ETH Zürich	D-MATH	Symmetric Spaces
Prof. Dr. Marc Burger	Raphael Appenzeller	March 19, 2020

Solution Sheet 1

Exercise 1: The hyperbolic plane

Consider the hyperbolic n-space

$$\mathbb{H}^{n} = \left\{ p \in \mathbb{R}^{n+1} \colon b(p,p) = -1 \text{ and } p_{n+1} \ge 1 \right\}$$

defined by the bilinear form $b(p,q) = p_1q_1 + \ldots + p_nq_n - p_{n+1}q_{n+1}$. The tangent space at a point $p \in \mathbb{H}^n$ is defined as

$$T_p \mathbb{H}^n = \left\{ x \in \mathbb{R}^{n+1} \colon \begin{array}{c} \text{There exists a smooth path } \gamma \colon (-1,1) \to \mathbb{H}^n \\ \text{such that } \gamma(0) = p \text{ and } \dot{\gamma}(0) = x \end{array} \right\}.$$

(1) Show that $T_p \mathbb{H}^n = \{x \in \mathbb{R}^{n+1} \colon b(p,x) = 0\}.$

Solution:

Let $x \in T_p \mathbb{H}^n$. Let $\gamma: (-1,1) \to \mathbb{H}^n$ be a smooth path such that $\gamma(0) = p$ and $\dot{\gamma}(0) = x$. For every $t \in (-1,1)$, $b(\gamma(t), \gamma(t)) = -1$, since γ takes values in \mathbb{H}^n . We write $\gamma(t) = (\gamma_1(t), \cdots, \gamma_{n+1}(t))$. Taking derivatives results in

$$0 = \frac{d}{dt}b(\gamma(t), \gamma(t)) = \frac{d}{dt}\left(\sum_{i=1}^{n} \gamma_i(t)^2 - \gamma_{n+1}^2\right) = \sum_{i=1}^{n} 2\gamma_i(t)\dot{\gamma}_i(t) - 2\gamma_{n+1}(t)\dot{\gamma}_{n+1}(t)$$

and at t = 0 this is

$$0 = \sum_{i=1}^{n} \gamma_i(0) \dot{\gamma}_i(0) - \gamma_{n+1}(0) \dot{\gamma}_{n+1}(0) = \sum_{i=1}^{n} p_i x_i - p_{n+1} \cdot x_{n+1} = b(p, x).$$

We have shown that $T_p \mathbb{H}^n \subset \{x \in \mathbb{R}^{n+1} \colon b(p,x) = 0\}$ but since dim $T_p \mathbb{H}^n = n$ we have equality.

(2) Show that $g_p = b|_{T_p \mathbb{H}^n} : T_p \mathbb{H}^n \times T_p \mathbb{H}^n \to \mathbb{R}$ is a positive definite symmetric bilinear form on $T_p \mathbb{H}^n$. This means that g_p is a scalar product and (\mathbb{H}^n, g) is a Riemannian manifold.

Hint: Use (1) and the Cauchy-Schwarz-inequality on \mathbb{R}^n *.*

Solution:

Bilinearity and symmetry b(x, y) = b(y, x) follow directly. To show positive definiteness, we use the definition of \mathbb{H}^n and (1) to write

$$p = \left(\overrightarrow{p}, \sqrt{|\overrightarrow{p}|^2 + 1}\right) \in \mathbb{H}^n \subset \mathbb{R}^n \times \mathbb{R}$$
$$x = \left(\overrightarrow{x}, \frac{\langle \overrightarrow{p}, \overrightarrow{x} \rangle}{\sqrt{|\overrightarrow{p}|^2 + 1}}\right) \in T_p \,\mathbb{H}^n \subset \mathbb{R}^n \times \mathbb{R}$$

where $\langle \cdot, \cdot \rangle$ is the standard scalar product in \mathbb{R}^n . To show positive definiteness it remains to prove that for all $x \in T_p \mathbb{H}^n$

 $b(x,x) \ge 0.$

ETH Zürich	D-MATH	Symmetric Spaces
Prof. Dr. Marc Burger	Raphael Appenzeller	March 19, 2020

Indeed, by the Cauchy-Schwarz-inequality

$$< p, x >^2 \le |\overrightarrow{p}|^2 |\overrightarrow{x}|^2 \le |\overrightarrow{p}|^2 |\overrightarrow{x}|^2 + |\overrightarrow{x}|^2 = (|\overrightarrow{p}|^2 + 1) |\overrightarrow{x}|^2$$

and thus

$$|\overrightarrow{x}|^2 \ge \frac{\langle p, x \rangle^2}{|\overrightarrow{p}|^2} + 1$$

and

$$b(x,x) = |\overrightarrow{x}|^2 - \frac{\langle p, x \rangle^2}{|\overrightarrow{p}|^2 + 1} \ge 0.$$

(3) Show that the map $s_p \colon \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}, q \mapsto -2p \cdot b(p,q) - q$ is a well defined geodesic symmetry of \mathbb{H}^n , i.e. it is an involution, with an isolated fixed point p. This means that the hyperbolic plane \mathbb{H}^n is a symmetric space.

Solution:

To see that s_p is well-defined we write

$$p = \left(\frac{\overrightarrow{p}}{\sqrt{|\overrightarrow{p}|^2 + 1}}\right), \quad q = \left(\frac{\overrightarrow{q}}{\sqrt{|\overrightarrow{q}|^2 + 1}}\right) \in \mathbb{H}^n \subset \mathbb{R}^n \times \mathbb{R}.$$

We have

$$s_p(q) = -2pb(p,q) - q = \left(\frac{-2\overrightarrow{p}b(p,q) - \overrightarrow{q}}{-2\sqrt{|\overrightarrow{p}|^2 + 1}b(p,q) - \sqrt{|\overrightarrow{q}|^2 + 1}}\right)$$

where

$$b(p,q) = \langle \overrightarrow{p}, \overrightarrow{q} \rangle - \sqrt{|\overrightarrow{p}|^2 + 1} \sqrt{|\overrightarrow{q}|^2 + 1}.$$

The calculation

$$b(s_{p}(q), s_{p}(q)) = 4|\overrightarrow{p}|^{2}b(p, q)^{2} + 4 < \overrightarrow{p}, \overrightarrow{q} > b(p, q) + |\overrightarrow{q}|^{2} - \left[4(|\overrightarrow{p}|^{2} + 1)b(p, q)^{2} + 4\sqrt{|\overrightarrow{p}|^{2} + 1}\sqrt{|\overrightarrow{q}|^{2} + 1}b(p, q) + |\overrightarrow{q}|^{2} + 1\right] = 4 < \overrightarrow{p}, \overrightarrow{q} > b(p, q) - 4b(p, q)^{2} - 4\sqrt{|\overrightarrow{p}|^{2} + 1}\sqrt{|\overrightarrow{q}|^{2} + 1}b(p, q) - 1 = 4b(p, q)b(p, q) - 4b(p, q)^{2} - 1 = -1$$

shows that $s_p(q) \in \mathbb{H}^2$.

Note that $s_p(p) = -2p(-1) - p = p$ is a fixed point. Next we show that s_p is an isometry. We need to look at the differential

$$D_p s_p \colon T_p M \to T_{s_p(p)} M = T_p M.$$

of $s_p: q \mapsto -2pb(p,q) - q$. If we write the points $q, p \in \mathbb{H}^n \subset \mathbb{R}^{n+1}$ in the standard basis $\{e_i\}_i$, we get the partial derivatives

$$\begin{split} \frac{\partial}{\partial x_i} b(p,\cdot) &= \begin{cases} p_i & \text{if } i \leq n \\ -p_{n+1} & \text{if } i = n+1 \\ \\ \frac{\partial}{\partial x_i} s_p &= \begin{cases} -2p \cdot p_i - e_i & \text{if } i \leq n \\ 2p \cdot p_{n+1} - e_{n+1} & \text{if } i = n+1 \end{cases} \end{split}$$

ETH Zürich	D-MATH	Symmetric Spaces
Prof. Dr. Marc Burger	Raphael Appenzeller	March 19, 2020

and thus for $v \in T_p M$ we have

$$(\mathbf{D}_{p} s_{p})v = \begin{pmatrix} -2p_{1}^{2} - 1 & -2p_{1}p_{2} & \cdots & 2p_{1}p_{n+1} \\ -2p_{2}p_{1} & -2p_{2}^{2} - 1 & \cdots & 2p_{2}p_{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ -2p_{n+1}p_{1} & -2p_{n+1}p_{2} & \cdots & 2p_{n+1}^{2} - 1 \end{pmatrix} v$$
$$= \begin{pmatrix} -2p_{1}^{2}v_{1} - 2p_{1}p_{2}v_{2} - \cdots + 2p_{1}p_{n+1}v_{n+1} \\ -2p_{2}p_{1}v_{1} - 2p_{2}^{2}v_{2} - \cdots + 2p_{2}p_{n+1}v_{n+1} \\ \vdots \\ -2p_{n+1}p_{1}v_{1} - 2p_{n+1}p_{2}v_{2} - \cdots + 2p_{n+1}^{2}v_{n+1} \end{pmatrix} - v$$
$$= \begin{pmatrix} -2b(p, v)p_{1} \\ -2b(p, v)p_{2} \\ \vdots \\ -2b(p, v)p_{n} \end{pmatrix} - v = -v$$

where we used that b(p, v) = 0 from part (1). By bilinearity from (2)

$$g_{s_p(p)}((D_p s_p)v, (D_p s_p)w) = g_p(-v, -w) = g_p(v, w),$$

so s_p is an isometry.

We need to show that s_p is a symmetry. By lemma II.6 of the lecture, $D_p s_p = -\operatorname{Id}_{T_p \mathbb{H}^n}$ is equivalent to $s_p \circ s_p = \operatorname{Id}_{\mathbb{H}^n}$. Alternatively the calculation

$$s_p \circ s_p(q) = s_p(-2pb(p,q) - q)$$

= -2pb(p, -2pb(p,q) - q) - (-2pb(p,q) - q)
= 4pb(p,q)b(p,p) + 2pb(p,q) + 2pb(p,q) + q = q

shows the same. That p is an isolated fixed point of s_p can be seen by the following argument. Let $q \in \mathbb{H}^n$ be a fixed point $s_p(q) = q$, then -2pb(p,q) - q = q, so q = -b(p,q)p, in particular $q = \lambda p$ is a scaled version of p for $\lambda = -b(p,q)$. But since $p, q \in \mathbb{H}^n$, $-1 = b(q,q) = b(\lambda p, \lambda p) = \lambda^2 b(p,p) = -1$, so $\lambda = \pm 1$. The $\lambda = -1$ solution corresponds to $q_{n+1} < 0$ which is excluded since \mathbb{H}^n is only the upper hyperboloid. We showed that q = p is the only fixed point of s_p , in particular it is an isolated fixed point.

This concludes the proof, that \mathbb{H}^n is a symmetric space.

Exercise 2: The symmetric space $\mathcal{P}^1(n)$

Show that $A \mapsto gA^{t}g$ defines a group action of $SL(n, \mathbb{R}) \ni g$ on

$$\mathcal{P}^{1}(n) = \left\{ A \in M_{n \times n}(\mathbb{R}) \colon A = {}^{t}\!\!A, \ \det A = 1, \ A >> 0 \right\}.$$

Show that this action is transitive, i.e. $\forall A, B \in \mathcal{P}^1(n) \exists g \in \mathrm{SL}(n, \mathbb{R}) \colon gA^tg = B$. You may use the Linear-Algebra-fact that symmetric matrices are orthogonally diagonalizable, i.e. if $A = {}^tA$, then $\exists Q \in \mathrm{SO}(n, \mathbb{R})$ such that QA^tQ is diagonal. Solution:

We write the group action as $g.A = gA^{t}g$. We first need to show that the action is well defined.

Symmetry: ${}^{t}(g.A) = {}^{t}(gA {}^{t}g) = g {}^{t}A {}^{t}g = gA {}^{t}g = g.A.$

ETH Zürich	D-MATH	Symmetric Spaces
Prof. Dr. Marc Burger	Raphael Appenzeller	March 19, 2020

Determinant: $det(g.A) = det g det A det {}^{t}g = det A = 1.$

Positive definiteness: Let $x \in \mathbb{R}^n \setminus 0$. ${}^txg.Ax = {}^txgA{}^tgx = {}^t({}^tgx)A{}^tgx > 0$, since ${}^tgx \in \mathbb{R}^n \setminus 0$. Next, we check the two axioms of a group action.

Identity: $\operatorname{Id}_{\operatorname{SL}(n,\mathbb{R})} A = \operatorname{Id} A \operatorname{Id} = A.$

Compatibility: $(gh) A = ghA^{t}(gh) = ghA^{t}h^{t}g = g(hA)^{t}g = g(hA).$

It remains to show that the action is transitive. Let $A, B \in \mathcal{P}^1(n)$. We can use Linear Algebra to get $Q, R \in \mathrm{SO}(n) < \mathrm{SL}(n, \mathbb{R})$ such that Q.A and R.B are diagonal, have determinant 1 and are positive definite (by the well-definedness of the group action). Positive definiteness implies that all entries are non-negative. Then the matrix $\Lambda = (Q.A) \cdot (R.B)^{-1}$ is also diagonal, has determinant 1 and positive elements on the diagonal. We can therefore take the component wise root $\sqrt{\Lambda}$ of Λ . Define $g = Q^{-1}\sqrt{\Lambda R} \in \mathrm{SL}(n, \mathbb{R})$ and use the fact that R.Bcommutes with $\sqrt{\Lambda}$ since they are diagonal to see that

$$g.B = Q^{-1}.\sqrt{\Lambda}.R.B = Q^{-1}.\sqrt{\Lambda}(R.B)^{t}\sqrt{\Lambda} = Q^{-1}.\left(\sqrt{\Lambda}^{t}\sqrt{\Lambda} \cdot R.B\right)$$
$$= Q^{-1}.(\Lambda \cdot R.B) = Q^{-1}.((Q.A)(R.B)^{-1}(R.B)) = Q^{-1}.Q.A = A.$$

this shows that from any point $B \in \mathcal{P}$ you can go to any point $A \in \mathcal{P}$ by the action of $SL(n, \mathbb{R})$, i.e. the action is transitive.

Exercise 3: Topological groups

A group G with a topology is a *topological group* if multiplication $m: G \times G \to G$ and inverse $\iota: G \to G$ are continuous maps. Let G be a topological group and $e \in G$ the identity.

(1) Show that $\forall g \in G$, the inner automorphism $\phi_g(h) = ghg^{-1}$ is a homeomorphism.

Solution:

m and ι are continuous, so also the composition $\phi_g \colon h \mapsto m(m(g,h),\iota(g))$ for any $g \in G$. Note that $\phi_g^{-1} = \phi_{g^{-1}}$, so the inverse is also continuous, i.e. ϕ_g is homeomorph.

(2) Show that the connected component of the identity G° is a normal closed subgroup of G.

Solution:

The image under a continuous map of a connected set is connected. Let $g, h \in G^{\circ}$. First consider the continuous map $a \mapsto m(g, a)$. Since h is in the same connected component as e, also m(g, h) = gh is in the same connected component as m(g, e) = g, which is G° . Since $\iota(e) = e$, also $\iota(g) = g^{-1}$ is in the same connected component as g. Therefore G° is a subgroup of G.

The image $\phi_g(G^\circ)$ is connected and contains e, therefore $gG^\circ g^{-1} \subset G^\circ$, i.e. G° is normal.

Connected components are always open and closed.

(3) Show that any open subgroup H < G is also closed.

Hint: Cosets.

Solution:

The coset gH is also open, since it is the preimage of H under the continuous map $h \mapsto m(g^{-1}, h)$. The complement of H is a union of open cosets, therefore H is closed.

(4) Let $U \ni e$ be an open neighborhood of e. Let H be the subgroup generated by U, i.e.

$$H = \bigcup_{n \ge 1} \left(U \cup U^{-1} \right)^n.$$

Show that H is open.

Solution:

If U is open, then also $\iota(U) = U^{-1}$ open and $U \cup U^{-1}$ open. For any $g \in G$, gU and gU^{-1} are open, since they are preimages of the continuous map $h \mapsto g^{-1}h$. Using $gU \cup gU^{-1} = g(U \cup U^{-1})$ we get that

$$(U \cup U^{-1})^n = \bigcup_{g \in U} g(U \cup U^{-1})^{n-1}$$

is open for any $n \ge 2$ by induction. Thus H is a union of open sets and therefore open.

(5) Show that G° is generated by any neighborhood of e.

Solution:

Any neighborhood of e contains an open neighborhood U. By the construction of (4), this generates an open subgroup H. By (3) H is also closed. The only clopen sets in a connected component are the empty set and the component itself. Since $e \in H$ and G° connected, $H = G^{\circ}$.

Exercise 4: Lemma II.17

Recall that $\forall f \in C^{\infty}(M), X \in \text{Vect}(M)$, we have $f \cdot X \in C^{\infty}(M)$ via $(f \cdot X)(p) = f(p)X(p)$. If c is a smooth curve, we denote by $\text{Vect}(c^*(TM))$ the space of vector fields along c. Prove the following lemma.

Lemma II.17: Let M be a smooth manifold, ∇ a connection on M and $c: I \to M$ a smooth curve. Then there exists a unique linear map

$$\frac{\mathrm{D}}{dt}: \operatorname{Vect}\left(c^*(TM)\right) \to \operatorname{Vect}\left(c^*(TM)\right)$$

such that

- (1) $\frac{\mathrm{D}}{\mathrm{d}t}(f \cdot V) = f' \cdot V + f \cdot \frac{\mathrm{D}}{\mathrm{d}t}V$ for all $V \in \operatorname{Vect}(c^*(TM)), f \in C^{\infty}(M)$
- (2) $\left(\frac{\mathrm{D}}{dt}V\right)(t) = (\nabla_{\dot{c}(t)}Y)(c(t))$ for all $V \in \operatorname{Vect}(c^*(TM)), Y \in \operatorname{Vect}(M), t \in I$ with V(t) = Y(c(t)).

Hint: Work in local coordinates. Solution:

Let M be a *n*-dimensional manifold. Since c is a smooth immersion, for every point $c(t_0)$ we can find $\varepsilon > 0$, a neighborhood $U \ni c(t_0)$ and a chart $\psi : U \to \mathbb{R}^n$

ETH Zürich	D-MATH	Symmetric Spaces
Prof. Dr. Marc Burger	Raphael Appenzeller	March 19, 2020

such that $\psi(c(t_0)) = 0$ and for $t \in (-\varepsilon, \varepsilon)$, $\psi(U \cap c(t)) = t \times \{0\}^{n-1} \subset \mathbb{R}^n$. This means that we can assume without loss of generality that $M \subset \mathbb{R}^n$ and c(t) = tfor $t \ni I \subset \mathbb{R} \times \{0\}^{n-1}$.

Let $V: I \to TM$ be a vector field along c and $Y, Y' \in \text{Vect}(M)$ with Y(c(t)) = V(t) = Y'(c(t)). We can write $Y = \sum_{j=1}^{n} y_j e_j$ and $Y' = \sum_{j=1}^{n} y'_j e_j$ for functions $y_j, y'_j: I \to \mathbb{R}$. Let $X \in \text{Vect}(M)$ be defined by $X(p) = e_1 = \frac{\partial}{\partial x_1}$, in particular $X(c(t)) = \dot{c}(t)$ for $t \in I$. Let us define $(\frac{D}{dt}V)(t) = (\nabla_X Y)(c(t))$. We have to show that this is well defined (independent of Y). Note that

defined (independent of Y). Note that

$$\frac{\partial}{\partial x_1} Y(c(t_0)) = \frac{\partial}{\partial x_1} Y'(c(t_0)) = \frac{d}{dt} V(t_0). \tag{(\clubsuit)}$$

We have

$$\begin{split} \left(\frac{\mathbf{D}}{dt}V\right)(t) &= \nabla_X Y(c(t_0)) \\ &= \nabla_{e_1} \left(\sum_{j=1}^n y_j e_j\right)(c(t_0)) \\ &= \left[\sum_{j=1}^n y_j \cdot \nabla_{e_1} e_j + (e_1 y_j) \cdot e_j\right](c(t_0)) \qquad (\text{Rule (3) for connections}) \\ &= \left[\sum_{j,k=1}^n y_j \cdot \Gamma_{1j}^k \cdot e_k + \sum_{j=1}^n \frac{\partial}{\partial x_1} y_j \cdot e_j\right](c(t_0)) \qquad (\text{for Christoffel symbols } \Gamma_{ij}^k \colon M \to \mathbb{R}) \\ &= \left[\sum_{j,k=1}^n y_j \cdot \Gamma_{1j}^k \cdot e_k\right](c(t_0)) + \frac{\partial}{\partial x_1} Y(c(t_0)) \\ &= \left[\sum_{j,k=1}^n y_j \cdot \Gamma_{1j}^k \cdot e_k\right](c(t_0)) + \frac{d}{dt} V(t_0), \qquad (\text{Equation } (\clubsuit)) \end{split}$$

which is an expression which does not depend on Y. This shows that a map $\frac{D}{dt}$: Vect $(c_*TM) \to$ Vect (c_*TM) that satisfies (2) exists and is unique.

We have to show (1). Let $f: I \to \mathbb{R}$. We can extend it to $\tilde{f} \in C^{\infty}(M)$ with $\tilde{f}(t, 0^{n-1}) = f(t)$ for $t \in I$. then

$$\begin{aligned} \frac{\mathbf{D}}{dt}(f \cdot V)(t_0) &= \nabla_X (\tilde{f} \cdot Y)(c(t_0)) \\ &= \left[\tilde{f} \cdot \nabla_X Y + (X\tilde{f}) \cdot Y \right] (c(t_0)) \\ &= \left(f \cdot \frac{\mathbf{D}}{dt} V \right) (t_0) + \left[\left(\frac{\partial}{\partial x_1} \tilde{f} \right) \cdot Y \right] (c(t_0)) \\ &= \left(f \cdot \frac{\mathbf{D}}{dt} V \right) (t_0) + (f' \cdot V) (t_0), \end{aligned}$$

which concludes the proof of lemma II.17.

ETH Zürich	D-MATH	Symmetric Spaces
Prof. Dr. Marc Burger	Raphael Appenzeller	March 19, 2020

Exercise 5: Lemma II.20

Let now $\varphi \colon M \to M$ be a diffeomorphism. Recall that the pushforward φ_*X is defined as $(\varphi_*X)(p) = (\mathcal{D}_{\varphi^{-1}(p)}\varphi) (X(\varphi^{-1}(p)))$ for $X \in \operatorname{Vect}(M), p \in M$. The goal is to prove the following lemma.

Lemma II.20: Let ∇ be the Levi-Civita connection of a Riemannian manifold (M, g) and $\varphi \in Is(X)$. Then $\nabla_{\varphi_* X} \varphi_* Y = \varphi_*(\nabla_X Y)$.

Solution:

Throughout this exercise, let $X, Y, X_1, X_2, Y_1, Y_2, Z \in \text{Vect}(M), f, g \in C^{\infty}(M), p \in M, \lambda, \mu \in \mathbb{R}$. We first want to collect some properties of $\varphi_* \colon \text{Vect}(M) \to \text{Vect}(M)$.

Lemma (automorphism): φ_* is a Lie-algebra-automorphism of Vect(M).

Proof:

• Linearity $\varphi_*(\lambda X_1 + \mu X_2) = \lambda \varphi_* X_1 + \mu \varphi_* X_2.$

$$\begin{aligned} \varphi_*(\lambda X_1 + \mu X_2)(p) &= (\mathcal{D}_{\varphi^{-1}(p)} \,\varphi) \cdot (\lambda X_1(\varphi^{-1}(p)) + \mu X_2(\varphi^{-1}(p))) \\ &= \lambda \cdot (\mathcal{D}_{\varphi^{-1}(p)} \,\varphi) \cdot X_1(\varphi^{-1}(p)) + \mu \cdot (\mathcal{D}_{\varphi^{-1}(p)} \,\varphi) \cdot X_2(\varphi^{-1}(p)) \\ &= \lambda(\varphi_* X_1)(p) + \mu(\varphi_* X_2)(p). \end{aligned}$$

• Inverse $(\varphi_*)^{-1} = (\varphi^{-1})_*$

$$(\varphi_* \circ (\varphi^{-1})_* X)(p) = (\varphi_*((\varphi^{-1})_* X))(p)$$

= $(\mathbf{D}_{\varphi^{-1}(p)} \varphi) \cdot ((\varphi^{-1})_* X)(\varphi^{-1}(p))$
= $(\mathbf{D}_{\varphi^{-1}(p)} \varphi) \cdot (\mathbf{D}_p \varphi^{-1}) \cdot X(p)$
= $(\mathbf{D}_p \varphi \circ \varphi^{-1}) \cdot X(p) = X(p)$

• Lie brackets $\varphi_*[X, Y] = [\varphi_* X. \varphi_* Y].$

To show that the Lie-brackets are preserved we want to use Lemma 2, which is proven a bit later. To make sense of the Lie bracket, we need to think of X, Y and [X, Y] as derivations $C^{\infty}(M) \to C^{\infty}(M)$.

$$\begin{aligned} (\varphi_*[X,Y])(f) &= \varphi_*\left([X,Y](\varphi_*^{-1}f)\right) & (\text{Lemma 2}) \\ &= \varphi_*\left(X(Y(\varphi_*^{-1}f)) - Y(X(\varphi_*^{-1}f))\right) & (\text{Def of } [\cdot,\cdot]) \\ &= \varphi_*\left(X(\varphi_*^{-1}(\varphi_*Y)(f)) - Y(\varphi_*^{-1}(\varphi_*X)f)\right) & (\text{Lemma 2}) \\ &= \varphi_*\varphi_*^{-1}\left((\varphi_*X)((\varphi_*Y)f) - (\varphi_*Y)((\varphi_*X)f)\right) & (\text{Lemma 2}) \\ &= [\varphi_*X,\varphi_*Y](f) & (\text{Def of } [\cdot,\cdot]) \end{aligned}$$

At various occasions we will see need to use how f interacts with φ_* and X, so we state two more lemmas. It will be convenient to use the notation of the pushforward $\varphi_* f = f \circ \varphi^{-1}$ of f.

Lemma 1: $\varphi_*(f \cdot X) = (\varphi_* f) \cdot (\varphi_* X).$

ETH Zürich	D-MATH	Symmetric Spaces
Prof. Dr. Marc Burger	Raphael Appenzeller	March 19, 2020

Proof:

$$(\varphi_*(fX))(p) = (\mathcal{D}_{\varphi^{-1}(p)} \varphi) \cdot f(\varphi^{-1}(p)) \cdot X(\varphi^{-1}(p))$$
$$= f(\varphi^{-1}(p)) \cdot (\mathcal{D}_{\varphi^{-1}(p)} \varphi) \cdot X(\varphi^{-1}(p))$$
$$= ((f \circ \varphi^{-1}) \cdot \varphi_* X)(p)$$
$$= ((\varphi_* f) \cdot (\varphi_* X))(p)$$

Lemma 2: $\varphi_*(Xf) = (\varphi_*X)(\varphi_*f).$

Proof:

$$\begin{aligned} ((\varphi_*X)(\varphi_*f))(p) &= (\mathcal{D}_p \, \varphi_*f) \cdot \varphi_*X(p) \\ &= (\mathcal{D}_p \, f \circ \varphi) \cdot (\mathcal{D}_{\varphi_*^{-1}(p)} \, \varphi) \cdot X(\varphi^{-1}) \\ &= (\mathcal{D}_{\varphi^{-1}(p)} \, \varphi_*f) \cdot X(\varphi^{-1}(p)) \\ &= (Xf)(\varphi^{-1}(p)) \\ &= (\varphi_*(Xf))(p) \end{aligned}$$

(1) Show that $D_X Y = \varphi_*^{-1} (\nabla_{\varphi_* X}(\varphi_* Y))$ is a connection. Solution:

We have to check three conditions. First $\mathrm{C}^\infty(M)\text{-linearity}$ in X

$$D_{fX}Y = \varphi_*^{-1} \left(\nabla_{\varphi_*(fX)}(\varphi_*Y) \right)$$
 (Definition)

$$= \varphi_*^{-1} \left(\nabla_{(\varphi_*f) \cdot \varphi_*X}(\varphi_*Y) \right)$$
 (Lemma 1)

$$= \varphi_*^{-1} \left((\varphi_*f) \cdot \nabla_{\varphi_*X}(\varphi_*Y) \right)$$
 (C[∞](M)-linearity of ∇)

$$= (\varphi_*^{-1}\varphi_*f) \cdot \varphi_*^{-1} \left(\nabla_{\varphi_*X}(\varphi_*Y) \right)$$
 (Lemma 1)

$$= fD_XY.$$
 (Definition)

and

$$D_{X_1+X_2}Y = \varphi_*^{-1} \left(\nabla_{\varphi_*(X_1+X_2)}(\varphi_*Y) \right)$$
(Definition)
$$= \varphi_*^{-1} \left(\nabla_{\varphi_*X_1}\varphi_*Y + \nabla_{\varphi_*X_2}\varphi_*Y \right)$$
(C^{\infty}(M)-linearity of \nabla)
$$= \varphi_*^{-1} \left(\nabla_{\varphi_*X_1}\varphi_*Y \right) + \varphi^{-1} \left(\nabla_{\varphi_*X_2}\varphi_*Y \right)$$
(\varphi is automorphism)
$$= D_{X_1}Y + D_{X_2}Y.$$
(Definition)

Second, $\mathbbm{R}\text{-linearity}$ in Y follows directly from $\mathbbm{R}\text{-linearity}$ of ∇ and $\varphi^{-1}.$ Third,

$$\begin{aligned} D_X fY &= \varphi_*^{-1} \left(\nabla_{\varphi_* X} (\varphi_*(fY)) \right) & \text{(Definition)} \\ &= \varphi_*^{-1} \left(\nabla_{\varphi_* X} ((\varphi_* f) \cdot \varphi_* Y) \right) & \text{(Lemma 1)} \\ &= \varphi_*^{-1} \left((\varphi_* f) \cdot \nabla_{\varphi_* X} (\varphi_* Y) + ((\varphi_* X) (\varphi_* f)) \cdot \varphi_* Y \right) & \text{(Rules for } \nabla) \\ &= \varphi_*^{-1} \varphi_* f \cdot \varphi_*^{-1} \left(\nabla_{\varphi_* X} \varphi_* Y \right) + \varphi_*^{-1} \left((\varphi_* X) (\varphi_* f) \right) \cdot \varphi_*^{-1} (\varphi_* Y) & \text{(Lemma 1)} \\ &= f \cdot \varphi_*^{-1} \left(\nabla_{\varphi_* X} \varphi_* Y \right) + \varphi_*^{-1} \left(\varphi_* (Xf) \right) \cdot \varphi_*^{-1} (\varphi_* Y) & \text{(Lemma 2)} \\ &= f \cdot \varphi_*^{-1} \left(\nabla_{\varphi_* X} \varphi_* Y \right) + (Xf) \cdot Y & \text{(Definition)} \end{aligned}$$

This completes the proof that $D_X Y$ is a connection.

(2) Show that $D_X Y - D_Y X = [X, Y]$.

Solution:

$$D_X Y - D_Y X = \varphi_*^{-1} (\nabla_{\varphi_* X}(\varphi_* Y)) - \varphi^{-1} (\nabla_{\varphi_* Y}(\varphi_* X))$$

$$= \varphi_*^{-1} (\nabla_{\varphi_* X}(\varphi_* Y) - \nabla_{\varphi_* Y}(\varphi_* X)) \qquad \text{(linearity of } \varphi_*^{-1})$$

$$= \varphi_*^{-1} ([\varphi_* X, \varphi_* Y]) \qquad (\nabla \text{ is Levi-civita connection})$$

$$= \varphi_*^{-1} (\varphi_* [X, Y]) \qquad (\varphi_* \text{ preserves brackets})$$

$$= [X, Y]$$

(3) Show that $X\langle Y, Z \rangle = \langle D_X Y, Z \rangle + \langle Y, D_X Z \rangle$.

Solution:

We first show that $\langle \varphi_* X, \varphi_* Y \rangle = \varphi_* \langle X, Y \rangle.$

$$\begin{aligned} \langle \varphi_* X, \varphi_* Y \rangle(p) &= g_p \left(\mathcal{D}_{\varphi^{-1}(p)} \,\varphi \cdot X(\varphi^{-1}(p)), \mathcal{D}_{\varphi^{-1}(p)} \,\varphi \cdot Y(\varphi^{-1}(p)) \right) \\ &= g_{\varphi^{-1}(p)} \left(X(\varphi^{-1}(p)), Y(\varphi^{-1}(p)) \right) \\ &= \langle X, Y \rangle(\varphi^{-1}(p)) = (\varphi_* \langle X, Y \rangle)(p) \end{aligned} \tag{φ is an isometry}$$

Now

$$\begin{aligned} \langle \mathbf{D}_{X}Y, Z \rangle + \langle Y, \mathbf{D}_{X}Z \rangle \\ &= \langle \varphi_{*}^{-1} \left(\nabla_{\varphi_{*}X}(\varphi_{*}Y) \right), Z \rangle + \langle Y, \varphi_{*}^{-1} \left(\nabla_{\varphi_{*}X}(\varphi_{*}Z) \right) \rangle \\ &= \varphi_{*}^{-1} \left(\nabla_{\varphi_{*}X}(\varphi_{*}Y), \varphi_{*}Z \right) + \varphi_{*}^{-1} \langle \varphi_{*}Y, \nabla_{\varphi_{*}X}(\varphi_{*}Z) \rangle \qquad \text{(Remark above)} \\ &= \varphi_{*}^{-1} \left(\langle \nabla_{\varphi_{*}X}(\varphi_{*}Y), \varphi_{*}Z \rangle + \langle \varphi_{*}Y, \nabla_{\varphi_{*}X}(\varphi_{*}Z) \rangle \right) \qquad \text{(Linearity of } \mathbf{C}^{\infty}(M)) \\ &= \varphi_{*}^{-1} \left(\varphi_{*}X \langle \varphi_{*}Y, \varphi_{*}Z \rangle \right) \qquad \qquad (\nabla \text{ is a Levi-Civita-connection)} \\ &= \varphi_{*}^{-1} \left(\left(\varphi_{*}X \right) \left(\varphi_{*} \langle Y, Z \rangle \right) \right) \qquad \qquad (\text{Remark above)} \\ &= \varphi_{*}^{-1} \varphi_{*} (X \langle Y, Z \rangle) \qquad \qquad (\text{Lemma 2)} \end{aligned}$$

(4) Show the lemma by using that the Levi-Civita-connection is unique.

Solution: The Levi-Civita-connection is unique, and $D_X Y$ satisfies is a Levi-Civita-connection. So $\nabla_X Y = D_X Y = \varphi_*^{-1} (\nabla_{\varphi_* X} \varphi_* Y)$. Applying φ_* on both sides results in

$$\varphi_*(\nabla_X Y) = \nabla_{\varphi_* X} \varphi_* Y.$$