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Exercise Sheet 1

Exercise 1: The hyperbolic plane
Consider the hyperbolic n-space

Hn =
{
p ∈ Rn+1 : b(p, p) = −1 and pn+1 ≥ 1

}
defined by the bilinear form b(p, q) = p1q1+ . . .+pnqn−pn+1qn+1. The tangent
space at a point p ∈ Hn is defined as

Tp Hn =

{
x ∈ Rn+1 :

There exists a smooth path γ : (−1, 1)→ Hn

such that γ(0) = p and γ̇(0) = x

}
.

(1) Show that Tp Hn =
{
x ∈ Rn+1 : b(p, x) = 0

}
.

(2) Show that gp = b|Tp Hn : Tp Hn×Tp Hn → R is a positive definite symmet-
ric bilinear form on Tp Hn. This means that gp is a scalar product and
(Hn, g) is a Riemannian manifold.

Hint: Use (1) and the Cauchy-Schwarz-inequality on Rn.

(3) Show that the map sp : Rn+1 → Rn+1, q 7→ −2p·b(p, q)−q is a well defined
geodesic symmetry, i.e. it is an involution, with an isolated fixed point p.
This means that the hyperbolic plane Hn is a symmetric space.

Exercise 2: The symmetric space P1(n)

Show that A 7→ gA tg defines a group action of SL(n,R) 3 g on

P1(n) =
{
A ∈Mn×n(R) : A = tA, detA = 1, A >> 0

}
.

Show that this action is transitive, i.e. ∀A,B ∈ P1(n) ∃g ∈ SL(n,R) : gA tg = B.
You may use the Linear-Algebra-fact that symmetric matrices are orthogonally
diagonalizable, i.e. if A = tA, then ∃Q ∈ SO(n,R) such that QA tQ is diagonal.

Exercise 3: Topological groups
A group G with a topology is a topological group if multiplicationm : G×G→ G
and inverse ι : G → G are continuous maps. Let G be a topological group and
e ∈ G the identity.

(1) Show that ∀g ∈ G, the inner automorphism φg(h) = ghg−1 is a homeo-
morphism.

(2) Show that the connected component of the identity G◦ is a normal closed
subgroup of G.

(3) Show that any open subgroup H < G is also closed.

Hint: Cosets.
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(4) Let U 3 e be an open neighborhood of e. Let H be the subgroup generated
by U , i.e.

H =
⋃
n≥1

(
U ∪ U−1

)n
.

Show that H is open.

(5) Show that connected groups are generated by any neighborhood of e.

Exercise 4: Lemma II.17
Recall that ∀f ∈ C∞(M), X ∈ Vect(M), we have f ·X ∈ C∞(M) via (f ·X)(p) =
f(p)X(p). If c is a smooth curve, we denote by Vect(c∗(TM)) the space of vector
fields along c. Prove the following lemma.

Lemma II.17: Let M be a smooth manifold, ∇ a connection on M and c : I →
M a smooth curve. Then there exists a unique linear map

D

dt
: Vect (c∗(TM))→ Vect (c∗(TM))

such that

(1) D
dt (f · V ) = f ′ · V + f · DdtV for all V ∈ Vect(c∗(TM)), f ∈ C∞(M)

(2)
(
D
dtV

)
(t) = (∇ċ(t)Y )(c(t)) for all V ∈ Vect(c∗(TM)), Y ∈ Vect(M), t ∈ I

with V (t) = Y (c(t)).

Hint: Work in local coordinates.

Exercise 5: Lemma II.20
Let now ϕ : M →M be a diffeomorphism. Recall that the pushforward ϕ∗X is
defined as (ϕ∗X)(p) =

(
Dϕ−1(p) ϕ

) (
X(ϕ−1(p))

)
for X ∈ Vect(M), p ∈ M . The

goal is to prove the following lemma.

Lemma II.20: Let ∇ be the Levi-Civita connection of a Riemannian manifold
(M, g) and ϕ ∈ Is(X). Then ∇ϕ∗X(ϕ∗Y ) = ϕ∗(∇XY ).

(1) Show that DX Y := ϕ−1∗ (∇ϕ∗X(ϕ∗Y )) is a connection.

(2) Show that DX Y −DY X = [X,Y ].

(3) Show that X < Y,Z > = < DX Y,Z > + < Y,DX Z >.

(4) Use that the Levi-Civita-connection is unique to conclude the lemma.
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