ETH Zürich	D-MATH	Symmetric Spaces
Prof. Dr. Marc Burger	Raphael Appenzeller	March 4, 2020

Exercise Sheet 1

Exercise 1: The hyperbolic plane

Consider the hyperbolic n-space

$$\mathbb{H}^{n} = \left\{ p \in \mathbb{R}^{n+1} \colon b(p,p) = -1 \text{ and } p_{n+1} \ge 1 \right\}$$

defined by the bilinear form $b(p,q) = p_1q_1 + \ldots + p_nq_n - p_{n+1}q_{n+1}$. The tangent space at a point $p \in \mathbb{H}^n$ is defined as

$$T_p \mathbb{H}^n = \left\{ x \in \mathbb{R}^{n+1} \colon \begin{array}{c} \text{There exists a smooth path } \gamma \colon (-1,1) \to \mathbb{H}^n \\ \text{such that } \gamma(0) = p \text{ and } \dot{\gamma}(0) = x \end{array} \right\}.$$

- (1) Show that $T_p \mathbb{H}^n = \{x \in \mathbb{R}^{n+1} \colon b(p, x) = 0\}.$
- (2) Show that $g_p = b|_{T_p \mathbb{H}^n} : T_p \mathbb{H}^n \times T_p \mathbb{H}^n \to \mathbb{R}$ is a positive definite symmetric bilinear form on $T_p \mathbb{H}^n$. This means that g_p is a scalar product and (\mathbb{H}^n, g) is a Riemannian manifold.

Hint: Use (1) and the Cauchy-Schwarz-inequality on \mathbb{R}^n *.*

(3) Show that the map $s_p: \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}, q \mapsto -2p \cdot b(p,q) - q$ is a well defined geodesic symmetry, i.e. it is an involution, with an isolated fixed point p. This means that the hyperbolic plane \mathbb{H}^n is a symmetric space.

Exercise 2: The symmetric space $\mathcal{P}^1(n)$

Show that $A \mapsto gA^{t}g$ defines a group action of $\mathrm{SL}(n,\mathbb{R}) \ni g$ on

$$\mathcal{P}^{1}(n) = \left\{ A \in M_{n \times n}(\mathbb{R}) \colon A = {}^{t}A, \ \det A = 1, \ A \gg 0 \right\}.$$

Show that this action is transitive, i.e. $\forall A, B \in \mathcal{P}^1(n) \exists g \in \mathrm{SL}(n, \mathbb{R}) \colon gA^tg = B$. You may use the Linear-Algebra-fact that symmetric matrices are orthogonally diagonalizable, i.e. if $A = {}^tA$, then $\exists Q \in \mathrm{SO}(n, \mathbb{R})$ such that QA^tQ is diagonal.

Exercise 3: Topological groups

A group G with a topology is a *topological group* if multiplication $m: G \times G \to G$ and inverse $\iota: G \to G$ are continuous maps. Let G be a topological group and $e \in G$ the identity.

- (1) Show that $\forall g \in G$, the inner automorphism $\phi_g(h) = ghg^{-1}$ is a homeomorphism.
- (2) Show that the connected component of the identity G° is a normal closed subgroup of G.
- (3) Show that any open subgroup H < G is also closed.

Hint: Cosets.

(4) Let $U \ni e$ be an open neighborhood of e. Let H be the subgroup generated by U, i.e.

$$H = \bigcup_{n \ge 1} \left(U \cup U^{-1} \right)^n$$

Show that H is open.

(5) Show that connected groups are generated by any neighborhood of e.

Exercise 4: Lemma II.17

Recall that $\forall f \in C^{\infty}(M), X \in \text{Vect}(M)$, we have $f \cdot X \in C^{\infty}(M)$ via $(f \cdot X)(p) = f(p)X(p)$. If c is a smooth curve, we denote by $\text{Vect}(c^*(TM))$ the space of vector fields along c. Prove the following lemma.

Lemma II.17: Let M be a smooth manifold, ∇ a connection on M and $c: I \to M$ a smooth curve. Then there exists a unique linear map

$$\frac{\mathrm{D}}{dt}: \operatorname{Vect}\left(c^{*}(TM)\right) \to \operatorname{Vect}\left(c^{*}(TM)\right)$$

such that

- (1) $\frac{\mathrm{D}}{dt}(f \cdot V) = f' \cdot V + f \cdot \frac{\mathrm{D}}{dt}V$ for all $V \in \operatorname{Vect}(c^*(TM)), f \in C^{\infty}(M)$
- (2) $\left(\frac{\mathrm{D}}{dt}V\right)(t) = (\nabla_{\dot{c}(t)}Y)(c(t))$ for all $V \in \operatorname{Vect}(c^*(TM)), Y \in \operatorname{Vect}(M), t \in I$ with V(t) = Y(c(t)).

Hint: Work in local coordinates.

Exercise 5: Lemma II.20

Let now $\varphi \colon M \to M$ be a diffeomorphism. Recall that the pushforward φ_*X is defined as $(\varphi_*X)(p) = (\mathcal{D}_{\varphi^{-1}(p)}\varphi) (X(\varphi^{-1}(p)))$ for $X \in \operatorname{Vect}(M), p \in M$. The goal is to prove the following lemma.

Lemma II.20: Let ∇ be the Levi-Civita connection of a Riemannian manifold (M,g) and $\varphi \in Is(X)$. Then $\nabla_{\varphi_*X}(\varphi_*Y) = \varphi_*(\nabla_X Y)$.

- (1) Show that $D_X Y := \varphi_*^{-1} (\nabla_{\varphi_* X}(\varphi_* Y))$ is a connection.
- (2) Show that $D_X Y D_Y X = [X, Y]$.
- (3) Show that $X < Y, Z > = < D_X Y, Z > + < Y, D_X Z >$.
- (4) Use that the Levi-Civita-connection is unique to conclude the lemma.