ETH Zürich	D-MATH	Symmetric Spaces
Prof. Dr. Marc Burger	Raphael Appenzeller	April 17, 2020

Exercise Sheet 4

Exercise 1: Compact symmetric spaces

Let K be a compact connected Lie group with $\dim(K) \ge 1$. Define $G = K \times K$ and $\sigma(g,h) = (h,g)$ for $(g,h) \in G$.

- (1) Show that (G, G^{σ}) is a Riemannian symmetric pair with involution σ .
- (2) Consider the action $(g,h).k = gkh^{-1}$ of $(g,h) \in G$ on $k \in K$. Show that

$$G/G^{\sigma} \to K$$

is a homeomorphism.

Recall that by the Hopf-Rinow-theorem, the following are equivalent for a Riemannian manifold M:

- The closed bounded subsets of M are compact.
- *M* is complete as a metric space.
- M is geodesically complete, i.e. $\forall p \in M, \operatorname{Exp}_p: T_pM \to M$ is defined on the entire tangent space T_pM .

Moreover, if M satisfies the above, then any two points $p, q \in M$ can be joined by a (minimal) geodesic.

(3) Use the Hopf-Rinow theorem to show that the Lie group exponential is surjective.

Exercise 2: Theorem III.9: Classification of effective OSP

Let (\mathfrak{g}, θ) be an effective orthogonal symmetric Lie-algebra. We have the Cartan decomposition $\mathfrak{g} = \mathfrak{u} \oplus \mathfrak{e} \ (= \mathfrak{k} \oplus \mathfrak{p})$. We decomposed $\mathfrak{e} = \mathfrak{e}_0 \oplus \mathfrak{e}_+ \oplus \mathfrak{e}_-$ and defined $\mathfrak{u}_+ = [\mathfrak{e}_+, \mathfrak{e}_+]$ and $\mathfrak{u}_- = [\mathfrak{e}_-, \mathfrak{e}_-]$. \mathfrak{u}_0 is defined to be the orthogonal complement of $\mathfrak{u}_+ \oplus \mathfrak{u}_-$ in \mathfrak{u} .

- (1) Prove that $\mathfrak{u}_{-} \oplus \mathfrak{e}_{-}$ and $\mathfrak{u}_{+} \oplus \mathfrak{e}_{+}$ are ideals in \mathfrak{g} .
- (2) Prove that $\mathfrak{u}_0 \oplus \mathfrak{e}_0, \mathfrak{u}_- \oplus \mathfrak{e}_-$ and $\mathfrak{u}_+ \oplus \mathfrak{e}_+$ are θ -stable and pairwise orthogonal with respect to $B_{\mathfrak{g}}$.
- (3) Find an OSL (\mathfrak{g}, θ) , such that $\mathfrak{e}_0 = 0$, but $\mathfrak{u}_0 \neq 0$.
- (4) Let $\mathfrak{n} \triangleleft \mathfrak{g}$ be an ideal of a Lie-algebra \mathfrak{g} . Prove that $B_{\mathfrak{n}} = B_{\mathfrak{g}}|_{\mathfrak{n} \times \mathfrak{n}}$.
- (5) Find an example of a subalgebra $\mathfrak{n} \subset \mathfrak{g}$, such that $B_{\mathfrak{n}} \neq B_{\mathfrak{g}}|_{\mathfrak{n} \times \mathfrak{n}}$.
- (6) Let g = g₁ ⊕ g₂ a direct sum of two ideals g₁ and g₂. Further let t₁ and t₂ be subalgebras of g₁ and g₂. Show that t₁ + t₂ is compactly embedded in g if and only if t₁ and t₂ is compactly embedded in g₁ and g₂.

This implies that $\mathfrak{u}_0, \mathfrak{u}_-, \mathfrak{u}_+$ are compactly embedded in $\mathfrak{g}_0, \mathfrak{g}_-$ and \mathfrak{g}_+ . Hint: For connected G and K < G, there is an isomorphism

$$K/(K \cap Z(G)) \cong \operatorname{Ad}_G(K)$$

(compare Sheet 2, exercise 4(2)). Use Lie(Ad_G(K)) = ad_{Lie(G)}(Lie(K)).

Exercise 3: Theorem III.19: Classification of s.c. RSS

- (1) Let $H, N \triangleleft G$ be two normal subgroups. Show that $[N, H] \subset N \cap H$.
- (2) Let H, N < G be connected subgroups. Show that [N, H] is a connected subgroup of G.

Let M be a simply connected Riemannian symmetric space. Then $\mathfrak{g} = \text{Lie}(\text{Is}(M)^\circ) = \mathfrak{g}_0 \oplus \mathfrak{g}_+ \oplus \mathfrak{g}_-$. We get corresponding Lie-subgroups $G_0, G_+, G_$ and their universal covers $\tilde{G}_0, \tilde{G}_+, \tilde{G}_-$. Let K_0, K_+, K_- be the Lie-subgroups associated to $\mathfrak{k}_0, \mathfrak{k}_+, \mathfrak{k}_-$, which come from the Cartan-decomposition of $\mathfrak{g}_0, \mathfrak{g}_+, \mathfrak{g}_-$.

(3) Show that $(\tilde{G}_0, K_0), (\tilde{G}_+, K_+)$ and (\tilde{G}_-, K_-) are Riemannian symmetric pairs.