composition

gλmax
Yαr−−→ gβ+α1+···+αr−1

Yαr−1−−−−→ · · ·
Yα2−−→ gβ+α1

Yα1−−→ gβ (113)

is an isomorphism, which follows again from (109) and Lemma 199.
In summary, we have seen that a contains gα and hence Xα for all α ∈ R;

since a is an ideal, it contains also [Xα, Yα] = Hα. Since the Hα span h (see
(107) and surrounding), we have a ⊇ h. Thus a ⊇ h⊕ (⊕α∈Rgα), i.e., a = g, as
required.

28.7 The proof given in lecture
Here are some notes indicating the more “brute force” approach to Theorem 203
presented in lecture. It may be instructive to compare this approach to that
above (they differ primarily in notation).

With notation as in the proof of Theorem 187, set

Γ := {α ∈ R : a ∩ gα 6= 0}.

Then a ⊇ ⊕α∈Γg
α. The key step in the proof was to show that if Γ is nonempty,

then
Γ = R. (114)

To see this, let β ∈ Γ be given. Suppose that β = λi − λj with i > j; a similar
but slightly simpler argument applies if instead i < j. We have

[Eij , Ejn] =

{
Ein if i 6= n,

Ein − Ejj if i = n,
(115)

and in either case it follows that

[E1i, [Eij , Ejn]] = E1n. (116)
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Since a is an ideal, we deduce that E1n ∈ a, i.e.,

λ1 − λn ∈ Γ. (117)

Now let α ∈ R be arbitrary, say α = λj − λk. If j < k, then we have

[E1n, Enk] = E1k,

hence λ1 − λk ∈ Γ, and
[Ej1, E1k] = Ejk

hence λj − λk ∈ Γ, as required. Suppose instead that j > k. If k = 1, then we
have

[En1, E1n] = Enn − E11

and hence
[En1, [En1, E1n]] = −2En1,

hence λn − λ1 ∈ Γ, as required. In the remaining case that j > k > 1, we have

[E1n, Enk] = E1k

and hence
[Ej1, [E1n, Enk]] = Ejk,

hence λj − λk ∈ Γ, as required.

29 Classification of the classical simple complex
Lie algebras

29.1 Recap
We’ve seen in lecture that the Lie algebra sln(C) is simple (n ≥ 2), and on
the homework that sp2n(C) is simple (n ≥ 1). Similar arguments imply that
so2n+1(C) is simple for n ≥ 1 and that so2n(C) is simple for n ≥ 3; the handout
(§29.4) from lecture (available now also on the course homepage) describes the
root systems, and I’ll leave it as an exercise to adapt the techniques used to
prove the simplicity of sln(C) and sp2n(C) to the orthogonal case. There is
one trick in that case which is very handy. Recall from §18.5 the notion of a
quadratic space over C, and that any n-dimensional quadratic space is isomor-
phic to the standard one. It is convenient to equip C2n with the structure of
a quadratic space for which the associated non-degenerate symmetric bilinear
form 〈, 〉 (denoted B in §18.5) is given by

〈x, y〉 =

n∑
i=1

(xiyn+i + xn+iyi) (118)
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and C2n+1 that for which

〈x, y〉 =

n∑
i=1

(xiyn+i + xn+iyi) + x2n+1y2n+1. (119)

It is then easy to see that SOm(C) := {g ∈ SLm(C) : 〈gx, gy〉 for all x, y ∈
Cm}, when defined with respect to the above inner products, contains in the
case m = 2n the diagonal subgroup H = {diag(z1, . . . , zn, z

−1
1 , . . . , z−1

n ) :
z1, . . . , zn ∈ C×} and in the case m = 2n + 1 the diagonal subgroup H =
{diag(z1, . . . , zn, z

−1
1 , . . . , z−1

n , 1) : z1, . . . , zn ∈ C×} whose Lie algebras h are
given respectively by h = {diag(Z1, . . . , Zn,−Z1, . . . ,−Zn) : Z1, . . . , Zn ∈ C}
and h = {diag(Z1, . . . , Zn,−Z1, . . . ,−Zn, 0) : Z1, . . . , Zn ∈ C}. The Lie algebra
of g is described on the handout (§29.4) and will not be repeated here.

29.2 Classical simple complex Lie algebras
Definition 204. By a classical simple complex Lie algebra we shall mean a
complex Lie algebra of one of the following forms:

• An := sln+1(C) for n ≥ 1,

• Bn := so2n+1(C) for n ≥ 1,

• Cn := sp2n(C) for n ≥ 1,

• Dn := so2n(C) for n ≥ 3.

Remark 205. D2
∼= A1×A1 is not simple (it is a direct sum of two simple Lie

algebras). D1 = so2(C) is not simple (it is abelian).

Recall that our motivating goal for the past few lectures has been to prove
the following theorem:

Theorem 206. There are no isomorphisms between the classical simple complex
Lie algebras except possibly those of the form

A1
∼= B1

∼= C1, (120)

B2
∼= C2, (121)

A3
∼= D3. (122)

Remark 207. In fact, the isomorphisms (120), (121) and (122) all hold. We
have proven that A1

∼= B1. It is immediate from the definition that A1
∼= C1.

We have not yet proven the exceptional isomorphisms (121) and (122), but they
exist, and are not inordinately complicated to establish.

Remark 208. Wemay reformulate Theorem 206 in terms of the simply-connected
complex Lie groups having the indicated Lie algebras.

Remark 209. We record some motivation for caring about Theorem 206.

161



1. It’s interesting in its own right; it’s natural to ask for a complete list of
isomorphisms between some naturally occurring groups.

2. The techniques involved in the proof (roots, weights, reflections, Dynkin
diagrams, ...) are very important in all of Lie theory and its applications in
other fields of mathematics. The specific groups involved are also univer-
sally important. Our primary goal is really to introduce those techniques
by application to a motivating problem.

3. Theorem 206 is weaker than the full classification theorem for all complex
simple Lie algebras (not just the classical ones), which says that the above
list is complete with five exceptions, denoted G2, F4, E6, E7, E8. That full
classification is not inordinately difficult, but would probably take most of
a semester to present properly, and it’s very easy to get lost in the middle
of it and lose the big picture. On the other hand, we should be able to
complete the proof of Theorem 206 in a couple lectures.

4. It takes a lot of experience to gain intuition for working with roots, weights,
reflections, etc. It seems best to introduce them as explicitly as possible.
That way, many properties that would normally require laborious and
unenlightening proofs can be discovered by inspection; one can then later
learn proofs of such properties that apply more generally.

29.3 How to classify them (without worrying about why
it works)

We now outline the structure of the proof of Theorem 206. Let g be a classical
simple complex Lie algebra. We will attach to g a certain oriented multigraph,
called a Dynkin diagram. (See the handout (§29.4) for what these look like in all
cases. We explained in class how coincidences between “small” Dynkin diagrams
explain all of the exceptional isomorphisms (120), (121) and (122).)

The procedure by which we will attach the Dynkin diagram will involve
several choices. To make the proof of Theorem 206 rigorous, we will later have
to go back and check that these choices did not affect the final result.

Let us note right away that because g is simple, its center (equivalently, the
kernel of ad : g→ End(g)) is trivial. Indeed, g is non-abelian (by the definition
of “simple”), so the center z of g satisfies z 6= g. On the other hand, the center
is an ideal; since g is simple, we must have z = 0. In other words,

ad : g→ End(g) is injective. (123)

1. First, introduce the following definition:

Definition 210. Let g be a simple complex Lie algebra (the case that g
is “classical” is all we will use for now). A Cartan subalgebra5 of g is a
subalgebra h of g for which

5 What I’ve recorded here is not the standard definition of “Cartan subalgebra,” but is
equivalent to a specialization of that definition, and is convenient for our immediate purposes;
we may return to the more general notion later.
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(a) h is abelian,

(b) h consists entirely of ad-semisimple elements (that is to say, for each
X ∈ h, the linear endomorphism adX ∈ End(h) is diagonalizable,
i.e., admits a basis of eigenvectors), and

(c) h is its own centralizer: if X ∈ g satisfies [X,H] = 0 for all H ∈ h,
then X ∈ h.

For example, the subalgebra h defined on the handout (§29.4) is a Cartan
subalgebra, and it turns out that all other Cartan subalgebras are “con-
jugate” to it; we will explain this more in a bit. The following definition
thus depends only upon g, not upon h:

Definition 211. The rank of g is defined to the dimension of h.

Let R denote the set of roots for ad : h → End(g), thus R is the set
of all nonzero α ∈ h∗ for which the subspace gα := {X ∈ g : [H,X] =
α(H)X for all H ∈ h} of g is nonzero. We describe R explicitly on the
handout (§29.4).

For example, for g = sln(C), we can take for h the standard diagonal
subalgebra. We saw in the lecture on the simplicity of g that h consists
entirely of ad-semisimple elements; indeed,

g = h⊕ (⊕α∈Rgα) (124)

where each space on the RHS is an eigenspace for ad(h). It is clear that h is
its own centralizer. Indeed, suppose Z ∈ g commutes with every element
of h. We can decompose Z using (124) as a sum Z0 +

∑
α∈R Zα, where

Z0 ∈ h and Zα ∈ gα. For each H ∈ h, we have [H,Z] = 0, by assumption;
on the other hand,

[H,Z] = [H,Z0] +
∑
α∈R

[H,Zα] =
∑
α∈R

α(H)Zα. (125)

Since the Zα are linearly independent of one another (as they belong to
distinct root spaces), we must have α(H)Zα = 0 for all H ∈ h. Since each
root α ∈ R is nonzero, we can find H ∈ h so that α(H) 6= 0, thus Zα = 0
for all α ∈ R and thus Z = Z0 belongs to h. Since Z was arbitrary, we
conclude that h ⊆ h′, as required.

More generally, one can verify that the subaglebras h defined on the hand-
out (§29.4) in the cases An, Bn, Cn, Dn are in fact Cartan subalgebras.
One sees also that An, Bn, Cn, Dn have rank n. This explains the index-
ing.

We observe (by inspecting each family) that the set R of roots for (h, g)
has the following properties (noted earlier for sln(C) and sp2n(C)):

(a) For α ∈ R, one has {n ∈ Z : nα ∈ R} = {±1}.
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(b) dim gα = 1 for all α ∈ R.
(c) Let Xα ∈ gα be nonzero, so that gα = CXα. There exists a unique

Yα ∈ g−α so that the element Hα ∈ h defined by Hα := [Xα, Yα]
satisfies α(Hα) = 2.

(d) For all α, β ∈ R,

[gα, gβ ] =


gα+β if α+ β ∈ R
CHα if α+ β = 0

0 otherwise.

Explicit choices for the Xα, Yα, Hα in all cases are given on the handout
(§29.4).

2. Next, we introduce the following definition:

Definition 212. A base (or simple system or system of simple roots)
S ⊆ R is a subset with the following properties:

(a) S is a basis of h∗.

(b) For each β ∈ R, if one writes

β =
∑
α∈S

cαα (126)

with cα ∈ C (as one can, because S is a basis), then the cα are
integers and all have the same sign (i.e., either cα ≥ 0 for all α or
cα ≤ 0 for all α).

On the handout (§29.4), an explicit choice of a simple system S is given
for each of the classical complex simple Lie algebras. There are in fact
many possible choices, and we will have to argue later that they are all
“sufficiently equivalent” for the purposes of the construction to follow.

The set of positive roots (with respect to the given simple system S) is
the set R+ consisting of all β ∈ R for which in the decomposition (126),
one has cα ≥ 0 for all α ∈ S. The set R− of negative roots is defined
analogously. One has R = R+ tR− and R− = (−R+) := {−α : α ∈ R+}.
It’s worth going through the examples and seeing what R+ looks like. For
example, in the case g = sln(C) and for the standard choice of S recorded
on the handout (§29.4), R+ consists of those α for which the corresponding
root space gα belongs to the space of strictly upper-triangular matrices;
by contrast, the negative roots correspond to strictly lower-triangular root
spaces.

3. One now writes down the Cartan matrix N = (α(Hβ))α,β∈S . This is
straightforward, but it’s worth working through all of the examples to
make sure you understand it. Two Cartan matrices are equivalent if one is
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obtained from the other by relabeling the indices. (There is no preferred
ordering among elements of the finite set S, so this is a natural notion of
equivalence.)

4. Finally, for convenience, one converts the Cartan matrix into a Dynkin
diagram. This is a finite graph whose vertices are given by the elements
of S. (It is convenient in practice because most entries of the Cartan
matrix turn out to be zero.) Given distinct elements α, β ∈ S, one sees
by inspection that the ordered pair of integers (α(Hβ), β(Hα)) is of the
following form:

(a) (0, 0): in this case we draw no edges connecting α, β.
(b) (−1,−1): in this case we draw one undirected edge between α, β.
(c) (−2,−1): in this case we draw a double edge directed from α to β;

see the handout
(d) (−1,−2): in this case we draw a double edge directed from β to α;

see the handout
(e) (−3,−1): in this case we draw a triple edge directed from α to β;

this case doesn’t occur for classical Lie algebras (but does for the
exceptional Lie algebra G2)

(f) (−1,−3): in this case we draw a triple edge directed from β to α;
same comments apply.

It is obvious that the Dynkin diagram determines the Cartan matrix (and
vice-versa, of course). Dynkin diagrams are nicer to work with because
their equivalences are easier to spot.

To complete the proof of Theorem 206, we need to check that the Dynkin
diagram (up to equivalence, i.e., relabeling of the vertices) is independent of
the choice of Cartan subalgebra h and simple system S made in the above
construction. This will occupy the next several sections.

Exercise 35. Show that if g := som(C) is defined using the standard scalar
product 〈x, y〉 :=

∑m
i=1 xiyi on Cm (as opposed to that in §29.1), so that g =

{X ∈ slm(C) : Xt +X = 0}, then g contains no nonzero diagonal elements, but
that the following subalgebra h of g is a Cartan subalgebra (see Definition 210):
if m = 2n, then

h =





0 iλ1

−iλ1 0
0 iλ2

−iλ2 0
. . .

. . .
0 iλn
−iλn 0


,


165



while if m = 2n+ 1, then

h =





0 iλ1

−iλ1 0
0 iλ2

−iλ2 0
. . .

. . .
0 iλn
−iλn 0

0


.


29.4 Dynkin diagrams of classical simple Lie algebras
As an exercise, reproduce the following in private.

An−1 : SLn(C),SU(n), g = sln(C) = {a ∈Mn(C) : trace(a) = 0}
εi := Eii,

h =

{
n∑
i=1

aiεi :
∑

ai = 0

}
=

H =

λ1(H)
· · ·

λn(H)

 : λ1(H) + · · ·+ λn(H) = 0


h∗ =

Cλ1 ⊕ · · · ⊕ Cλn
C(λ1 + · · ·+ λn)

, R = {±(λj − λk) : j < k}

Xλj−λk = Ejk, Yλj−λk = Ekj , Hλj−λk = εj − εk (j 6= k)

S = {λ1 − λ2, λ2 − λ3, . . . , λn−1 − λn} , R+ = {(λj − λk) : j < k}

N = (α(Hβ))α,β∈S =


2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2

 (A5)

e.g., (λj+1 − λj)(Hλj−λj−1
) = −1 and (λj − λj−1)(Hλj+1−λj ) = −1

Bn : Spin2n+1(C),Spin(2n+ 1),6

g = so2n+1(C) =


 a b x

c −at y
−yt −xt 0

 ∈M2n+1(C) :
a, b, c ∈Mn×n(C),

x, y ∈Mn×1(C), bt = −b, ct = −c


6 Defined via the scalar product 〈x, y〉 :=

∑n
j=1(xjyn+j + xn+jyj) + x2n+1y2n+1
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εi := Eii − En+i,n+i,

h = Cε1⊕· · ·⊕Cεn =


H =



λ1(H) 0 0 0 0 0 0
0 · · · 0 0 0 0 0
0 0 λn(H) 0 0 0 0
0 0 0 −λ1(H) 0 0 0
0 0 0 0 · · · 0 0
0 0 0 0 0 −λn(H) 0
0 0 0 0 0 0 0




h∗ = Cλ1 ⊕ · · · ⊕ Cλn, R = {±(λj ± λk) : j < k} t {±λj}

Xλj−λk = Ejk−En+k,n+j , Yλj−λk = Ekj−En+j,n+k, Hλj−λk = εj−εk (j 6= k)

Xλj+λk = Ej,n+k−Ek,n+j , Yλj+λk = −En+j,k+En+k,j , Hλj+λk = εj+εk (j < k)

X−λj−λk = En+j,k−En+k,j , Y−λj−λk = −Ej,n+k+Ek,n+j , H−λj−λk = −εj−εk (j < k)

Xλj = Ej,2n+1 − E2n+1,n+j Yλj = 2(E2n+1,j − En+j,2n+1), Hλj = 2εj

X−λj = E2n+1,j − En+j,2n+1 Y−λj = 2(Ej,2n+1 − E2n+1,n+j), H−λj = −2εj

S = {λ1 − λ2, λ2 − λ3, . . . , λn−1 − λn, λn} , R+ = {(λj ± λk) : j < k} t {λj}

N = (α(Hβ))α,β∈S =


2 −1
−1 2 −1

−1 2 −1
−1 2 −2

−1 2

 (B5)

e.g., (λn)(Hλn−1−λn) = −1 and (λn−1 − λn)(Hλn) = −2.

Cn : Sp2n(C),Sp(2n), g = sp2n(C) =

{(
a b
c −at

)
∈M2n(C) : bt = b, ct = c

}
,

εi := Eii − En+i,n+i,

h = Cε1⊕· · ·⊕Cεn =


H =


λ1(H) 0 0 0 0 0

0 · · · 0 0 0 0
0 0 λn(H) 0 0 0
0 0 0 −λ1(H) 0 0
0 0 0 0 · · · 0
0 0 0 0 0 −λn(H)




h∗ = Cλ1 ⊕ · · · ⊕ Cλn, R = {±(λj ± λk) : j < k} t {±2λj}

Xλj−λk = Ejk−En+k,n+j , Yλj−λk = Ekj−En+j,n+k, Hλj−λk = εj−εk (j 6= k)

Xλj+λk = Ej,n+k+Ek,n+j , Yλj+λk = En+j,k+En+k,j , Hλj+λk = εj+εk (j < k)

X−λj−λk = En+j,k+En+k,j , Y−λj−λk = Ej,n+k+Ek,n+j , H−λj−λk = −εj−εk (j < k)

X2λj = Ej,n+j , Y2λj = En+j,j , H2λj = εj

X−2λj = En+j,j , Y−2λj = Ej,n+j , H−2λj = −εj
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S = {λ1 − λ2, λ2 − λ3, . . . , λn−1 − λn, 2λn} , R+ = {(λj ± λk) : j < k}t{2λj}

N = (α(Hβ))α,β∈S =


2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−2 2

 (C5)

e.g., (2λn)(Hλn−1−λn) = −2 and (λn−1 − λn)(H2λn) = −1

Dn : Spin2n(C),Spin(2n), 7 g = so2n(C) =

{(
a b
c −at

)
∈M2n(C) : bt = −b, ct = −c

}
,

εi := Eii − En+i,n+i,

h = Cε1⊕· · ·⊕Cεn =


H =


λ1(H) 0 0 0 0 0

0 · · · 0 0 0 0
0 0 λn(H) 0 0 0
0 0 0 −λ1(H) 0 0
0 0 0 0 · · · 0
0 0 0 0 0 −λn(H)




h∗ = Cλ1 ⊕ · · · ⊕ Cλn, R = {±(λj ± λk) : j < k}

Xλj−λk = Ejk−En+k,n+j , Yλj−λk = Ekj−En+j,n+k, Hλj−λk = εj−εk (j 6= k)

Xλj+λk = Ej,n+k−Ek,n+j , Yλj+λk = −En+j,k+En+k,j , Hλj+λk = εj+εk (j < k)

X−λj−λk = En+j,k−En+k,j , Y−λj−λk = −Ej,n+k+Ek,n+j , H−λj−λk = −εj−εk (j < k)

S = {λ1 − λ2, λ2 − λ3, . . . , λn−2 − λn−1, λn−1 − λn, λn−1 + λn} , R+ = {(λj ± λk) : j < k}

N = (α(Hβ))α,β∈S =


2 −1
−1 2 −1

−1 2 −1 −1
−1 2 0
−1 0 2

 (D5)

e.g., (λn−2−λn−1)(Hλn−1−λn) = (λn−2−λn−1)(Hλn−1+λn) = (λn−1−λn)(Hλn−2−λn−1
) =

(λn−1+λn)(Hλn−2−λn−1
) = −1 and (λn−1−λn)(Hλn−1+λn) = (λn−1+λn)(Hλn−1−λn) =

0

29.5 Classical algebras come with faithful representations
and are cut out by anti-involutions

Let g be a classical simple complex Lie algebra. Then g comes equipped with a
defining faithful representation g ↪→ End(V ), where V = Cn+1,C2n+1,C2n,C2n

according as g = An, Bn, Cn, Dn.
7 Defined via the scalar product 〈x, y〉 :=

∑n
j=1(xjyn+j + xn+jyj).
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We now record a property of g that will allow us to give “ad hoc” proofs of
some assertions in the sections to follow. Set sl(V ) := {x ∈ End(V ) : trace(x) =
0}. There is a linear anti-involution σ : End(V )→ End(V ) for which

trace(σ(x)) = trace(x) for all x ∈ End(V ) (127)

and
g = {x ∈ sl(V ) : σ(x) = −x}. (128)

Namely:

1. If g = An, then we take for σ the identity map.

2. If g = Bn, Cn, Dn, we take

σ(x) := J−1xtJ

where

J =

0n×n 1n×n 0n×1

1n×n 0n×n 0n×1

01×n 01×n 11×1

 if g = Bn,

J =

(
0n×n 1n×n
−1n×n 0n×n

)
if g = Cn,

J =

(
0n×n 1n×n
1n×n 0n×n

)
if g = Dn,

By “linear anti-involution” we mean that

σ(ax+ by) = aσ(x) + bσ(y), σ(xy) = σ(y)σ(x), σ(σ(x)) = x.

29.6 Diagonalization in classical Lie algebras
Let g be a classical simple complex Lie algebra and let g ↪→ End(V ) be as in
§29.5. Let G denote a simply-connected complex Lie group having Lie algebra
g. (Thus G is one of SLn+1(C),Spin2n+1(C),Sp2n(C),Spin2n(C) according as
we are in case An, Bn, Cn, Dn.) Let x ∈ g. We can think of it as a linear
transformation x : V → V .

Lemma 213. If x : V → V is semisimple, then there exists g ∈ G so that
Ad(g)x ∈ g ⊆ End(V ) is diagonal, i.e., represented by a diagonal matrix with
respect to the standard basis of V .

Proof. Suppose first that g = sln(C). Let B = (v1, . . . , vn) be a basis of eigen-
vectors for x. Let g ∈ GLn(C) be the “change of basis matrix” from B to the
standard basis. Then gxg−1 is diagonal. This conclusion is unaffected by re-
placing g with a scalar multiple; by doing so, we may arrange that g belongs to
SLn(C).

TODO (or Exercise): discussion of other cases.
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29.7 Semisimplicity of elements of classical Lie algebras
Let g ↪→ End(V ) be as in §29.5. We have seen (see (123)) that ad : g ↪→ End(g)
is another faithful representation. Given an element x ∈ g, it thus makes sense
to compare properties of the linear transformation x : V → V with those of
adx : g → g. The following comparison will be of particular use (see §28.1 to
refresh the terminology):

Lemma 214. x : V → V is semisimple if and only if adx : g→ g is semisimple.

For the proof, it will be convenient to recall a standard fact from linear
algebra:

Theorem 215. Let x ∈ End(V ) be a linear endomorphism of a finite-dimensional
complex vector space V . Then there exist unique s, n ∈ End(V ) so that

1. s is semisimple,

2. n is nilpotent, and

3. [s, n] = 0.

Moreover, there exist polynomials S and N (depending upon x) so that S(0) =
0 = N(0) and s = S(x) and n = N(x) and so that S, T are both odd (i.e., they
are sums of monomials of odd degree).

Proof. See for instance p40 of the book by Serre on the course reference. The
final condition is not stated there, but may be obtained by inspection of the
proof. (We note that the “existence” may be obtained by taking for s the
“diagonal part” and n the “off-diagonal part” of the Jordan normal form of
x.)

We turn to the proof of Lemma 214 (which wasn’t presented correctly in
lecture). Before embarking, we note that the same conclusion holds for any
simple complex Lie algebra but with a slightly more complicated proof; since
we are focusing on the classical case for now, we will freely make use of the
assumption that g is classical. This proof is not particularly important ; I am
including it here only because it is short and suffices for our present focused
goal of classifying classical simple complex Lie algebras. (I’ll also remark that
it may be possible to check it by hand more simply than how I have argued
here.)

We observe first that it is easy to see that any x ∈ g for which x : V → V
is semisimple has the property that adx : g→ g is semisimple: we may assume
(by §29.6) that x is diagonal, in which case the required conclusion is clear by
the root space decomposition as computed explicitly in the handout (§29.4). It
remains to establish the converse.

Let σ be the anti-involution discussed in §29.5 that defines g. Let x ∈ g be
any element. Consider its Jordan decomposition x = s + n in End(V ). Write
s = S(x), n = N(x) as above. Since S,N are odd, we have σ(S(x)) = S(σ(x)) =
−S(x) and σ(N(x)) = N(σ(x)) = −N(x), whence s, n also belong to g.
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We’ve seen already that as s is semisimple, so is ads. Moreover, since n is
nilpotent, it’s not hard to see that also adn is nilpotent: if nm = 0 for some
m ∈ Z≥1, then for any y ∈ g, we have ad2m

n (y) = [n, [n, . . . , [n, y]]] = 0, since
when we expand out in terms of monomials, we always have at least m copies
of n occurring consecutievly.

Finally, since ad is a Lie algebra morphism, we have [ads, adn] = ad[s,n] =
ad0 = 0.

In summary, ads, adn satisfy we see that the decomposition adx = ads + adn
satisfies the assumptions of Theorem 215.

Assume finally that adx is semisimple. Then (by the uniqueness assertion of
Theorem 215) we must have adx = ads and adn = 0; since ad is injective, we
must have n = 0; therefore x = s is semisimple, as required.

29.8 Conjugacy of Cartan subalgebras
Let g be a classical simple complex Lie algebra. Here’s the key to showing the
independence of the constructions given above with respect to the choice of h:

Lemma 216. For any two Cartan subalgebras h, h′ of g, there exists g ∈ G
so that Ad(g)h = h′. (Here we can take for G any Lie group having g as its
Lie algebra; the simply-connected one will do. One could alternatively and more
naturally take for G the inner automorphism group Int(g) := 〈exp(adX) : X ∈
g〉 ≤ Aut(g) ≤ GL(g) as defined in lecture.)

Proof. Recall from §29.5 the embedding g ↪→ End(V ). We have seen in §214
that an element x ∈ g, regarded as a linear transformation x : V → V , is
semisimple if and only if adx : g→ g is semisimple.

We turn to the proof. It will suffice to consider the case that h is the
standard diagonal Cartan subalgebra and h′ is arbitrary. Since the elements
of h′ are all commuting and ad-semisimple, we may simultaneously diagonalize
their adjoint action as a sum of eigenspaces, i.e., we may write down a root space
decomposition of h′; see §28.4, and recall that elements of h′ are ad-semisimple).
Let Z ∈ h′ be any element with the property that α′(Z) 6= 0 for all roots α′ of
h′. (Such an element exists because each α′ is nonzero, and so its kernel has
codimension one, and a finite union of codimension one subspaces of a vector
space over an infinite field is properly contained in that vector space.) Then the
only elements of g that commute with Z are those in h′ (compare with discussion
surrounding (125)). By §29.6, there is an element g ∈ G (the simply-connected
complex Lie group having Lie algebra g) for which gZg−1 := Ad(g)Z ∈ h. Thus
every H ∈ h commutes with gZg−1. It follows that Z commutes with g−1Hg for
all H ∈ h. By the property of Z just mentioned, it follows that Ad(g−1)h ⊆ h′,
hence h ⊆ Ad(g)h′. By the maximality condition in the definitino of “Cartan
subalgebra,” it follows that h = Ad(g)h′, as required.
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29.9 Interpretation of Cartan matrix in terms of inner
products

Let g be one of An, Bn, Cn, Dn. We can think of h∗ as a subspace of Cn by
writing each λ ∈ h∗ in the form λ = l1λ1 + · · ·+ lnλn and associating to λ the
element (l1, . . . , ln) ∈ Cn. In the case g = An, we have λ1 + · · · + λn = 0, so
there is some ambiguity in this assignment; we pin it down by requiring that
l1 + · · ·+ ln = 0. Using this assignment, we can define an inner product by the
formula

(λ, µ) := l1m1 + · · ·+ lnmn if λ =
∑

liλi, µ =
∑

mjλj .

By inspection of the formulas on the handout (§29.4), we have

α(Hβ) = 2
(α, β)

(β, β)
.

(We will explain this properly later; for now, we stick to the narrow goal of
classifying the classical simple complex Lie algebras.) Thus the Cartan matrix
can be described in terms of inner products involving the simple roots.

29.10 Independence with respect to the choice of simple
system

In the context of §29.3, suppose S, S′ ⊆ R are two simple systems. We want to
know that the Cartan matrices N,N ′ that they define are equivalent (i.e., that
they coincide after relabeling the indices).

We will do this as follows:

Proposition 217. Let S, S′ ⊆ R be simple systems. There is a linear trans-
formation w : h∗ → h∗ that is orthogonal with respect to the pairing (, ) on h∗

defined in §29.9 and for which wS = S′.

Assuming Proposition 217, we may complete the proof of Theorem 206 as
follows: We need to check that N,N ′ are equivalent. Let α, β ∈ S. Then

α(Hβ) = 2
(α, β)

(β, β)

= 2
(wα,wβ)

(wβ,wβ)

= (wα)(Hwβ).

Since wα traverses S′ as α traverses S, we deduce that N and N ′ are equivalent,
as required.

To complete the proof of Theorem 206, it remains only to prove Proposition
217, i.e., to produce w. We do so as follows. For each α ∈ R, let sα : h∗ → h∗

denote the linear transformation given by

sαλ := λ− 〈λ|α〉α,
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where
〈λ|α〉 := λ(Hα) = 2

(λ, α)

(α, α)
.

Geometrically, sα is a reflection with respect to the hyperplane orthogonal to
α. It follows by inspection of the formulas on the handout (§29.4) that

sα(R) = R for all α ∈ R. (129)

We will see that this is an astonishingly powerful condition; we will explain it
properly in due course.

The sα may be described as follows, as detailed in lecture:

• If α = λj − λk, then sα : λj 7→ λk, λk 7→ λj (with all other λi left fixed)
Here and henceforth we assume that j 6= k.

• If α = λj + λk, then sα : λj 7→ −λk, λk 7→ −λj (with all other λi left
fixed).

• If α = λj or 2λj , then sα : λj 7→ −λj (with all other λi left fixed).

Definition 218. Let W be the group generated by the root reflections sα
for α ∈ R; it is called the Weyl group and is finite, as it is a subgroup of
the permutation group of the spanning set R for h∗. Since it is generated by
reflections, it consists of orthogonal transformations.

As we explained in lecture, it is described as follows:

• An: one has |W | = n!; for each permutation j 7→ j′ of (1, 2, . . . , n), one
has the element w ∈W given bye λj 7→ λj′ .

• Bn: one has |W | = 2nn!; for each permutation j 7→ j′ of (1, 2, . . . , n) and
collection of signs ± (indexed by j), one has the element w ∈W given by
λj 7→ ±λj′ .

• Cn: same description as for Bn.

• Dn: same description as for Bn, Cn, except require that the product of all
signs be +1 (i.e., that the number of minus signs be even).

Now let S ⊆ R be a simple system. Let h∗R denote the R-span of R, or
equivalently, the R-span of the elements λ1, . . . , λn; it is a real vector space of
dimension dimC(h∗).

Definition 219. An element λ ∈ h∗R is said to be S-nonnegative (or simply
nonnegative when the simple system S is clear by context), denoted λ ≥ 0, if
when we write λ =

∑
α∈S cαα with each cα ∈ R, then we actually have cα ≥ 0

fro all α ∈ S.
Given λ, µ ∈ h∗R, we say that λ is S-higher than µ (or simply higher than µ

when S is clear), denoted λ ≥ µ, if λ− µ is nonnegative.
We write λ > µ if λ ≥ µ and λ 6= µ, etc.

173



Remark 220. Note that λ ≥ µ defines a partial order on h∗R: there are plenty
of pairs of elements that are incomparable. On the other hand, for any λ ∈ h∗R
and α ∈ R, the elements λ and sαλ are always comparable: one has λ ≥ sαλ if
and only if 〈λ|α〉α ≥ 0.

Example 221. R+ is precisely the set of S-nonnegative elements of R.

Definition 222. An element λ ∈ h∗R is said to be S-dominant (or simply
dominant, when the simple system S is clear by context) provided that any of
the following evidently equivalent conditions are satisfied:

1. λ(Hα) ≥ 0 for all α ∈ S.

2. (λ, α) ≥ 0 for all α ∈ S.

3. (λ, α) ≥ 0 for all α ∈ R+.

4. λ(Hα) ≥ 0 for all α ∈ R+.

5. (λ, α) ≤ 0 for all α ∈ R−.

6. λ(Hα) ≤ 0 for all α ∈ R−.

7. λ ≥ sαλ for all α ∈ S.

8. λ ≥ sαλ for all α ∈ R.

[The following equivalences are clear: (1) ⇐⇒ (2), (3) ⇐⇒ (4), (5) ⇐⇒ (6).
We have (2) ⇐⇒ (3) ⇐⇒ (5) by linearity of the inner product. We have
(1) ⇐⇒ (7) and (4), (6) ⇐⇒ (7) by definition of sα and the partial relation
“≥.”]

Definition 223. An element λ ∈ h∗R is regular if (λ, α) 6= 0 for all α ∈ R.

It is easy to see that regular dominant elements exist: they are just those el-
ements belonging to a suitable “upper-right quadrant” (TODO: explain better).

Example 224. Supopse S is the “standard” simple system described on the
handout (§29.4). Then it’s easy to see that the elements λ =

∑
liλi ∈ h∗R that

are S-dominant are precisely those satisfying the following conditions in the
respective cases:

(An) l1 ≥ l2 ≥ l3 ≥ · · · ≥ ln−1 ≥ ln

(Bn) l1 ≥ l2 ≥ l3 ≥ · · · ≥ ln−1 ≥ ln ≥ 0

(Cn) l1 ≥ l2 ≥ l3 ≥ · · · ≥ ln−1 ≥ ln ≥ 0

(Dn) l1 ≥ l2 ≥ l3 ≥ · · · ≥ ln−1 ≥ |ln|

The regular dominant elements are those for which every “≥” is actually a strict
inequality “>.”
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Lemma 225. Let S be a simple system with associated set R+ of positive roots.
Let λ be regular and S-dominant. Then R+ = {α ∈ R : (α, λ) > 0}. Moreover,
S is the set of elements α ∈ R+ that are indecomposable in the sense that one
cannot write α = β1 + · · ·+ βk for some β1, . . . , βk ∈ R+ with k ≥ 2.

In particular, S is determined by any regular S-dominant element λ.

Proof. The first assertion is clear: if α ∈ R satisfies (α, λ) > 0, then in the
decomposition α =

∑
β∈S cββ (where the cβ are integers all of the same sign,

and (β, λ) > 0) we deduce that each cβ ≥ 0, etc. The second assertion follows
immediately from the definition of “simple system.”

We can now prove Proposition 217. Let S0, S1 be two simple systems; we
want to show that there is w ∈ W so that wS1 = S0. Let λ be regular and
S1-dominant. Choose w ∈W so that wλ is maximal with respect to the partial
order given by Definition 219 with respect to the simple system S0. Thus, in
paricular, sαwλ ≤ wλ for all α ∈ R (cf. Remark 220). Actually, we must have
sαwλ < wλ: for if instead we had sαwλ = wλ, then we’d have λ = w−1sαwλ =
sw−1αλ and so (w−1α, λ) = 0, contrary to the assumption that λ is regular. It
follows from the equivalence of the various conditions in Definition 222 that wλ
is S0-dominant.

In summary, λ is S1-dominant and wλ is S0-dominant. Using Lemma 225,
it follows easily that wS1 = S0, as required. TODO: explain more.

We record a few other facts of independent interest. (Most of these assertions
can be deduced by inspection for the “standard” simple system and then deduced
for general simple systems from the fact that the Weyl group acts transitively
on them; there are also more natural but lengthier proofs that apply more
generally.)

1. Let S be a simple system. Then the Weyl group is generated by the root
reflections sα, α ∈ S.

2. A Weyl chamber is a connected component C of the set hreg
R := {λ ∈ hR :

(α, λ) 6= 0 for all α ∈ R} of regular elements. The set of simple systems S
is in natural (W -equivariant) bijection with the set of Weyl chambers:

(a) Given S, one takes for C the set C := {λ ∈ hR : (α, λ) > 0 for all α ∈
S} of regular S-dominant elements; that set is called (naturally) the
S-dominant Weyl chamber. (The S-dominant Weyl chamber is, of
course, a Weyl chamber: it is connected, or even path-connected by
straight line segments; it is also maximal among connceted subsets,
by (say) the intermediate value theorem.)

(b) Given C, one takes for S the set of indecomposable elements in R+ :=
{α ∈ R : (α, λ) > 0}.

3. The Weyl group acts simply transitively on the set of Weyl chambers, for
each pair S, S′ of simple systems there exists a unique w ∈ W for which
wS = S′. In particular, if w ∈W satisfies wS = S for some simple system
S, then w = 1. (This follows from the argument given above, together
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with the empirical observation that the only w ∈ W which stabilizes the
“standard” Weyl chamber is w = 1.)

4. The Weyl group acts simply transitively on the set of simple systems, for
each pair S, S′ of simple systems there exists a unique w ∈ W for which
wS = S′. In particular, if w ∈W satisfies wS = S for some simple system
S, then w = 1. This follows from the previous few points.

5. Let S be a simple system. For each λ ∈ h∗R there exists a unique w ∈ W
so that wλ is S-dominant.

In lecture, we presented (some of) the above material in a slightly different
order; namely, we first stated the bijection between simple systems and Weyl
chambers (after working out enough examples to make it seem obvious).

30 Why simple Lie algebras give rise to root sys-
tems

30.1 Overview
In the previous section, we explained how Dynkin diagrams may be used to clas-
sify the classical complex simple Lie algebras An, Bn, Cn, Dn. That explanation
involved a fair number of “empirical observations:”

1. We observed (without “explanation”) that Cartan subalgebras h of g exist
and are unique.

2. We observed that the root spaces gα of h are one-dimensional and satisfy

α ∈ R =⇒ {n ∈ Z : nα ∈ R} = {±1}.

We observed also that there exist Xα ∈ gα, Yα ∈ g−α and Hα ∈ h so that

[Xα, Yα] = Hα

and
α(Hα) = 2

and

[gα, gβ ] =


gα+β α+ β ∈ R
CHα α+ β = 0

0 otherwise.

3. We observed the relation

〈β|α〉 := β(Hα) = 2
(β, α)

(α, α)

for any α, β ∈ R.
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4. We observed that the root reflections sα : h∗ → h∗ defined for α ∈ R by

sα(β) := β − 〈β|α〉α,

satisfy sα(R) = R.

We would like now to go back and “explain” the above observations a bit more
“conceptually.” This will involve an application of some properties of represen-
tations of sl2(C) that we established long ago.

For the remainder of this section, “Lie algebra” always means “over the com-
plex numbers.”

30.2 The basic theorem on Cartan subalgebras
Recall Definition 210; it applies to any simple Lie algebra g.

Theorem 226. 1. There exists a Cartan subalgebra h ≤ g.

2. Any two Cartan subalgebras h, h′ are conjugate in the sense that for any
Lie group G with Lie(G) = g (such as the inner automorphism group G =
Int(g) as defined in Lemma 216), there exists g ∈ G so that Ad(g)h′ = h.

3. There is a scalar product (, ) on g (i.e., a non-degenerate symmetric bilin-
ear form g⊗ g→ C) and a real form hR ≤ h with the following properties:

(a) The roots α of ad : h→ End(g) satisfy α(hR) ⊆ R.
(b) The restriction of (, ) to hR is real-valued and positive-definite.

(c) (, ) is g-invariant, i.e., for all x, y, z ∈ g,

([z, x], y) + (x, [z, y]) = 0.

(Think of this condition as the “t = 0 derivative” of a condition like
(etzx, etzy) = (x, y).)

Example 227. 1. One can take g = sln(C), h ≤ g the diagonal subalgebra,
hR ≤ h the real Lie subalgebra consisting of elements with real entries,
and (x, y) := trace(xy) for x, y ∈ g. Similar choices apply for all of the
classical simple algebras.

2. For any simple g, it turns out that one can take (x, y) := trace(adx ady)
(which is called the Killing form).

As noted earlier, Theorem 226 is easy to establish for the classical simple
algebras. We will not prove it in general for the following reasons:

1. The proof might take a couple weeks, and I think that it is not as inter-
esting or useful as the other topics that I plan to cover in the remaining
time.
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2. The conclusion is not difficult in the primary examples of interest (the
classical families). We may thus interpret it as telling us that we might
as well have defined a simple Lie algebra to be a simple Lie algebra in
the ordinary sense with the additional property that it possesses a Car-
tan subalgebra satisfying the above properties; such a definition would
apply to the primary examples of interest, and the above theorem may be
interpreted as giving a weaker condition under which it holds.

A good reference for the proof of Theorem 226 is Chapter 3 of Serre’s Complex
semisimple Lie algebras.

In the following sections, we will include in some hypotheses phrases like
“Let g be a simple Lie algebra (that satisfies the Cartan subalgebra theorem).”
Theorem 226 says that the parenthetical hypothesis is unnecessary; we include
it only to keep track of what we have actually proven in the course.

30.3 Abstract root systems
Definition 228. Let V be a finite-dimensional real inner product space. A root
system is a subset R of V such that

1. R is finite;

2. R does not contain 0;

3. for any α, β ∈ R, the quantity

〈β|α〉 := 2
(β, α)

(α, α)

is an integer;

4. for any α ∈ R, the map
sα : V → V

sα(λ) := λ− 〈λ|α〉α

satisfies sα(R) = R.

We say that R is reduced if for all α ∈ R,

{n ∈ R : nα ∈ R} = {±1}. (130)

The notion of an isomorphism of root systems is clear.8

In §29, we saw several examples of root systems (without referring to them
by that name).

8 A morphism is a map that preserves all relevant structure. An isomorphism is a morphism
with a two-sided inverse morphism.
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Example 229. Let R1 ⊆ V1, R2 ⊆ V2 be two root systems. We may regard
V1, V2 as being embedded in the direct sum inner product space V := V1 ⊕ V2

by the maps v1 7→ (v1, 0), v2 7→ (0, v2). We may then define their disjoint union
R1 ∪ R2 ⊂ V to be the set of images of R1, R2 under such maps. It is easily
seen to define a root system.

Definition 230. A root system R is irreducible if it is not isomorphic to a
disjoint union of nonempty root systems.

30.4 Illustration of the root system axioms
The root system axioms have a number of consequences; we illustrate a few of
them here, referring to the second reference by Serre on the course homepage
for details and further discussion.

As illustration, let us first verify that the axiom (130) can be weakened
(assuming the other axioms) to

α ∈ R =⇒ 2α /∈ R. (131)

To that end, suppose α, cα ∈ R for some nonzero scalar c ∈ R. Then the
quantities

〈cα|α〉 = 2c, 〈α|cα〉 = 2c−1

are both integers, hence
c ∈ {±1/2,±1,±2}. (132)

It is clear that (131) and (132) imply (130).
As our next illustration:

Lemma 231. Let α, β be non-proportional roots (i.e., elements of the given
root system R that are not multiples of one another). Then the unordered pair
of integers {〈α|β〉, 〈β|α〉} is of the form {0, 0} or {ε, εn} for some ε ∈ {±1} and
n ∈ {1, 2, 3}; in other words, it belongs to the following list:

• {0, 0}

• {1, 1}

• {1, 2}

• {1, 3}

• {−1,−1}

• {−1,−2}

• {−1,−3}

Proof. By elementary geometry, we have 〈α|β〉〈β|α〉 = 4 cos2(φ), where ±φ
denotes the angle between the vectors α, β. Since α, β are non-proportional, we
have cos2(φ) < 1. If cos(φ) = 0, then α, β are orthogonal and so both quantities
are zero. Otherwise 〈α|β〉 and 〈β|α〉 are integers whose product belongs to
{1, 2, 3}, for which the only possibilities are those listed.
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Lemma 232. Suppose that α, β are non-proportional roots.

• If (α, β) < 0, then α+ β is a root.

• If (α, β) > 0, then α− β is a root.

Proof. In the first case, we see from Lemma 231 that after possibly swapping
α and β, we have 〈β|α〉 = −1 (and 〈α|β〉 = −n for some n ∈ {1, 2, 3}). Then
sα(β) = β−〈β|α〉α = β+α is a root thanks to the axiom sα(R) = R. A similar
argument applies in the second case.

We may define a base (or simple system) exactly as before to be a subset S
of R that is a basis for the underlying inner product space V with the property
that for each α ∈ R, the coefficients cβ in the expansion α =

∑
β∈S cββ either

all belong to Z≥0 or all belong to Z≤0. One can show directly from the root
system axioms that bases exist and have the properties established previously
for the classical families and on the homeworks; see the second reference by
Serre on the course webpage for more details. We note for now just that the
observation from the homework that (α, β) ≤ 0 for α, β ∈ S follows from Lemma
232: if otherwise (α, β) > 0, then α−β would be a root, contrary to the defining
property of the simple system S.

One can likewise define the Weyl group W of a root system to be the sub-
group of the orthogonal group of V generated by the root reflections sα; the
properties we established previously for the root systems arising from classical
families can also be established directly from the root system axioms (see Serre
for details).

Finally, one can attach to each reduced root system a Cartan matrix and a
Dynkin diagram; the diagram turns out to be connected if and only if the root
system is irreducible, and one can show (by elaborate application of the root sys-
tem axioms) that all irreducible reduced root systems belong either to the classi-
cal families An, Bn, Cn, Dn or belong to an exceptional set {G2, F2, E6, E7, E8}.

30.5 Simple Lie algebras give rise to root systems
The “unexplained observations” recorded in §30.1 are all contained in the fol-
lowing result, which is our next target:

Theorem 233. Let g be a simple Lie algebra (that satisfies the Cartan subal-
gebra theorem). Let h be a Cartan subalgebra. Let R ⊆ h∗R be the set of roots
for ad : h→ End(g). Then R is a reduced root system. Moreover:

1. For each α ∈ R, one has dim gα = 1.

2. For each α ∈ R there is a unique Hα ∈ hR with α(Hα) = 2 so that for
each nonzero Xα ∈ gα there is a unique Yα ∈ g−α so that Hα = [Xα, Yα].

3. One has

[gα, gβ ] =


gα+β α+ β ∈ R
CHα α+ β = 0

0 otherwise.
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Remark 234. We will discuss the proof of Theorem 233 in detail for the fol-
lowing reasons:

1. Although the proof gives us nothing “new” for the classical families (we
have already checked all of the conclusions by hand), it tells us why they
are true, gives a less computational explanation, etc.

2. The techniques involved in the proof of Theorem 233 are of general use.

3. The proof of Theorem 233 will give us the opportunity to apply some
properties of representations of sl2(C) that we established earlier in the
course.

Remark 235. One can also establish the following complements to Theorem
233

1. The root systems arising from simple Lie algebras are irreducible.

2. Two simple Lie algebras are isomorphic if and only if their associated root
systems are isomorphic.

3. Every irreducible reduced root system arises from a (unique) simple Lie
algebra.

We might discuss the first couple of these if we have time; see the second refer-
ence by Serre on the course homepage for further discussion of the final point.

30.6 Some stuff about scalar products and inner products
Let g be a simple Lie algebra (that satisfies the Cartan subalgebra theorem). Let
h be a Cartan subalgebra, and let (, ) be an invariant scalar product on g that
is real-valued and positive-definite on hR. Since (, ) is nondegenerate, it induces
a linear isomorphism g→ g∗ given by x 7→ (x, ·). We can thus transfer (, ) to an
scalar product (also denoted (, )) on g∗ by requiring that ((x, ·), (y, ·)) = (x, y)
for all x, y ∈ g. We may restrict the scalar product (, ) on g∗ to

h∗R := HomR(hR,R) ∼= {λ ∈ h∗ : λ(hR) ⊆ R}.

Since the scalar product that we started with on g has positive-definite restric-
tion to hR, we know also that the scalar product on g∗ that we just defined has
positive-definite restriction to h∗R, hence defines an inner product on that space.

In what follows, we shall always regard h∗R as an inner product space with
respect to an inner product as constructed above.

30.7 Some recap on SL(2)

Let’s recall a few facts we learned long ago. Recall the standard basis elements

H =

(
1
−1

)
, X =

(
1
)
, Y =

(
1

)
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of g := sl2(C), and that any finite-dimensional representation V of g breaks
up into weight spaces V = ⊕m∈CV [m] where V [m] := {v ∈ V : Hv = mv}.
(In other words, H acts semisimply in any finite-dimensional representation.
We proved this awhile ago. Another quick proof: we can first decompose with
respect to the action of the diagonal subgroup of SU(2), since the latter is
compact; the Lie algebra of that subgroup is generated by H, so we get a
decomposition with respect to H.)

Recall that the m for which V [m] 6= 0 are called the weights of V ; the spaces
V [m] are then called weight spaces.

The set of weights of the irreducible representations Wm of dimension m+ 1
is

{−m,−m+ 2, . . . ,m− 4,m− 2,m}.

The set of weights of a direct sum of several copies of Wm is the union of the
sets of weights of the Wm that occur. Since any such V is isomorphic to such a
finite direct sum, we know a lot about the set of weights.

Lemma 236. The weights are integers. An integer m is a weight if and only
if −m is a weight.

Proof. This follows (among other ways) from the classification: V is a finite
direct sum of copies of the Wm, and each of those irreducible representations
has the above property.

Lemma 237. If the weights of V all have the same parity (i.e., are all even or
all odd), then the set of weights is of the form

{−m,−m+ 2, . . . ,m− 4,m− 2,m}

for some m ∈ Z≥0.
In that case, let ` be any weight of V . Let p, q ≥ 0 be the largest positive

integers for which `− 2p and `+ 2q are weights. Then

` = p− q. (133)

Proof. The first assertion follows from the classification. For the second asser-
tion, we must have ` − 2p = −m and ` + 2q = m, whence 2` = 2(p − q), as
required.

Lemma 238. If m,m+2 are weights of V , then the maps X : V [m]→ V [m+2]
and Y : V [m+ 2]→ V [m] are not identically zero.

Proof. Again follows by reducing to the irreducible case and then inspecting.

Lemma 239. Suppose V has the following properties:

1. The weights of V are all even.

2. V [0] is one-dimensional.

3. V [2] is nonzero.
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4. There exists a nonzero element v ∈ V [2] such that Xv = 0.

Then the set of weights is {−2, 0, 2} and each weight space is one-dimensional.

Proof. The first three conditions tell us that we must have V ∼= Wm for some
even integer m ≥ 2. The fourth condition implies that m = 2.

30.8 Proof of Theorem 233
Let notation and assumptions be as in the statement of that theorem. Let (, )
denote a g-invariant scalar product on g whose restriction to hR is real-valued
and positive-definite. (We will only use this final property of the inner product
at one point in the proof to follow, and it could be avoided at the cost of a
bit more work.) As in §30.6, let (, ) denote also the inner product induced on
g∗ by duality, whose restriction to h∗R is then real-valued and positive-definite.
(Revisit the examples of classical families.) Since h is a Cartan subalgebra, we
have a root space decomposition

g = h⊕ (⊕α∈Rgα)

for some finite set R ⊆ h∗R − {0} of roots. Here [H,X] = α(H)X for all H ∈
h, X ∈ gα.

We verify first that

[gα, gβ ]


⊆ gα+β if α+ β ∈ R
⊆ h if α+ β = 0

= {0} otherwise.
(134)

This is the same verification we’ve done by now many times: for x ∈ gα, y ∈
gβ , H ∈ h, we have by the Jacobi identity

[H, [x, y]] = [[H,x], y] + [x, [H, y]] = α(H)[x, y] + β(H)[x, y] = (α+ β)(H)[x, y],

giving what we want.
We show next that

(gα, gβ) = 0 unless α+ β = 0. (135)

Indeed, assume α + β 6= 0. We must show for x ∈ gα, y ∈ gβ that (x, y) = 0.
Choose H ∈ h so that (α+ β)(z) 6= 0. By the g-invariance of (, ), we then have

0 = ([H,x], y) + (x, [H, y]) = (α+ β)(H) · (x, y),

hence (x, y) = 0, as required.
As a consequence, we see that the decomposition

g = h⊕ (⊕±α∈Rgα ⊕ g−α) (136)

is orthogonal with respect to (, ). In particular:
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1. (, ) has non-degenerate restriction to h × h, although this follows already
from our assumptions.

2. (, ) induces a duality between gα and g−α. In particular, α ∈ R if and
only if −α ∈ R.

Let h∗ 3 λ 7→ uλ ∈ h denote the isomorphism induced by (, ), so that
µ(uλ) = 〈λ, µ〉 for all µ ∈ h∗. We claim next that

[x, y] = (x, y)uα. (137)

For the proof, let H ∈ h; since (, ) has nondegenerate restriction to h, it will
suffice to verify that

(H, [x, y]) = (H, (x, y)uα).

Since the g-invariance gives (H, [x, y]) = ([H,x], y) = α(H)(x, y) and the linear-
ity gives (H, (x, y)uα) = (H,uα)(x, y) = α(H)(x, y), we are done.

Note in particular that for α ∈ h∗R − {0}, one has

0 < (α, α) = α(uα).

Hence for each α ∈ R ⊆ h∗R − {0}, it makes sense to define

Hα := 2
uα

(α, α)
∈ hR.

With this definition, we then have

α(Hα) = 2.

Moreover, let us fix a nonzero element Xα ∈ gα. Since g−α is in duality with
gα, there then exists Yα ∈ g−α so that (Xα, Yα) = 2/(α, α). By (137), it follows
that

[Xα, Yα] = Hα,

which is consistent with what we stipulated in the classical examples.
Now let sα ≤ g denote the three-dimensional vector subspace

sα := CXα ⊕ CHα ⊕ CYα.

Recall that [Xα, Xα] = [Yα, Yα] = [Hα, Hα] = 0 and [Hα, Xα] = 2Xα, [Hα, Yα] =
−2Yα, [Xα, Yα] = Hα. It follows that the map

φα : sl2(C)→ sα ⊆ g

given by sending the standard basis elements

H =

(
1
−1

)
, X =

(
1
)
, Y =

(
1

)
in the evident way (H,X, Y 7→ Hα, Xα, Yα) is an isomorphism of Lie algebras.
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Lemma 240. Let α ∈ R. Then dim gα = 1 and {n ∈ Z : nα ∈ R} = {±1}. In
particular, 2α /∈ R.

Proof. Set
V := CHα ⊕ (⊕n∈Z6=0

gnα),

where by convention gnα := 0 if nα /∈ R. Observe that V is stable under sα;
this follows from what was shown above, together with the observation that
Hnα ∈ CHα for all n. We may thus regard V as a representation of sl2(C) via
the map φα. Equivalently, the map ρ : sl2(C)→ End(V ) is given for x ∈ sl2(C)
and v ∈ V by

ρ(x)v := [φα(x), v].

The possibly nonzero weight spaces are V [0] = CHα, which is one-dimensional,
and V [2n] = gnα for n 6= 0. We observe that V [2] is nonzero (since it contains
Xα) and that there exists v ∈ V [2] for which ρ(X)v = 0 (take v := Xα and use
that [Xα, Xα] = 0). Lemma 239 applies, telling us that V ∼= W2. The various
conclusions follow from the description of the weight spaces of W2.

For α ∈ R and λ ∈ h∗, set

〈λ|α〉 := λ(Hα)

and define the root reflection

sα : h∗ → h∗

by
sα(λ) := λ− 〈λ|α〉α.

Observe that sα(sα(λ)) = λ.

Lemma 241.
〈λ|α〉 = 2

(λ, α)

(α, α)
.

Proof. Well, by definition, we have

uα =
2

(α, α)
Hα.

If we apply λ to both sides, we get

(λ, α) = λ(uα) = 2
λ(Hα)

(α, α)
,

which rearranges to

λ(Hα) = 2
(λ, α)

(α, α)
,

as required.
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Lemma 242. Let α, β ∈ R. Then β(Hα) ∈ Z and sα(β) ∈ R. Thus sα(R) = R.
Moreover, let p, q ≥ 0 be the largest nonnegative integers for which β − qα

and β + pα are roots. Then β + kα is a root for all integers k ∈ {−q..p}, and
we have β(Hα) = p− q.

Proof. We argue as in the proof of Lemma 240, but now with

V := ⊕k∈Zgβ+kα,

regarded as an sl2(C)-module via φα as before. The element H ∈ sl2(C) acts on
gβ+kα by the eigenvalues (β + kα)(Hα) = β(Hα) + 2k; in particular, β(Hα) is
an H-weight of V . By Lemma 237 (applied to ` := β(Hα)), we have β(Hα) =
p − q ∈ Z. The H-weight of gβ−β(Hα)α is β(Hα) − 2β(Hα) = −β(Hα), which
shows that gβ−β(Hα)α 6= 0, or equivalently, that sα(β) ∈ R.

Lemma 243. Let α, β ∈ R such that α+ β ∈ R. Then [gα, gβ ] = gα+β.

Proof. Since the root spaces are all one-dimensional, it suffices to show that the
map adXα : gβ → gα+β is nonzero. This follows from Lemma 238 upon taking
V = ⊕gβ+kα as above.

All assertions in Theorem 233 have now been established. (The uniqueness
of Yα follows from the one-dimensionality of g−α.)

Remark 244. Lemma 232 was proved using only the root system axioms. It
may be alternatively deduced “directly” from Lemma 242.

31 Serre relations and applications

31.1 Generators and relations for simple complex Lie al-
gebras

Recall from §30.5 and following that one can9 attach root systems to simple Lie
algebras over C. We also mentioned briefly that root systems can be classified
in terms of their Cartan matrices, or equivalently, their Dynkin diagrams.

Conversely, it turns out that one go the other direction: if the root systems
of a pair g1, g2 of simple Lie algebras over C are isomorphic, then so are g1 and
g2. One can prove this fairly directly (see p184 of Onishchik–Vinberg), but a
particularly convincing way to see it is via the following theorem of Serre:

Theorem 245. Let h be a Cartan subalgebra with associated root system R,
let S be any simple subsystem, and let N = (Nαβ)α,β∈S be the Cartan matrix
(thus Nαβ := α(Hβ), say). Then g is generated as a Lie algebra by the symbols
Hα, Xα, Yα (α ∈ S) subject only to the relations: for all α, β ∈ S,

[Hα, Xβ ] = NαβXβ , [Hα, Yβ ] = NαβYβ , [Xα, Yα] = Hα;

9 We have only proved this for those that satisfy the Cartan subalgebra theorem.
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for distinct α, β ∈ S,

[Xα, Yβ ] = 0, ad
−Nαβ+1
Xα

(Xβ) = 0, ad
−Nαβ+1
Yα

(Yβ) = 0.

The meaning of this is hopefully clear by analogy to presentations and rela-
tions for groups; for a more precise statement, see either Onishchik–Vinberg or
Serre.

Theorem 245 immediately implies that the isomorphism class of a simple
Lie algebra over C depends only upon its Cartan matrix. It has many other
applications to be discussed shortly.

31.2 Semisimple complex Lie algebras
These play a central role in the theory. They admit several equivalent defini-
tions. The most convenient one for our immediate purposes is the following:

Definition 246. A Lie algebra g over C is semisimple if it is isomorphic to a
finite direct sum of simple Lie algebras, or equivalently, if g is the direct sum of
some finite collection of simple ideals.

We can define Cartan subalgebras h of semisimple Lie algebras g over C just
as we did in the simple case. Moreover, if g = ⊕gi with gi simple and containing
a Cartan subalgebra hi, then we can take h = ⊕hi. We can likewise associate
root systems in the semisimple case just as in the simple case. The only differ-
ence is that now the root systems we obtain are not irreducible; instead, they
decompose as finite disjoint unions (in the sense of Example 229) of irreducible
root systems, corresponding to the decomposition of the semisimple Lie algebra
as a finite direct sum of simple Lie algebras.

The bijection between:

• simple Lie algebras over C

• irreducible reduced root systems

• connected Dynkin diagrams

induces one between:

• semisimple Lie algebras over C

• reduced root systems

• Dynkin diagrams

The Serre relations apply just as well in the semisimple case.
There is a nontrivial equivalence which seems worth mentioning up front:

Theorem 247. g is semisimple if and only if g contains no abelian ideals.
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Thus being semisimple is in some sense the “opposite” of being abelian.
There are other nice criteria for checking semisimplicity of g that one can read
about in any of the course references (e.g., either by Serre). One says that there
should exist a bilinear form on g that is adg-invariant and non-degenerate. For
the classical examples, the trace form (x, y) := trace(xy) is easily seen to have
such properties. Using this criterion, one can give “another” proof that (say)
sln(C) is simple (see §28) by computing the Cartan matrix and checking that
the Dynkin diagram is connected.

31.3 Reductive complex Lie algebras
Here is another definition which admits many equivalent characterizations; we
again give that which is more convenient for our immediate purposes.

Definition 248. Let (gi)i∈I be a family of Lie algebras. The direct sum Lie
algebra is the direct sum vector space g := ⊕i∈Igi equipped with the Lie bracket
characterized by:

• for i ∈ I and x, y ∈ gi ↪→ g, one has [x, y]g := [x, y]gi ;

• for i 6= j ∈ I and x ∈ gi, y ∈ gj , one has [x, y]g := 0.

It has the universal property: Hom(⊕gi, h) =
∏

Hom(gi, h) for all Lie algebras
h.

Definition 249. A finite-dimensional Lie algebra g over C is reductive if it is
a direct sum of an abelian Lie algebra and a semisimple Lie algebra.

For example, gln(C) is reductive (it is the direct sum of n(C) and the central
subalgebra z consisting of scalar matrices), but not semisimple (it contains the
abelian ideal z).

Abelian Lie algebras over any field are classified by their dimension, so the
classification of semisimple Lie algebras readily induces a classification of reduc-
tive Lie algebras.

Here’s a handy and clarifying lemma, proved in lecture and left here as an
exercise (ask me if it’s unclear):

Lemma 250. A complex Lie algebra g is reductive if and only if its adjoint
representation ad : g→ End(g) is completely reducible.

We can define Cartan subalgebras h of reductive Lie algebras g just as we
did in the semisimple case. (They always contain the center z.) We can also
define the set R of roots. The only difference with the semisimple case is now
that the roots R need not span h∗. For example, if g is abelian, then R = ∅.

31.4 Compact complex Lie groups
We don’t talk about these much. There’s a good reason:

Theorem 251. Any compact connected complex Lie group G is abelian.
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Proof. Consider Ad : G → GL(g). It is a holomorphic matrix-valued function.
Since G is compact, it is bounded. By Liouville’s theorem, it must be constant.
But it preserves the identity, and so must be trivial. Since G is connected, we
conclude that it must be abelian.

Such G typically go instead by the name “abelian variety” and have an
interesting theory orthogonal to the primary aims of this course.

31.5 Compact real Lie algebras
From now on, when I write “compact Lie group,” I mean “compact real Lie
group.”

Think of your favorite compact Lie group K (e.g., K = U(n)). Consider its
Lie algebra k. How would you go about telling just from k that K was compact?

Definition 252. Let k be a real Lie algebra. (Every Lie algebra here and for
the rest of the course should be assumed finite-dimensional.) We call k compact
if it admits an ad(k)-invariant inner product, that is to say, a positive definite
symmetric bilinear form (, ) : k⊗ k→ R with the property that

([z, x], y) + (x, [z, y]) = 0

for all x, y, z ∈ k.

Lemma 253. Let K be a compact Lie group. Then k is compact.

Proof. Start with any inner product (, )0 on k. Average it under Ad(K) with
respect to an invariant measure, as in the discussion of the unitary trick earlier
in the course. Call (, ) the averaged inner product so obtained (it is still an inner
product). Then (, ) is Ad(K)-invariant, by construction. By differentiating, we
see that it is ad(k)-invariant, as required.

Example 254. If k is an abelian real Lie algebra, then it is compact. This is
easy to see directly. Alternatively, we can write k = Rn and apply the Lemma
to K = (R/Z)n.

31.6 Complex reductive vs. compact real Lie algebras
Recall our discussion of complexifications and real forms from §17.

We include the following mainly as a bridge from our discussion of complex
simple Lie algebras to our next target (compact Lie groups).

Theorem 255. 1. Let k be a compact real Lie algebra. Then its complexifi-
cation kC := k⊗ C is a reductive complex Lie algebra.

2. Let g be a complex reductive Lie algebra. Then it has a compact real form
k.
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Proof. 1. By Lemma 250, we have to show that the adjoint representation
ad : kC → End(kC) is completely reducible. By linear algebra (cf. Example
126), it suffices to show that ad : k → End(k) is completely reducible. To
that end, we make use of the existence of a k-invariant inner product and
argue using orthogonal complements as in Example 111.

2. Note first that if result holds for g1 and g2, then it also holds for their direct
sum (take k1 ⊕ k2 ⊆ g1 ⊕ g2). Since g is reductive, it suffices to consider
separately the case that g is abelian and the case that g is semisimple (or
indeed, simple). The abelian case is easy (see Example 254), so we focus
henceforth on the semisimple case.

Think of the prototypical example g = sl2(C). How would one go about
“discovering” the compact real form k = su(2)? Well, we have

k = {Z ∈ g : σ(Z) = Z},

where σ(Z) := −Zt. On the standard basis elements X,Y,H this involu-
tion is given by

σ(X) = −Y, σ(Y ) = −X, σ(H) = −H.

It is anti-linear in the sense that

σ(tZ) = tσ(Z) for all t ∈ C, Z ∈ g. (138)

Also, let’s note in this case for the modified Killing form

(x, y) := − trace(ad(x) ad(σ(y))) (139)

on g, the basis X,Y,H is orthogormal (i.e., (X,Y ) = (X,H) = (Y,H) =
0), and also (X,X) = (Y, Y ) = (H,H) = 2. Thus (, ) is positive-definite;
it is also clearly k-invariant. (Note: I defined (, ) incorrectly in lecture.)

This suggests the general strategy. Let g be a semisimple Lie algebra.
We use the Serre relations. It thus has generators Xα, Yα, Hα (α ∈ S)
satisfying some explicit relations. We try to define an anti-linear involution
σ on g by requiring that (138) hold and that on the generators, one has

σ(Xα) = −Yα, σ(Yα) = −Xα, σ(Hα) = −Hα.

To check that this definition makes sense (i.e., extends from the generators
to a real Lie algebra automorphism), we just need to check that it preserves
the Serre relations, which is clear. By Remark 132, we know that k :=
{X ∈ g : σ(X) = X} is a real form. We now define (, ) on g by (139) and
check that it is positive definite on k to see that k is compact.
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32 The center and fundamental group of a com-
pact Lie group

We spent most of the lecture stating and motivating the truth of one theorem.
We record the key definitions here for now; we will have more to say about

them later.
Let K be a compact Lie group. Let k := Lie(K); it is a compact real Lie

algebra. Let g denote its complexification; it is a reductive complex Lie algebra.
Let h ≤ g be a Cartan subalgebra, and suppose that t = k ∩ t is a real form
of h, thus dimR(t) = dimC(h); we can arrange this using the presentation given
by the Serre generators, for instance. Define hR := it and hZ := ker(e), where
e : hR → K is the map e(x) := exp(2πix). Let R be the root system of h. Then
R ⊆ h∗R. Set R

∧ := {α∧ : α ∈ R}, where α∧ = Hα. Set

h∗R := HomR(hR,R) ∼= {λ ∈ h∗ : λ(hR) ⊆ R}

and

h∗Z := HomZ(hZ,Z) ∼= {λ ∈ h∗R : λ(hZ) ⊆ Z} ∼= {λ ∈ h∗ : λ(hZ) ⊆ Z}.

We then have
ZR ⊆ h∗Z ⊆ (ZR∧)∗ (140)

(called respectively the root lattice, the integers, and the weight lattice) and

ZR∧ ⊆ hZ ⊆ (ZR)∗, (141)

(called respectively the coroot lattice, the integers, and the coweight lattice),
where ZR denotes the Z-span of R, ZR∧ denotes the Z-span of R∧,

(ZR∧)∗ := {λ ∈ h∗R : λ(R∧) ⊆ Z}

and
(ZR)∗ := {H ∈ hR : R(H) ⊆ Z}.

Pontryagin duality for finite abelian groups give us non-canonical isomorphisms

hZ/ZR∧ ∼= (ZR)∗/h∗Z, (ZR)∗/hZ ∼= h∗Z/ZR. (142)

Theorem 256. The induced map e : (ZR)∗/hZ → Center(K) given by e(x) :=
exp(2πix) is a well-defined isomorphism.

The map f : hZ/ZR∧ → π1(K), sending H to the homotopy class [γ] of the
path γ given by γ(t) := e(tH), is a well-defined isomorphism.

We then explained in detail how this “recovers” the fact that π1(SU(n)) =
{1}, Center(SU(n)) ∼= Z/n.

The theorem will take a bit of preparation to prove; we start in the next
section.
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33 Tori in compact Lie groups

33.1 Basic definitions
Definition 257. A torus is a Lie group isomorphic to T k := (R/Z)k for some
k ∈ Z≥0.

Lemma 258. Let G be a Lie group. The following are equivalent.

1. G is a torus.

2. G is connected, compact and abelian.

Proof. The forward direction is clear. Conversely, suppose G is connected, com-
pact, and abelian.

Since G is connected and abelian, we know (by part of Homework 3) that
exp : g → G is a surjective homomorphism with discrete kernel Γ, thus G ∼=
g/Γ. Since G is compact, the subgroup Γ is discrete and cocompact. Fix
an isomorphism g ∼= Rk. One can show easily that every discrete cocompact
subgroup of Rk is given by Zk after a change of coordinates. Thus G ∼= T k.

Definition 259. Let G be a Lie group. A torus in G is a closed subgroup
T ≤ G (hence a Lie subgroup) that is a torus.

Remark 260. Let T be a torus, let G be a Lie group, and let j : T → G be a
morphism of Lie groups. Since T is compact, connected, and abelian, so is its
image under T . Thus j(T ) is a torus. In particular, immersed Lie subgroups
that are isomorphic to tori are in fact closed subgroups. This explains why we
restrict to closed subgroups in the previous definition.

Hence let K be a compact connected Lie group with Lie algebra k.

Definition 261. A maximal torus in K is a torus T ≤ K that is not properly
contained in any torus in K.

Exercise 36. The following are equivalent for a closed connected subgroup T
of K:

1. T is a torus.

2. t := Lie(T ) is an abelian subalgebra of k.

Recall from a long time ago that if H1, H2 are two connected Lie subgroups
of the same Lie group, then

• h1 = h2 if and only if H1 = H2,

• h1 ⊆ h2 if and only if H1 ⊆ H2,

etc.

Lemma 262. The following are equivalent for a closed connected subgroup T
of K:
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1. T is a maximal torus.

2. t := Lie(T ) is a maximal abelian subalgebra of k (i.e., an abelian subalgebra
that is not properly contained in any abelian subalgebra.)

Proof. Suppose T is a maximal torus. Let t′ ⊇ t be an abelian subalgebra that
contains t. Suppose there exists X ∈ t′−t. Since t′ is abelian, we have [X, t] = 0.
Since T is connected, it follows (by the usual differentiation/exponentiation
technique) that the group

H := {eyXt : y ∈ R, t ∈ T}

is abelian. It is also connected. Hence its closure H is abelian, connected, and
closed inside the compact Lie group K, hence compact, hence a torus (Lemma
258). By Theorem 176, H is a Lie subgroup, so we may consider its Lie algebra
h; clearly h contains X and t. Therefore the torus H has Lie algebra h properly
containing t. By the old result recalled above characterizing containments be-
tween closed Lie subgroups in terms of containments of their Lie algebras, we
deduce that H is a torus properly containing T , which contradicts the assumed
maximality of T .

Conversely, if t is a maximal abelian subalgebra and T ′ is a torus prop-
erly containing T , then (by the same old fact recalled above) its Lie algebra
t′ properly contains t and is abelian, contradicting the assumed maximality of
t.

Corollary 263. Let T ≤ K be a maximal torus in a compact Lie group. Let
t ≤ k be the induced inclusion of LIe algebras. Then t is self-centralizing: {X ∈
g : [X, t] = 0} = t.

Proof. Otherwise there is X ∈ g so that [X, t] = 0, hence t′ := RX + t is an
abelian subalgebra of k that properly contains t. By Lemma 262, this does not
happen.

33.2 Characters of tori
Definition 264. Let T be a torus. A character of T is a continuous homomor-
phism χ : T → C(1) := {z ∈ C× : |z| = 1}. The character group of T is the
group X(T ) consisting of all characters; the group law is given by multiplication.

Lemma 265. Let T be a torus and let R : T → GL(V ) be a representation on
a finite-dimensional complex vector space. Then V decomposes as a direct sum
of invariant one-dimensional subspaces on which T acts by characters of T .

More precisely, one has V = ⊕χV χ, where χ traverses the set of characters
of T and V χ := {v ∈ V : R(t) = χ(t)v}. Any subspace of V χ is invariant;
by choosing a basis for each V χ, we obtain a decomposition of V as a sum of
one-dimensional invariant (irreducible) subspaces.
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Proof. By §16.8, the representation is completely reducible. To complete the
proof, we just need to show that any irreducible representation V of T is one-
dimensional. To that end, it suffices to show that each t ∈ T acts on V by some
scalar λ.

Indeed, let t0 ∈ T be given. Since R(t0) ∈ GL(V ) is a cmoplex matrix, it
has some (nonzero) eigenvector v0 ∈ V and some eigenvalue λ ∈ C. Consider
the eigenspace W := {v ∈ V : R(t0)v = λv}. Our goal is to show that W = V .
Since V is irreducible and W is nonzero (after all, it contains v0), it sufficse
to show that W is invariant. Here we use the commutativity of T : if t ∈ T ,
then R(t0)R(t) = R(t0t) = R(tt0) = R(t)R(t0), hence for v ∈ V , we have
R(t0)R(t)v = R(t)λv = λR(t)v, hence R(t)v ∈ W , and so W is R(t)-invariant,
as required.

Lemma 266. Any continuous homomorphism χ : R → C(1) is of the form
χ(x) = e(ξx) := e2πiξx for some unique ξ ∈ R.

Proof. One can certainly do this directly, but we might as well deduce it from
stuff we’ve seen in class:

It is clear that x 7→ e(ξx) is a character for each ξ ∈ R, and that for ξ1 6= ξ2,
the characters obtained in this way are distinct.

Conversely, recall that shortly after we proved the “closed subgroups are
Lie subgroups” theorem, we indicated in class and assigned on the homework
that continuous homomorphisms between Lie groups are automatically smooth,
hence determined by their differentials. In particular, χ : R → C(1) is deter-
mined by

dχ : R = Lie(R)→ iR = Lie(C(1)),

which is then of the form 2πiξ for some ξ ∈ R, etc.

One obtains an analogous classifciation of the characters of Rk by taking
products. From this we deduce:

Lemma 267. The character group of T k is isomorphic to Zk: to each ξ =
(ξ1, . . . , ξk) ∈ Zk one associates the character T k = (R/Z)k 3 x = (x1, . . . , xk) 7→
e(
∑
ξixi) ∈ C(1).

Proof. A character of T k pulls back under the surjective homomorphism Rk →
T k to a character of Rk, which is in turn classified by real numbers (ξ1, . . . , ξk);
conversely, such real numbers induce a character of T k precisely when they are
all integers.

Let T be a torus. Let t denote its Lie algebra and h := t⊗RC the complexifica-
tion thereof. Set hR := it ≤ h. The map e : hR → T given by e(X) := exp(2πiX)
is a surjective homomorphism with discrete cocompact kernel.

Let χ : T → C(1) be a character of T ; as discussed above, it is smooth, so
we can consider its differential dχ : t → iR, which identifies with a linear map
dχ : hR → R. χ(e(H)) = e(λ(H)) for some λ ∈ h∗R. Conversely, such a λ defines
a character χ if and only if it vanishes on hZ := ker(e : hR → T ), i.e., if and only
if it belnogs to h∗Z as defined earlier. In summary:
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Lemma 268. Let T be a torus. Let hR := it, as above, so that e : hR/hZ → T
is an isomorphism.

Then X(T ) ∼= h∗Z via the bijection χ ↪→ λ characterized by 2πλ = dχ and
χ(e(H)) = e(λ(H)) for all H ∈ h∗R.

Definition 269. For λ ∈ h∗Z, denote by eλ the character of T associated to it
by the above bijection, so that for all H ∈ hR,

eλ(e(H)) = e(λ(H)).

This definition applies in particular to each α ∈ R ⊆ h∗Z.

33.3 Topologies on character groups
Let’s talk briefly about topology. Let G be a topological group. Let X(G)
denote the set of continuous homomorphisms χ : G → C(1). (The notation is
consistent with that used above when G is a torus.) We equip X(G) with the
“compact-open” topology. This means that a subbasis for the open sets in X(G)
is given by cosets of sets of the form V (C,U) := {χ ∈ X(G) : χ(C) ⊆ U}, where
C ⊆ T is compact and U ⊆ C(1) is open. Equivalently, a net χ(α) ∈ X(G)
converges to some χ ∈ X(G) precisely when it converges uniformly on compact
sets in the ordinary sense. We may define on X(G) the binary operation · given
by (χ1 · χ2)(g) := χ1(g)χ2(g).

Exercise 37. Show that X(G) is a topological group with respect to this oper-
ation.

Lemma 270. Suppose that G is compact. Then X(G) is discrete.

Proof. Take C := G and let U ⊆ C(1) be an interval of length 1/10 with center
1 ∈ C(1). Let χ0 ∈ X(G) denote the trivial character χ0(g) := 1. We claim
that V (C,U) = {χ0}. Clearly χ0 ∈ V (C,U). Conversely, let χ ∈ X(G) − {χ0}
be a nontrivial character, so that there exists g ∈ G for which χ(g) 6= 1. Since
χ(g) ∈ C(1) − {1}, we can find some power of it, say χ(g)n = χ(gn), which has
negative real part. But then χ(gn) /∈ U , hence χ /∈ V (C,U). We now use that
a topological group is discrete if and only if the set consisting of its identity
element is open (if this wasn’t an exercise before, it could be now).

The lemma applies notably to the case that G is a compact torus T =
(R/Z)k. We saw above that X(T ) ∼= Zk as groups. Lemma 270 tells us moreover
that X(T ) and Zk are isomorphic as topological groups, each equipped with the
discrete topology.

33.4 Maximal tori give rise to Cartan subalgebras
Theorem 271. Let T be a maximal torus in the compact connected Lie group
K. Let t ≤ k denote their Lie algebras and

h := t⊗ C ≤ g := k⊗ C
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the complexifications. Then h is a Cartan subalgebra of g. The roots are purely
imaginary on t.

Proof. According to our definition, we must check that h is abelian, ad-diagonalizable,
and self-centralizing.

1. Since T is abelian, so is t, hence h is abelian.

2. Consider the adjoint action Ad : K → End(k). Restrict it to obtain
Ad : T → End(k). Extend it complex-linearly to obtain Ad : T → End(g).
Since T is compact, this complex linear representation of it is completely
reducible. By the previous lemma, it decomposes as a direct sum of one-
dimensional invariant subspaces. Differentiating this fact, we see that
ad(t) and hence (by linearity) ad(h) is diagonalizable.

The functionals λ ∈ h∗ for h acting on g by the adjoint map correspond to
the characters χ of T occurring in the decomposition described above. It
follows from our earlier discussion that each such λ is real-valued on hR.

3. Let V0 := {X ∈ g : Ad(t)X = X for all t ∈ T} be the subspace on which
Ad(T ) acts trivially. By the usual differentiation/exponentiation trick, we
have

V0 = {X ∈ g : [X, t] = 0}

and
V0 = {X ∈ g : [X, h] = 0}

. From the first of these last two equations and linear algebra, we have

V0 = {X ∈ k : [X, t] = 0} ⊗ C.

By Corollary 263, we see that V0 = h. This gives the required self-
centralizing property of h.

In general Lie groups, nontrivial tori (let alone maximal ones) need not exist.
But in compact Lie groups, things are better:

Lemma 272. Let K be a compact connected Lie group. For any torus S in K,
there is a maximal torus T in K that contains S. (Note that the trivial torus
S = {1} always exists.)

Proof. If S is not maximal, then it is contained in some strictly larger torus
S′, which then (by consideration of LIe algebras) has strictly larger dimension.
Iterating the procedure S 7→ S′ finitely many times, we wind up with a maximal
torus. (We can’t iterate forever, because k is finite-dimensional.
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33.5 Some notation involving roots
So now we have the full theory of roots at our disposal. Let’s set up some
notation. Let K be compact connected, and let T ≤ K be a maximal torus.
Let h, g be as above. We can then decompose

g = h⊕ (⊕α∈Rgα) (143)

where R is a finite subset of h∗R−{0}. In fact, the discussion above implies that
R ⊆ h∗Z − {0}. For each H ∈ hR and X ∈ gα, we have

[H,X] = α(H)X,

For λ ∈ h∗Z, let e
λ ∈ X(T ) be as in Definitnio 269. This applies in particular to

α ∈ R ⊆ h∗Z, and the above identity translates to: for t ∈ T and X ∈ gα,

Ad(t)X = eα(t)X. (144)

Note also that if t = e(H) with H ∈ hR, then eα(t) = e(α(H)), hence

Ad(e(H))X = e(α(H))X. (145)

33.6 The automorphism group of a compact torus
Let T be a compact torus. Fix an identification T = (R/Z)k for some k ∈ Z≥0.
Then T is a compact Lie group. We may speak of its automorphism group
Aut(T ). By definition, this consists of continuous homomorphisms σ : T → T
that admit continuous inverse homomorphisms. We may identify t := Lie(T )
with Rk. Since T is connected, any such σ is determined by its differential dσ :
Rk → Rk, which is a linear map, call it A. Since the exponential map t→ T is
given with respect to our identifications by the natural projection Rk → Rk/Zk,
we see that σ is the map induced by a linear map A : Rk → Rk. For σ to be
well-defined, we must have A(Zk) ⊆ Zk. For σ to be an isomorphism, its inverse
σ−1 should exist and be well-defined, and so we should have A(Zk) = Zk. But
{A ∈ GLk(R) : AZk = Zk} = GLk(Z). We may thereby identify

Aut(T ) ∼= GLk(Z).

We define the topology on Aut(T ) in this case to be the discrete topology.
There’s another “transposed” way to make the above identification. Given

an automorphism σ of T , we can attach the induced automorphism σt of X(T ),
which sends a character χ of T to the new character σtχ ∈ X(T ) given by
σtχ(t) := χ(σt). The map

Aut(T ) 3 σ 7→ σ−t := (σt)−1 = (σ−1)t ∈ Aut(X(T ))

is an isomorphism. Since X(T ) ∼= Zk, we have Aut(X(T )) = GLk(Z).
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33.7 Generators
Recall that an abstract group G is said to be cyclic if it admits a generator,
i.e., an element g ∈ G for which G = {gn : n ∈ Z}. There aren’t so many cyclic
groups; they are all isomorphic either to Z or Z/n for some n ∈ Z≥1.

Given a topological group G, one says that G is topologically cyclic if it
admits a topological generator, i.e., an element g ∈ G for which G = {gn : n ∈ Z}
where . denotes closure. For example, any abstract cyclic group (equipped with
the discrete topology or any other topology, for that matter) is topologically
cyclic, and any generator in the group-theoretic sense is a topological generator,
but there are more interesting examples of topologically cyclic groups than just
those that are cyclic in the ordinary sense. (For example: the profinite integers
Ẑ, the p-adic integers Zp, etc.)

For our purposes, it will be useful to know that compact tori are topologically
cyclic:

Lemma 273. Let T ∼= Rk/Zk be a compact torus. Then the set of topological
generators of T is dense; in particular, it is nonempty.

Proof. We presented the simple pigeonholing argument in lecture. Fix a count-
able basis B1, B2, . . . for T . Take any open subset U of T . We want to show
that we can find g ∈ U so that for each i ∈ Z≥1 there exists an n ∈ Z so that
gn ∈ Bi. (Then we’re done.)

We now aim to construct such a g. For convenience of notation, let us realize
T as the additive group Rk/Zk. We aim to find for each i ∈ Z≥1

• a nonempty open set Ui, and

• an integer Ni

so that U ⊇ U1 ⊇ U2 ⊇ U3 ⊇ · · · and so that the set NiUi := {nici : ni ∈
Ni, ci ∈ Ui} is contained in B0

i , where B0
i denotes an open subset of Bi for

which B0
i ⊆ Bi. To do this, set U0 := U . For each i = 1, 2, 3, . . . , choose Ni

large enough that NiUi−1 = T . This is possible because Ui−1 is open. Then set
Ui := {u ∈ Ui−1 : Niu ∈ B0

i }.
The set ∩iUi is nonempty by the finite intersection property. Any element

of it is easily seen to be a generator.

Since we are primarily interested in topological groups here (or indeed, in
Lie groups), we henceforth abuse terminology slightly by saying generator when
we really mean “topological generator.”

Generators are nice. For example, suppose g ∈ K satisfies gtg−1 = t for
some generator t of T . Then also gtng−1 = tn for all n ∈ Z. Since the set of
all x ∈ K for which gxg−1 = x is closed, we deduce that gxg−1 = x holds for
all x ∈ T , i.e., that g centralizes T . We shall use arguments along these lines
repeatedly.
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33.8 A maximal torus is the connected component of its
normalizer

Let T be a torus in a compact connected Lie group K. Let N(T ) := {g ∈
K : gTg−1 = T} denote its normalizer. The condition defining N(T ) is closed,
so N(T ) is a closed subgroup of K, hence is a Lie subgroup of K. (One can
also show this more directly along the lines of §25.3.) We can thus speak of
the connected component N(T )0. In general, N(T )0 can be quite large. For
example, if T = {1} is the trivial torus, then N(T ) = N(T )0 = 0. However:

Lemma 274. Suppose T is maximal. Then N(T )0 = T .

Proof. Consider the map f : N(T )0 → Aut(T ) given by f(n) := [t 7→ ntn−1].
The domain N(T )0 is connected, and the target Aut(T ) is discrete. Assuming
for now that f is continuous, it follows that its image must consist of a point, and
so N(T )0 actually centralizes T . Suppose that N(T )0 strictly contains T . Since
they are both connected Lie groups, this implies that we can find X ∈ k, X /∈ t
that commutes with all of t. But this contradicts Corollary 263.

It remains to verify that f is continuous. Let χ1, . . . , χk be a Z-basis for
the character group X(T ) ∼= Zk. As in the discussion at the end of §33.6, we
can think of f(n)−t ∈ Aut(X(T )). Suppose that (ni)i∈Z≥1

is a sequence of
elements in N(T ) tending to some limit n ∈ N(T ). Then we have to check
that f(ni)

−t → f(n)−t ∈ X(T ) with respect to the discrete topology. This
means that we have to show that for i large enough, one has f(ni)

−t = f(n)−t.
Equivalently, we have to show for each j ∈ {1..k}, one has f(ni)

−tχj = f(n)−tχj
for i large enough. Since the character group X(T ) is discrete (see §33.3), it
suffices to show that f(ni)

−tχj converges to f(n)−tχj as functions, uniformly on
compact sets. This follows immediately from the continuity of the conjugation
action of N(T ) on T and the compactness of T .

(There are probably simpler or slicker ways to write this proof; I hope in
any event that it’s clear.)

Corollary 275. Let T be a maximal torus. Then the quotient N(T )/T is finite.

Proof. Indeed, that quotient identifies with the set N(T )/N(T )0 of connected
components of N(T ). Since K is compact and N(T ) is closed, we see also that
N(T ) is compact, hence has only finitely many connected components.

33.9 Conjugacy of maximal tori
Let K be a compact connected Lie group K. Note that if T is a maximal torus
in K, then so is its conjugate gTg−1 for any g ∈ K. Here’s the big theorem on
maximal tori in compact Lie groups:

Theorem 276. Let T be a maximal torus in a compact connected Lie group K.
Then K = ∪g∈KgTg−1.
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The (standard) proof we’ll record uses the Lefschetz fixed point theorem.
That theorem (or one variant of it) says that for a compact manifold M , one
can attach to each continuous map f : M → M an integer Λ(f) with the
following properties:

1. Λ(f) only depends upon the homotopy class of f .

2. If f has isolated simple fixed points, that is to say, if the set Fix(f) :=
{x ∈ M : f(x) = x} is finite and if for each x ∈ Fix(f), the linear map
Txf : TxM → Tf(x)M = TxM satisfies det(1− Txf) 6= 0, then

Λ(f) =
∑

x∈Fix(f)

εx(f),

where εx(f) ∈ {±1} denotes the sign of the nonzero real number det(1−
Txf) ∈ R×.

In particular, if Fix(f) = ∅, then Λ(f) = 0. This is a theorem from algebraic
topology that we won’t prove. We record the definition anyway:

Λ(f) =
∑
i∈Z≥0

(−1)i trace(f∗|Hi(M,Q))

where the RHS involves singular cohomology groups with rational coefficients.
For the identity map 1 : M →M , one writes χ(M) := Λ(1). The quantity

χ(M) =
∑
i∈Z≥0

(−1)i trace(f∗|Hi(M,Q))

is called the Euler characteristic of M .
Anyway, back to our goal. We want to show that for each x ∈ K, there exists

g ∈ K so that x ∈ gTg−1, or equivalently, so that xg ∈ gT , or equivalently, so
that xgT = gT . In other words, we want to show that the map

fx : K/T → K/T

fx(gT ) := xgT

has a fixed point. The manifold K/T is compact (since K is), so we can apply
the Lefschetz theorem. Assuming for the sake of contradiction that fx had no
fixed point, we’d deduce from the Lefschetz that Λ(fx) = 0. Let’s note that
since K is a connected manifold, it is path-connected. For any x, y ∈ K, we can
find a path connected them; that path induces a homotopy between the maps
fx and fy, and in particular between them and the identity map f1, for which
Λ(f1) = χ(M). So we’re done if we can show that χ(M) 6= 0. We’ll actually
show more precisely that

χ(M) = #N(T )/T. (146)

As noted above, we can compute χ(M) as Λ(fx) for any x ∈ K. It is convenient
to take for x a generator (see §33.7) of the torus T . What, then, are the fixed
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points of fx? Well, gT ∈ Fix(fx) if and only if xgT = gT , i.e., g−1xg ∈ T ;
but since x generates T , it follows then that g−1Tg ⊆ T . One can then see in
many ways that g−1Tg = T . (For example, they are both maximal tori.) Hence
g ∈ N(T ). Thus Fix(fx) = N(T )/T .

Henceforth abbreviate f := fx. For each g ∈ N(T )/T , we have a commu-
tative diagram as drawn in class which shows that det(1 − TgT f |TgT (G/T )) is
independent of g, so we henceforth focus on the case that gT = eT is the identity
coset.

We can then identify
TeT (G/T ) = k/t

and hence
TeT (G/T )C = g/h ∼= ⊕α∈Rgα.

with the usual notation. Let’s write x = e(H) for someH ∈ hR. Our assumption
that x is a generator entails in particular that e(α(H)) 6= 1 for all α ∈ R, as
otherwise x would belong to the codimension 1 submanifold of T consisting
of elements e(H) for which e(α(H)) = 1. By linear algebra, we can compute
determinants after complexifying. We can also write

Txf : TeT (G/T )C → TeT (G/T )C

as
Ad(x) : g/h→ g/h

because, since x ∈ T , one has

xgT = xgx−1T.

Thus
det(1− TeT f |TeT (G/T )) =

∏
α∈R

det(1−Ad(x)|gα).

On the other hand

det(1−Ad(x)|gα) = 1− e(α(H)).

We can split the product into a product over pairs ±α ∈ R/{±1} taken up to
sign, giving

det(1− TeT f |TeT (G/T )) =
∏
±α∈R

(1− e(α(H)))(1− e(−α(H))).

For each α ∈ R, write θ := 2πiα(H). Then

0 6= (1− e(α(H)))(1− e(−α(H))) = (1− eiθ)(1− e−iθ) = 2− 2 cos(θ) ≥ 0.

We conclude that
det(1− TeT f |TeT (G/T )) > 0
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hence that (as explained more carefully in class via a commutative diagram)

det(1− TgT f |TeT (G/T )) > 0 for each g ∈ N(T )/T

hence that f has isolated fixed points gT with signs εgT (f) = 1. Therefore

Λ(f) = #N(T )/T,

as required.

33.10 Basic consequences of the conjugacy theorem.
Let K be a connected compact Lie group, and let all other notation be as usual.
For now, we indicate some consequecnes relevant for answering the questions
raised last time.

Corollary 277. The center Z of K is the intersection ∩T of all (maximal)
tori.

Proof. Let z ∈ Z, and let T be a maximal torus. By the theorem, we may write
z = gtg−1 for some t ∈ T . But then t = g−1zg = z, because z is in the center.
Hence z belongs to T .

Conversely, suppose z ∈ K belongs to ∩T . Let x ∈ K; we must show that x
and z commute. To that end, we apply Theorem 276 to find a maximal torus T
that contains x. Then T contains z and x; since T is commutative, the elements
x and z commute, as required.

Theorem 278. Let T be a maximal torus in the compact connecteed Lie group
K. Let hR := it and e : hR/hZ

∼=−→ T be as usual. Let R denote the set of roots
for h := t⊗C acting on g := k⊗C by the adjiont representation. Let Z denote
the center of K. Then e induces an isomorphism

(ZR)∗/hZ ∼= Z.

Proof. By Corollary 277, Z is contained in T , hence the image of e contains
Z. To complete the proof, all that remains to be showed is the following: for
H ∈ hR, we have e(H) ∈ Z if and only if H ∈ (ZR)∧. This equivalence
is demonstrated by noting that each of the following assertions is evidently
equivalent to the next:

1. e(H) ∈ Z.

2. e(H) ∈ ker(Ad) (using here that K is connected)

3. e(α(H)) = 1 for all α ∈ R (use (143) and (145), and note that Ad(e(H))
acts trivially on h because t is abelian)

4. α(H) ∈ Z for all α ∈ R (because Z = {x ∈ R : e2πix = 1})

5. H ∈ (ZR)∗ (by definition of the latter).
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Lemma 279. Let T1, T2 be maximal tori in K. Then T1, T2 are conjugate.

Proof. Choose a generator t1 for T1. By the cnojugacy theorem, we may find
g ∈ G so that gt1g−1 ∈ T2. Since t1 is a generator, it follows that gT1g

−1 ⊆ T2.
Since T1, T2 are both maximal, we conclude that gT1g

−1 = T2, as required.

Definition 280. Given an element u ∈ K, the centralizer Z(u) := ZK(u) is
defined to be Z(u) := {g ∈ K : gug−1 = u}.

Similarly, for any subgroup U ≤ K, the centralizer Z(U) := ZK(U) is defined
to be Z(U) := ∩u∈UZ(u) = {g ∈ K : gug−1 = u for all u ∈ U}.

Lemma 281. Let T be a maximal torus. Then Z(T ) = T .

Proof. This is a tricky argument, so I’ve spelled the proof out a bit more ver-
bosely. (This one is worth studying and rewriting on your own, I think.)

Since T is abelian, we have T ⊆ Z(T ). Conversely, let g ∈ Z(T ). Let H be
the closure of the subgroup of K generated by T and g. Since g commutes with
T and T is abelian, we know that H is abelian.

If we were lucky enough that H happened to be connected, then we’d be
done: H would then be connected, compact, and abelian, hence a torus, but
since T is a maximal torus, the only possiblity is H = T , and thus g ∈ T .

Unfortunately, there is no obvious reason for H to be connected. We are led
to consider its connected component H0. Since T is connected, we know that
H contains T . Since H0 is connected, abelian and compact (being closed inside
K), it is a torus; since T is maximal, we must have H0 = T .

If we were lucky enough that g happened to belong to H0, then again, we’d
be done. But there is no obvious reason for that be the case. (Think about it.)
Fortunately, as we now explain, H/H0 is not too complicated, so we can make
the argument work anyway.

Let’s see. Since H0 ⊆ H is open, the quotient H/H0 is discrete; it is also
compact, hence finite. Moreover, by construction of H, that quotient is gener-
ated by the image g ∈ H/H0 of g. Let m ∈ Z≥1 be the smallest natural number
for which gm = 1, or equivalently, for which gm ∈ H0 = T . Let t ∈ T be a
generator of the torus. The torus is a divisible group, so we can find s ∈ T for
which sm = tg−m.

Set u := sg. We claim that u is a generator of H. To see that, we must check
that the powers of u are dense. We have um = t, and t is a generator of T , so
the closure of the set of powers of u contains T . The full group H is the union
over j ∈ Z/m of the cosets gjH0 = gjT . The set of powers umn+j = ujtn ∈ gjT
(n ∈ Z) are dense in that coset. Hence u generates H.

Now we use the big theorem on conjugacy of maximal tori to deduce that
u is contained in some maximal torus S of G (e.g., a conjugate of T ). Since
u generates H, we must also have H ⊆ S. So now we have the following
containments:

T ⊆ H ⊆ S.
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Since T is a maximal torus, the only possiblity is that T = S, hence that H = T ,
hence that g ∈ T .

Since g ∈ Z(T ) was arbitrary, we conclude finally that Z(T ) = T , as re-
quired.

34 Regular and singular elements

34.1 Definitions and basic properties
Recall that every element of K is contained in some maximal torus.

Definition 282. We say that an element g ∈ K is regular if it belongs to
exactly one maximal torus; if otherwise it belongs to at least two maximal tori,
then we call it singular.

Introduce the superscript reg, as in Kreg or T reg (for a maximal torus T ),
to denote “subset of regular elements.”

Being regular is a property of conjugacy classes: if x ∈ K is regular, then
so is gxg−1 for any g ∈ K, and vice-versa. Since every element is conjugate
to some element of any given maximal torus T , we can understand the regular
elements pretty well if we understand which elements of T are regular.

To that end, let R denote the set of roots of T . For each α ∈ R, set

Tα := ker(eα) ≤ T

where eα : T → C(1) is the character T 3 e(H) 7→ e(α(H)) (here H ∈ hR). We
refer to §33.5 for any unexplained notation.

More verbosely, since α(H) ∈ Z iff e(α(H)) = 1, one has

Tα = {e(H) : H ∈ hR, α(H) ∈ Z} .

Tα need not be connected, but its connected component (Tα)0 is easily seen to
be codimension one subtorus of T with Lie algebra tα = ker(α : t→ iR).

Proposition 283. An element of T is regular if and only if it doesn’t belong to
any the Tα, i.e.,

T reg = T − ∪α∈RTα.

Proof. For t ∈ T , let Z(t) := {g ∈ K : gtg−1 = t} denote its centralizer. It
is a Lie subgroup of K with Lie algebra z(t) = {X ∈ k : Ad(t)X = X} whose
complexification is in turn

V := z(t)C = {Z ∈ g : Ad(t)Z = Z},

where g := kC as usual. It is clear that Z(t) ⊇ T , hence that z(t) ⊇ t, hence
that V ⊇ h := tC. Consider the root space decomposition g = h⊕ (⊕α∈Rgα). If
Z ∈ g has the form Z = Z0 +

∑
Zα with Z0 ∈ h and Zα ∈ gα, then

Ad(t)Z0 = Z0, Ad(t)Zα = eα(t)Zα,
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hence
Ad(t)Z = Z ⇐⇒ eα(t) = 1 whenever Zα 6= 0.

We deduce that the following are equivalent:

1. V properly contains h.

2. There exists α ∈ R so that eα(t) = 1.

3. t ∈ ∪α∈RTα.

We now prove the required equivalence. Suppose first that t is not regular.
Then it is contained in some maximal torus T ′ other than T , hence Z(t) ⊇ T ′,
and thus z(t) ⊇ t′ := Lie(T ′); consequently z(t) properly contains t and so V
properly contains h; by the above, this is equivalent to t belonging to ∪α∈RTα.

Conversely, suppose t is regular. We claim then that Z(t)0 = T . Clearly
T ⊆ Z(t)0. Conversely, let g ∈ Z(t)0. By the main theorem on maximal tori
applied to Z(t)0, we can find a maximal torus S of Z(t)0 containing g. Since
t belongs to the center of Z(t)0, we know also that S contains t. Let S′ be a
maximal torus of G that contains S. Then S′ contains t; since t is regular, this
implies that S′ = T . Consequently g ∈ S ⊆ S′ = T . Since g was arbitrary, the
claim that Z(t)0 = T is proven. Consequently V = h and thus t /∈ ∪α∈RTα, as
required.

34.2 Singular elements have codimension at least three
We know that K = ∪g∈KgTg−1. In other words, the well-defined map

f : K/T × T → K

f(g, t) := gtg−1

is surjective. By the discussion above, the subset Ksing of singular elements is
the union over α ∈ R of the images of the well-defined maps

fα : K/Z(Tα)× Tα → K.

Set n := dim(K) and k := dim(T ). Clearly dim(Tα) = k − 1. On the other
hand, as discussed more leisurely in class, Z(Tα)C contains h⊕ gα ⊕ g−α. Thus
dim(Z(Tα)) ≥ k + 2, and so

image(fα) ≤ (n− (k + 2)) + (k − 1) ≤ n− 3.

Therefore the subset of singular elements in K has codimension ≤ 3.
It is a general fact that given a manifold M with submanifold M0 for which

M −M0 has codimension ≥ 3, the natural map π1(M0)→ π1(M) is an isomor-
phism.

A simpler example: if M −M0 has codimension ≥ 2, then the connected
components of M and M0 are in natural bijection (i.e., π0(M0) → π1(M) is a
bijection).
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34.3 The key covering morphism
We have a well-defined surjective map

f : K/T × T reg → Kreg.

The following was explained in lecture, and is not so difficult:

Lemma 284. This map is a covering map, i.e., a locally trivial fiber bundle
with discrete fibers. The fibers have cardinality |N/T |, where N := N(T ) :=
{g ∈ K : gTg−1 = T}.

34.4 The affine Weyl group and the components of the set
of regular elements

Let
hsreg
R := {H ∈ hR : α(H) /∈ Z for all α ∈ R}.

Equivalently, hsreg
R is the preimage under e : hR → T of T reg.

The open subset hsreg
R of hR is a union of complements of hyperplane. Each

connected component P of hsreg
R is convex, and admits a definition of the shape

P = {H ∈ hR : nα < α(H) < nα + 1 for all α ∈ R}

for some system of integral parameters nα ∈ Z attached to the roots α ∈ R.
It is worth trying to draw some pictures of hreg

R in all the rank 2 classical Lie
algebras (as attempted in lecture for B2).

The group (ZR)∗ acts on {H ∈ hR : α(H) ∈ Z} by translation: for Z ∈
(ZR)∗, one has α(Z) ∈ Z, hence α(H + Z) ∈ Z precisely when α(H) ∈ Z.
Consequently (ZR)∗ acts also on hsreg

R , by translation.
Recall that the Weyl group W is generated by the root reflections sα : h∗R →

h∗R defined for roots α ∈ R by sαλ := λ− λ(Hα)α. Recall also that sα(R) = R.
For each s ∈ W , we may define the transpose element ts, which acts now on
the space hR dual to the domain h∗R of s; the action of ts is characterized by
requiring that for H ∈ hR, one has for each λ ∈ h∗R that λ(tsH) = (sλ)(H).
This relation might be more pleasantly written

〈λ, tsH〉 = 〈sλ,H〉.

Exercise 38. Show that for α ∈ R and H ∈ hR, one has

tsαH = H − α(H)Hα.

From now on we might abuse notation slightly by writing simply sα := tsα
and identifying W with the subgroup {s := ts : s ∈W} of GL(hR). In this way,
we regard W as acting on hR.

This action of W preserves ZR∧. Indeed, for each s ∈ W , one has s(R∧) =
R∧, so the generators get permuted.
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For this reason, we can form the semidirect product ZR∧ oW . It is the
group consisting of all pairs (H, s), where s ∈ W,Z ∈ ZR∧. The multiplication
law is

(Z1, s1)(Z2, s2) = (Z1 + s1Z2, s1s2).

This group acts naturally on hR by the formula

(Z, s) ·H := Z + sH.

For each α ∈ R and n ∈ Z, consider the linear map sαn : hR → hR given by
reflection in the hyperplane {H : α(H) = n}; explicitly,

sαn(H) = H − (α(H)− n)Hα.

Clearly sα0 = sα ∈ W . On the other hand, it is easy to check (either by
straightforward algebra or by drawing a picture) that

sα1 ◦ sα0(H) = H +Hα

and more generally for n ∈ Z that

sα,n+1 ◦ sα,n(H) = H +Hα.

From these and the identities s2
α,n = 1, we see that the following subgroups of

GL(hR) coincide:

1. The image of ZR∧ oW .

2. The group generated by the sα,n, for α ∈ R and n ∈ Z.

Either group is called the affine Weyl group. I’ll denote that group Wa.
By the above discussion, Wa acts on the hyperplanes {H : α(H) = n} and

hence on their complement hsreg
R .

Lemma 285. Wa acts transitively on the set of connected components of hsreg
R .

Lemma 286. Given two such connected components P0, P1, take some base-
points Hi ∈ Pi and draw a path Ht from H0 to H1 that crosses at most one of
the hyperplanes {H : α(H) = n} at a time. One obtains in this way a sequence
of pairs (α1, n1), . . . , (αk, nk) so that as t goes from 0 to 1, the point Ht crosses
the planes {H : αi(H) = ni} in order from i = 1 to i = k. Then the composition
sαk,nk ◦ · · · ◦ sα1,n1

maps P0 to P1.

35 The distinguished SU(2)’s
Let notation be as in previous sections: K is a compact connected Lie group, T
is a maximal torus in K, plus all the other usual notation.

Let k := Lie(K) and g := kC := k ⊗R C, as usual. Let θ : g → g denote the
involution given by complex conjugation on the second factor of k⊗R C, so that
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when we identify k with a real Lie subalgebra of g, we have k = {X ∈ g : θ(X) =

X}. (In typical examples such as k =Φ(n), g = sln(C), the operator θ is given by
X 7→ −tX.) Then θ(H) = −H for all H ∈ hR = it, t := Lie(T ).

Let α belong to the set R of roots for T . Recall that g contains the subalgebra
sα = CHα ⊕ CXα ⊕ CYα, which is isomorphism in the evident way to sl2(C).
The subalgebra k(α) := {X ∈ sα : θ(X) = X} is a real Lie subalgebra of sα. We
can easily work out a basis for it. Since Hα ∈ hR, one has θ(Hα) = −Hα. One
has θ(gα) ⊆ g−α and θ(g−α) ⊆ gα, and θ2 = 1. It follows that the trace of θ
acting on sα = 0, so it has the same number of +1 and −1 eigenvalues, hence
dimR(k(α)) = 3. If we let x, y be any R-basis of the 1-dimensional C-vector
space gα, then it follows easily that {iHα, x + θ(x), y + θ(y)} given an R-basis
of k(α). Using the existence of a positive-definite K-invariant inner product
on k, we can show that k(α) ∼= su(2). (TODO: explain more.) Since SU(2) is
simply-connected, we get from this a morphism

Fα : SU(2)→ K

so that (dFα)C is the natural map sl2(C)→ sα. (Compare with homework 17.)
The image of Fα is contained in Z(Tα)0. We get an element

wα := Fα(

(
0 1
−1 0

)
)

for which Ad(wα) gives the root reflection sα.
We (mostly) explained in lecture how we can use this to identify N/T with

the Weyl group W (as defined using root reflections). One of the key steps was
to show that if an element w of N/T stabilizes a Weyl chamber C, then it is
the identity (i.e., w ∈ T ). For this we reduced by an averaging trick to the case
that w actually fixes some element H ∈ C. (TODO: explain more.)

36 Proofs regarding the basic homomorphism de-
scribnig fundamental groups of compact Lie
groups

36.1 Definition
Let notation be as usual. Recall that we initially define

f : hZ → π1(K)

by taking for f(H) the homotopy class [γ] of the path γ : [0, 1]→ K given by

γ(t) := e(tH) := exp(2πitH).
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36.2 The basic homomorphism: checking that it’s a ho-
momorphism

Given H1, H2 ∈ hZ, we obtain paths γ1, γ2 : [0, 1]→ K as above. Their compo-
sition in the fundamental group is the path (with domain [0, 1])

t 7→

{
γ1(2t) t ≤ 1/2

γ2(2t− 1) t ≥ 1/2

which we can rewrite as

t 7→

({
γ1(2t) t ≤ 1/2

1 t ≥ 1/2

)
·

({
1 t ≤ 1/2

γ2(2t− 1) t ≥ 1/2

)
.

Introduce a deformation parameter s ∈ [0, 1]. Choose a continuous monotoni-
cally decreasing function c : [0, 1] → [1, 2] for which c0 = 2 and c1 = 1. The
above path is then homotopic to

t 7→

({
γ1(cst) cst ≤ 1

1 cst ≥ 1

)
·

({
1 1 + cs(t− 1) ≤ 0

γ2(1 + cs(t− 1)) 1 + cs(t− 1) ≥ 0.

)
.

At deformation parameter s = 1, the above path is given by

t 7→ γ1(t)γ2(t) = e(t(H1 +H2)).

Therefore f : hZ → π1(K) is a homomorphism.

Exercise 39. Use an argument similar to that above to show that the funda-
mental group of any topological group is abelian.

36.3 Checking that some stuff is in its kernel
We now show that for H ∈ ZR∧ one has f(H) = 0. Since f is a homomorphism
and R∧ gives a basis for ZR∧, our task reduces to verifying for each α ∈ R that
the path

[0, 1] 3 t 7→ e(tHα) ∈ K (147)

is null-homotopic.
To that end, observe first that e( 1

2Hα) ∈ Tα; indeed, since α(Hα) = 2,

eα( 1
2Hα) = e(α( 1

2Hα)) = e(1) = 1.

Recall from §35 that there exists wα ∈ Z(Tα)0 for which Ad(wα)Hα = −Hα.
For s ∈ [0, 1], let cs ∈ Z(Tα)0 be such that c0 = 1 (the identity element) and
c1 = wα. We then have

cse(
1
2Hα)c−1

s = e( 1
2Hα) for all s.
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For this reason, the path (147) may be continuously deformed to

t 7→

{
e(tHα) t ≤ 1/2

cse(tHα)c−1
s t ≥ 1/2.

After we deform to s = 1, we get

wαe(tHα)w−1
α = e(tAd(wα)Hα) = e(−tHα) = e((1− t)Hα),

so we deduce that the path (147) is homotopic to

t 7→

{
e(tHα) t ≤ 1/2

e((1− t)Hα) t ≥ 1/2.
(148)

Now introduce another deformation parameter r, starting at r = 1/2 and de-
forming to r = 0. The path (148) is then homotopic to

t 7→


e(tHα) t ≤ r
e((2r − t)Hα) r ≤ t ≤ 2r

1 2r ≤ t.
(149)

When r = 0, we get the trivial path t 7→ 1. Thus the path (147) is nullhomotopic.

36.4 The basic homomorphism: checking that it’s surjec-
tive

We now argue that f is surjective. Recall that π1(K) = π1(Kreg). Let H0 be a
small element of hsreg

R , so that e(H0) is a small element of T reg. Any element of
π1(K) can be deformed a bit to start and end at e(H0), and then deformed a
bit more so that it lies entirely in Kreg. Using the covering morphism of §34.3,
we can then uniquely lift our path to K/T × T reg; this means concretely that
we may express our path uniquely in the form

[0, 1] 3 t 7→ ct exp(Ht)c
−1
t ,

where ct ∈ K/T satisfies c0 = eT , where Ht belongs to the same connected
component P of hsreg

R as H0 and satisfies Ht|t=0 = H0, and finally

c1 exp(H1)c−1
1 = exp(H0). (150)

This last condition says in particular that s := c1 satisfies sts−1 ∈ T reg for some
t := e(H1) ∈ T reg; since t is regular, it belongs to exactly one maximal torus,
and so since t ∈ T and t ∈ s−1Ts we deduce that T = s−1Ts, i.e., that s belongs
to the normalizer N := NK(T ) := {g ∈ K : gTg−1 = T} of T . We may also
rewrite the condition (150) in the form

s ·H1 +H0 ∈ hZ := ker(e : hR → T ), (151)
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where we abbreviate s ·H1 := Ad(s)H1.
We now want to deform our path so that it is obviously in the image of f .

To that end, let us first translate it by e(−H0) so that its basepoint is at the
origin again. We are then left to stare at the path

t 7→ e(−H0)cte(Ht)c
−1
t .

Since P is convex and H0, H1 ∈ P , there is no harm in assuming that Ht is the
straight line path from H0 to H1, given by Ht = H0 + t(H1 −H0). Using (151)
and the fact that s and s−1 preserve hZ, we may write

H1 = s−1 ·H0 + Z

for some Z ∈ hZ. We are thus looking at the path

t 7→ e(−H0)cte(H0 + t(s−1 ·H0 + Z −H0))c−1
t .

In the above path, we may continuously deform H0 to 0. This gives a family of
loops based at the origin. When we reach H0 = 0, we end up with the path

t 7→ cte(tZ)c−1
t . (152)

Since Z ∈ hZ, we have e(0Z) = e(1Z) = 1. So we can now deform every element
of ct to the identity element and get a homotopic path. In other words, we can
replace the above path by t 7→ cεte(tZ)c−1

εt for 0 ≤ ε ≤ 1; we start with ε = 1,
giving (152), and then deform to ε = 0, giving the path

t 7→ e(tZ),

which is obviously in the image of f .

36.5 The basic homomorphism: pinning down the kernel
We’ve seen that we have a well-defined surjective map

f : hZ/ZR∧ → π1(K).

We want to show that it’s actually injective. Let’s observe first also that for
any Z ∈ hZ and s ∈W = N/T , we have

f(sZ) = f(Z).

Indeed, sZ−Z belongs to ZR∧ (check this on the generators s = sα ofW , using
that Hα ∈ R∧), and f is a homomorphism. So this tells us that f(Z) doesn’t
change if we replace Z with anything in the same orbit under the affine Weyl
group Wa := ZR∧ oW (see §34.4). Fix some H0 ∈ hreg

R and let P denote its
connected component. Since Wa acts transitively on the connected components
and since the union of their closures is all of hR, any Z ∈ hZ is in theWa-orbit of
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some element of the closure of P−H0; since Z ∈ hZ, it can’t lie on the boundary
of P −H0 (check this; it’s easy), and so must lie in P −H0 itself.

What we want to show now is that the above map is an isomorphism. This
means we should show that if Z ∈ hZ has the property that the path t 7→ e(tZ)
is nullhomotopic, then Z belongs to ZR∧. By the above discussion, we may
assume that Z ∈ P − H0. Since P is convex, there is then no loss in shifting
basepoints a bit to suppose that we are considering the path in Kreg given by

γ(t) := e(H0 + tZ).

Under the covering map K/T × T reg → Kreg, the above path lifts uniquely to

γ̃(t) 7→ (eT,H0 + tZ).

The endpoint γ̃(1) = tZ of this lifting is moreover invariant under base-and-
end-point-preserving homotopies of γ. So if γ is nullhomotopic, then we must
have Z = 0. The proof is now complete.
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