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Exercise Sheet 1

Exercise 1: The hyperbolic plane
Consider the hyperbolic n-space

H" = {p € R""": b(p,p) = —1 and ppyq > 1}

defined by the bilinear form b(p, ¢) = p1g1 +. . . + Pndn — Pn+1dn+1. The tangent
space at a point p € H" is defined as

There exists a smooth path v: (—1,1) — H"
n _ n+1, b v J
LH" = {m R such that v(0) = p and 4(0) =« } ‘
(1) Show that T, H" = {z € R"*": b(p,x) = 0}.

(2) Show that g, = b|r, mn: T, H" x T, H" — R is a positive definite symmet-
ric bilinear form on T, H". This means that g, is a scalar product and
(H", g) is a Riemannian manifold.

Hint: Use (1) and the Cauchy-Schwarz-inequality on R".

(3) Show that the map s,: R™™ — R""! ¢ —2p-b(p, q) —q is a well defined
geodesic symmetry, i.e. it is an involution, with an isolated fixed point p.
This means that the hyperbolic plane H" is a symmetric space.

Exercise 2: The symmetric space P'(n)

Show that A — gA'g defines a group action of SL(n,R) 3 g on
Pl(n) = {A € Myxn(R): A="4, detA=1, A>>0}.

Show that this action is transitive, i.e. VA, B € P'(n) 3g € SL(n,R): gA'g = B.
You may use the Linear-Algebra-fact that symmetric matrices are orthogonally
diagonalizable, i.c. if A = A, then 3Q € SO(n,R) such that QA'Q is diagonal.

Exercise 3: Topological groups

A group G with a topology is a topological group if multiplication m: GxG — G
and inverse ¢: G — G are continuous maps. Let G be a topological group and
e € G the identity.

(1) Show that Vg € G, the inner automorphism ¢4(h) = ghg™! is a homeo-
morphism.

(2) Show that the connected component of the identity G° is a normal closed
subgroup of G.

(3) Show that any open subgroup H < G is also closed.
Hint: Cosets.
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(4) Let U > e be an open neighborhood of e. Let H be the subgroup generated
by U, i.e.
H=|]JWwuu™".

n>1

Show that H is open.

(5) Show that connected groups are generated by any neighborhood of e.

Exercise 4: Lemma I1.17

Recall that Vf € C°°(M), X € Vect(M), we have f-X € C®°(M) via (f-X)(p) =
f(p)X (p). If ¢ is a smooth curve, we denote by Vect(c*(T'M)) the space of vector
fields along c. Prove the following lemma.

Lemma I1.17: Let M be a smooth manifold, V a connection on M and ¢: I —
M a smooth curve. Then there exists a unique linear map

% : Vect (¢*(TM)) — Vect (¢*(TM))

such that
(D) 2(f-V)=f -V+f 2Viorall Ve Vect(c*(T'M)), f € C(M)
(2) (BV) () = (VewY)(c(t)) for all V € Vect(c*(TM)),Y € Vect(M),t € I
with V(t) = Y(c(t))

Hint: Work in local coordinates.

Exercise 5: Lemma I1.20

Let now ¢: M — M be a diffeomorphism. Recall that the pushforward ¢, X is
defined as (¢, X)(p) = (Dp-1(p) ¢) (X(¢7*(p))) for X € Vect(M),p € M. The
goal is to prove the following lemma.

Lemma II1.20: Let V be the Levi-Civita connection of a Riemannian manifold
(M, g) and ¢ € Is(X). Then V,, x(¢.Y) = ¢.(VxY).

1) Show that Dx Y := ¢! (V,. x(¢.Y)) is a connection.

)
2) Show that Dy Y — Dy X = [X,Y].
3)
)

(
(
(3) Show that X <Y, Z>=<DxVY,Z >+ <Y,Dx Z >.
(

4) Use that the Levi-Civita-connection is unique to conclude the lemma.



