Exercise Sheet 3

Exercise 1: Exercise II.43: Properties of totally geodesic submanifolds

Assume $N \subset M$ is totally geodesic. Prove the following

- (1) The inclusion $(N, d_N) \to (M, d_M)$ is locally distance-preserving.
- (2) Every N-geodesic is an M-geodesic and every M-geodesic that is fully contained in N is an N-geodesic.

Exercise 2: Prop II.46: Parallel transport

Prove that the following are equivalent

- (i) $N \subset M$ is totally geodesic.
- (ii) The parallel transport for the Riemannian metric on M along curves contained in N preserves the tangent space distribution $\{T_pN: p \in N\}$.

Hint: Express $\frac{D}{dt}V(t) = 0$ and $\nabla_{\dot{\gamma}}\dot{\gamma} = 0$ in local coordinates.

Exercise 3: Derivative of the exponential map

We follow S. Sternberg's "Lie algebras" (see reference on website). We need to recall the notion of a differential form. Let V be a finite-dimensional vectorspace. Let $\bigwedge^k V$ denote the space of alternating k-forms on V. Given $\alpha \in \bigwedge^k V$, $\beta \in \bigwedge^l V$, the wedge product $\alpha \land \beta \in \bigwedge^{k+l} V$ is bilinear, associative and satisfies

$$\alpha \wedge \beta = (-1)^{k \cdot l} \beta \wedge \alpha.$$

Now let G be a Lie group and \mathfrak{g} its Lie algebra. A \mathfrak{g} -valued differential k-form ω on G, associates (in a smooth way) to every point $g \in G$ a k-form

$$\omega_g \in \bigwedge^k \{ T_g G \to \mathfrak{g} \colon \text{linear} \}$$

The set of all \mathfrak{g} -valued differential k-forms is denoted by $\Omega^k(G, \mathfrak{g})$. The exterior derivative $d: \Omega^k(G, \mathfrak{g}) \to \Omega^{k+1}(G, \mathfrak{g})$ is defined by the following three properties.

- (i) For a differential 0-form $f: G \to \mathfrak{g}$, the exterior derivative $df \in \Omega^1(G, \mathfrak{g})$ is given by the total derivative $df_g = D_g f: T_g G \to \mathfrak{g}$.
- (ii) $d \circ d = 0$.
- (iii) $d(\alpha \wedge \beta) = d\alpha \wedge \beta + (-1)^k (\alpha \wedge d\beta)$ for $\alpha \in \Omega^k(G, \mathfrak{g})$.

The Maurer-Cartan-form $\theta \in \Omega^1(G, \mathfrak{g})$ is defined by

$$\theta_A = \mathcal{D}_A \, L_{A^{-1}} \colon T_A G \to T_{\mathrm{Id}} G = \mathfrak{g}$$

where L is lefttranslation and $A \in G$.

(1) Now let $G < \operatorname{GL}(n, \mathbb{R})$. Interpret A as the identity function $A: G \mapsto M_{n \times n}, a \mapsto a$. Then $dA_a = D_a A: T_a G \to M_{n \times n}, X \mapsto X$ is also the identity. Prove that $\theta = A^{-1} \cdot dA$.

Hint: Choose γ : $\mathbb{R} \to G$ with $\gamma(0) = a, \dot{\gamma}(0) \in T_a G$.

- (2) Prove $d(A^{-1}) = -A^{-1} \cdot dA \cdot A^{-1}$.
- (3) Prove $d\theta = -\theta \wedge \theta$ (Maurer-Cartan-equation).

Hint: Use associativity of \land *-product:*

$$\omega\cdot X\wedge \eta=\omega\wedge X\wedge \eta=\omega\wedge X\cdot \eta$$

for $X \in \mathfrak{g}$ and $\omega, \eta \in \Omega^k(G, \mathfrak{g})$.

(4) Let $g: s \mathbb{R} \oplus t \mathbb{R} = \mathbb{R}^2 \to G$. The pullback $g^* \theta \in \Omega^1(\mathbb{R}^2, \mathfrak{g})$, defined by $g^* \theta_{(s,t)} = \theta_{g(s,t)} D_{(s,t)} g$, is a differential 1-form and can be written as

$$g^*\theta = \alpha \cdot ds + \beta \cdot dt$$

for some $\alpha, \beta \colon \mathbb{R}^2 \to \mathfrak{g}$. Show that

$$g^*\theta_{(s,t)} \cdot \begin{pmatrix} 1\\ 0 \end{pmatrix} = \alpha(s,t)$$
$$g^*\theta_{(s,t)} \cdot \begin{pmatrix} 0\\ 1 \end{pmatrix} = \beta(s,t)$$

and use it to calculate

$$\alpha(s,t) = g(s,t)^{-1} \cdot \frac{\partial g}{\partial s}(s,t)$$
$$\beta(s,t) = g(s,t)^{-1} \cdot \frac{\partial g}{\partial t}(s,t).$$

Hint: ds is the derivative of $s: \mathbb{R}^2 \to \mathbb{R}$.

- (5) Prove $(\alpha ds + \beta dt) \wedge (\alpha ds + \beta dt) = [\alpha, \beta] ds \wedge dt$.
- (6) Prove $d\alpha = \frac{\partial \alpha}{\partial s} ds + \frac{\partial \alpha}{\partial t} dt$.
- (7) The pullback commutes with d and \wedge , so

$$d(q^*\theta) + q^*\theta \wedge q^*\theta = 0$$

follows from the Maurer-Cartan equation (3). Prove

$$\frac{\partial\beta}{\partial s} - \frac{\partial\alpha}{\partial t} + [\alpha, \beta] = 0.$$

(8) Let $C: \mathbb{R} \to \mathfrak{g}$ be a curve. Define $g(s,t) = \exp(sC(t))$. Calculate $\alpha(s,t)$ in this case. Then prove

$$rac{\partial eta}{\partial s} - C'(t) + [C(t), eta] = 0$$
 and
 $eta(0, t) = 0.$

(9) We now fix t and set C = C(t), C' = C'(t). We get the differential equation

$$\frac{d\beta}{ds} = -(\operatorname{ad} C)\beta + C',$$

$$\beta(0) = 0.$$

Use the Taylor expansion to get the solution

$$\beta(s,t) = \sum_{n=1}^{\infty} \frac{s^n (-\operatorname{ad} C(t))^{n-1}}{n!} \cdot C'(t).$$

Combine this with (4) and put s = 1 to get

$$\exp(-C(t)) \cdot \frac{d}{dt} \exp(C(t)) = \left(\sum_{n=0}^{\infty} \frac{(-\operatorname{ad}(C(t)))^n}{(n+1)!}\right) C'(t).$$

(10) Denote X = C(0) and $\eta = C'(0)$. Show that

$$\exp(-C(t)) \cdot \frac{d}{dt} \exp(C(t)) \bigg|_{t=0} = \theta_{\exp(X)} D_X \exp \eta$$

and conclude the formula for the derivative of the exponential function (Thm ${\rm II.40})$

$$\mathbf{D}_X \exp = \left(\mathbf{D}_e \, L_{\exp(X)} \right) \left(\sum_{n=0}^{\infty} \frac{(-\operatorname{ad}(X))^n}{(n+1)!} \right).$$