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Solution Sheet 1

Exercise 1: The hyperbolic plane
Consider the hyperbolic n-space

={peR"": b(p,p) = —1 and ppyq > 1}

defined by the bilinear form b(p, ¢) = p1g1 +. . . + Pndn — Pn+1dn+1. The tangent
space at a point p € H" is defined as

T,H" =

{x c R There exists a smooth path v: (—1,1) — ]HI"}
p : .

such that v(0) = p and 4(0) =
(1) Show that T, H" = {z € R"': b(p,z) = 0}.

Solution:

Let z € T,H". Let v: (-1, ) % H" be a smooth path such that ¥(0) = p
and 4(0) = x. For every ¢t € (—1,1), b(y(t),v(t)) = —1, since 7 takes values in
H". We write v(t) = (y1(t),- - ,'yn+1(t)). Taking derivatives results in

(Z Vi (t 'Yn-&-l) Z 2'72 71 —29n41 (t);}/n+1 (t)

d
= —) ) = —
0= Sb(1(0),7(1) =
and at ¢ = 0 this is
0= 7%(0)4:(0) = Yr1(0)4n+1(0) = > pii — put1 - Tns1 = b(p, ).
= i=1

We have shown that 7, H" C {z € R"™": b(p,z) = 0} but since dim 7}, H" =
we have equality.

(2) Show that g, = b|r, mn: T, H" x T, H" — R is a positive definite symmet-
ric bilinear form on T, H". This means that g, is a scalar product and
(H", g) is a Riemannian manifold.

Hint: Use (1) and the Cauchy-Schwarz-inequality on R™.

Solution:
Bilinearity and symmetry b(z,y) = b(y, z) follow directly. To show positive
definiteness, we use the definition of H" and (1) to write

p=<7,\/72+1>6H"CR”xR
7.7

=7, 2L 2 ) e, H" cR" xR
7?2 +1

where < -, - > is the standard scalar product in R™. To show positive definiteness
it remains to prove that for all « € T, H"

b(xz,x) > 0.
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Indeed, by the Cauchy-Schwarz-inequality
<pz > <|[PPEP <|PPETP+ TP = (PP + D7

and thus )
o < pyx >
SUSENT
and
<p,x>2

bz, z) = |2 — TELT > 0.

(3) Show that the map sp,: R™M - R™ g — —2p-b(p, q) —q is a well defined
geodesic symmetry of H", i.e. it is an involution, with an isolated fixed
point p. This means that the hyperbolic plane H" is a symmetric space.

Solution:
To see that s, is well-defined we write

pZ(\/?%), q=<\/ﬁ%>eH”cR”xR.
We have

sp(q) = —2pb(p,q) —q = (A/?ﬁb(p, q) — \/W)

where

b(p.q) =< 7.7 > —\/\7\2 + 1\/|?|2 +1.

The calculation

b(sp(q), sp(q)) = 4T I*b(p,q)> +4 < P, ¢ > b(p.q) + |7/
— 4P + b0 + 41T+ 11T + 16(p. ) + [T +1

=4< BT > b(p.q) —4b(p.0)® — 4/| P+ 1/| 7 + 1b(p.q) — 1
= 4b(p, 9)b(p, q) — 4b(p,q)* =1 = -1

shows that s,(g) € H.
Note that s,(p) = —2p(—1) — p = p is a fixed point.
Next we show that s, is an isometry. We need to look at the differential

Dp Sp: TpM — Tsp(p)M = TpM.

of s,: g — —2pb(p,q) — q. If we write the points ¢,p € H" C R" in the
standard basis {e;};, we get the partial derivatives

o p; ifi<n
axib(p’.) B {—pn+1 ifi=n+1

is _ —2p-p;—e; fi<n
Oz; P |20 pnt1 —€ny1 ifi=n+1
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and thus for v € T,M we have

—2p3 —1 —2p1po e 2p1Pn+1
—2pap1 —2p3 —1 e 2papn i1
(Dp Sp)v = . . . . v
—2pnt1p1 —2pnt1p2 251 — 1
—2p3v1 — 2p1pava — -+ + 2P1Pnt1Un 41
—2pop1v1 — 2p3vs — + -+ + 2PaPn1Unt1
= . - v
—2Pn11Pp1V1 — 2Ppy1pave — -+ 2p%+1vn+1
_Qb(p7 v)pl
—2b(p, v)p2
= . —v=—v
—2b(p7 U)pn

where we used that b(p,v) = 0 from part (1). By bilinearity from (2)

gSp(P)((Dpsp)Uv (Dpsp)w) = gp(_va _w) = gp(va w),

SO Sp is an isometry.
We need to show that s, is a symmetry. By lemma II.6 of the lecture, D,s, =
—1Idr, g~ is equivalent to s, o s, = Idyn. Alternatively the calculation

Sp © Sp(q) = sp(—Qpb(p, q) —q)
= —2pb(p, —2pb(p, q) — q) — (—=2pb(p,q) — q)
= 4pb(p, ¢)b(p, p) + 2pb(p, q) + 2pb(p,q) + q¢ = ¢q

shows the same. That p is an isolated fixed point of s, can be seen by the
following argument. Let ¢ € H" be a fixed point s,(¢) = ¢, then —2pb(p,q) —q =
q, so ¢ = —b(p, q)p, in particular ¢ = Ap is a scaled version of p for A = —b(p, q).
But since p,q € H", —1 = b(q, q) = b(Ap, \p) = A\?b(p,p) = —1, so A = £1. The
A = —1 solution corresponds to g,+1 < 0 which is excluded since H" is only
the upper hyperboloid. We showed that ¢ = p is the only fixed point of s,, in
particular it is an isolated fixed point.
This concludes the proof, that H™ is a symmetric space.

Exercise 2: The symmetric space P'(n)

Show that A — gAlg defines a group action of SL(n,R) 3 g on
Pl(n) = {A€ Myxn(R): A="4, detA=1, A>>0}.

Show that this action is transitive, i.e. VA, B € P'(n) 3g € SL(n,R): gA'g = B.
You may use the Linear-Algebra-fact that symmetric matrices are orthogonally
diagonalizable, i.e. if A = ‘A, then 3Q € SO(n,R) such that QA'Q is diagonal.
Solution:

We write the group action as g.A = gA?%. We first need to show that the
action is well defined.

Symmetry: {(g.A) = t(gA tg) = g'Atg = gAlg = g.A.
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Determinant: det(g.A) = det gdet Adetlg = det A = 1.

Positive definiteness: Let z € R™\0. ‘zg.Az = rgAlgz = (lgz)Algz > 0,
since ‘gr € R™\0. Next, we check the two axioms of a group action.

Identity: Idgy,n,r) -4 =Id Ald = A.

Compatibility: (gh).A = ghA'(gh) = ghA'h'lg = g(h.A) g = g.(h.A).
It remains to show that the action is transitive. Let A, B € P'(n). We can use
Linear Algebra to get @, R € SO(n) < SL(n,R) such that Q.A and R.B are
diagonal, have determinant 1 and are positive definite (by the well-definedness of
the group action). Positive definiteness implies that all entries are non-negative.
Then the matrix A = (Q.A) - (R.B)~! is also diagonal, has determinant 1 and
positive elements on the diagonal. We can therefore take the component wise
root /A of A. Define g = Q 'vAR € SL(n,R) and use the fact that R.B
commutes with v/A since they are diagonal to see that

gB=Q ' VARB=Q 'VARB)VA=Q . (\FAt\fm R.B)
=Q ' (A-RB)=Q '.((QA)(RB) " RB)=Q QA=A

this shows that from any point B € P you can go to any point A € P by the
action of SL(n,R), i.e. the action is transitive.

Exercise 3: Topological groups

A group G with a topology is a topological group if multiplication m: GxG — G
and inverse t: G — G are continuous maps. Let G be a topological group and
e € G the identity.

(1) Show that Vg € G, the inner automorphism ¢4(h) = ghg™' is a homeo-
morphism.

Solution:

m and ¢ are continuous, so also the composition ¢4: h — m(m(g, h),(g))
for any g € G. Note that gb;l = ¢4-1, so the inverse is also continuous, i.e. ¢,
is homeomorph.

(2) Show that the connected component of the identity G° is a normal closed
subgroup of G.

Solution:

The image under a continuous map of a connected set is connected. Let
g,h € G°. First consider the continuous map a — m(g,a). Since h is in the
same connected component as e, also m(g,h) = gh is in the same connected
component as m(g, e) = g, which is G°. Since 1(e) = e, also t(g) = g~ ! is in the
same connected component as g. Therefore G° is a subgroup of G.

The image ¢,(G°) is connected and contains e, therefore gG°g~! C G°, i.e.
G° is normal.

Connected components are always open and closed.

(3) Show that any open subgroup H < G is also closed.
Hint: Cosets.
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Solution:

The coset gH is also open, since it is the preimage of H under the continuous
map h +— m(g~t, h). The complement of H is a union of open cosets, therefore
H is closed.

(4) Let U > e be an open neighborhood of e. Let H be the subgroup generated
by U, i.e.
H=|]J(wuu™".

n>1

Show that H is open.

Solution:

If U is open, then also +(U) = U~! open and UUU ~! open. For any g € G, gU
and gU ! are open, since they are preimages of the continuous map h + g~ 'h.
Using gU U gU ! = g(UUU!) we get that

wuuhHr=JgwuuHrt
geU

is open for any n > 2 by induction. Thus H is a union of open sets and therefore
open.

(5) Show that G° is generated by any neighborhood of e.

Solution:

Any neighborhood of e contains an open neighborhood U. By the construc-
tion of (4), this generates an open subgroup H. By (3) H is also closed. The
only clopen sets in a connected component are the empty set and the component
itself. Since e € H and G° connected, H = G°.

Exercise 4: Lemma I1.17

Recall that Vf € C>°(M), X € Vect(M), we have f-X € C>°(M) via (f-X)(p) =
f(p)X (p). If ¢ is a smooth curve, we denote by Vect(c*(T'M)) the space of vector
fields along c. Prove the following lemma.

Lemma II.17: Let M be a smooth manifold, V a connection on M and c¢: I —
M a smooth curve. Then there exists a unique linear map

%: Vect (¢*(TM)) — Vect (¢*(T'M))
such that
(1) %(f V)y=f -V+f- %V for all V € Vect(c*(TM)), f € C*(M)

(2) (BV) () = (Ve Y)(c(t)) for all V € Vect(c*(TM)),Y € Vect(M),t € I

with V(t) = Y (c(t)).

Hint: Work in local coordinates.
Solution:

Let M be a n-dimensional manifold. Since ¢ is a smooth immersion, for every
point ¢(tp) we can find & > 0, a neighborhood U 3 ¢(ty) and a chart ¢ : U — R"
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such that ¥(c(to)) = 0 and for t € (—e,¢), Y(UNe(t)) = ¢ x {0}*~" € R™. This
means that we can assume without loss of generality that M C R™ and ¢(t) = ¢
fort>I cRx{0}" "

Let V: I — TM be a vector field along ¢ and Y,Y’ € Vect(M) with
Y(c(t)) = V(t) = Y'(c(t)). We can write Y = 377 yje; and Y/ = 370 yle;
for functions y;,y;: I — R. Let X € Vect(M) be defined by X(p) =e; = 6%1,
in particular X (c(t)) = ¢(¢) for ¢t € I.

Let us define (2V) (t) = (VxY)(c(t)). We have to show that this is well

defined (independent of Y'). Note that
0 0 d
87:13/(0(750)) = 67331}/ (c(to)) = dtV(tO)' (%)

We have

(C]ZV) (t) = VXY(C(t()))
=Va (Z yjej) (c(to))
= Zyj Ve, €5+ (e1y;) 'ej] (c(to)) (Rule (3) for connections)
=1

n n a )
= Z Yj ~F’fj e + Z 8—$lyj : ej] (c(to)) (for Christoffel symbols Ffj: M — R)
j. k=1 j=1

= | >y e (c(to))Jr%Y(C(to))

k=1

= Z Yj 'Flfj “ex | (c(to)) + iv(to), (Equation @)

B dt

which is an expression which does not depend on Y. This shows that a map
D+ Vect(c,.TM) — Vect(c, TM) that satisfies (2) exists and is unique.

_ We have to show (1). Let f: I — R. We can extend it to f e C®(M) with
f(t,0n=1) = f(t) for t € I. then

%(f V) (to) = Vx(f - Y)(c(to))

= [F-9xY + (XF) V] (elto))

= (1 2v) o+ [() - v] et

_ <f. 21/) (to) + (- V) (to),

which concludes the proof of lemma I1.17.
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Exercise 5: Lemma I1.20

Let now ¢: M — M be a diffeomorphism. Recall that the pushforward ¢, X is
defined as (. X)(p) = (Dp-1(p) ¢) (X (¢ (p))) for X € Vect(M),p € M. The
goal is to prove the following lemma.

Lemma II1.20: Let V be the Levi-Civita connection of a Riemannian manifold
(M, g) and ¢ € Is(X). Then V,_x¢.Y = 0. (VxY).

Solution:

Throughout this exercise, let X, Y, X1, Xo,Y7,Y5, Z € Vect(M), f,g € C(M),p €
M, X\, p € R. We first want to collect some properties of @,: Vect(M) —
Vect(M).

Lemma (automorphism): ¢, is a Lie-algebra-automorphism of Vect(M).
Proof:

e Linearity ¢.(AX1 + uX2) = Ao X1 + pp.Xo.

P (AX1 + 1X2)(p) = (Dy-1(p) ) - AX1 (0~ (D)) + nXa(e " (p)))
=X (Dy-10p)9) - X1(07 (D) + 1+ Dy-1(p) @) - X2l (p))
= M« X1)(p) + (s X2)(p)-

e Inverse (¢.)~ ! = (1),

(¢s 0 (‘P_l)*X)(p) =

e. (™) X)) ()

Dq;—l(p)@) (v~ )X)(SD '(p))
Dy-1(m¢) - (Dpe™") - X(p)

D,pop 1)~X(p):X(p)

e Lie brackets p.[X,Y] = [p. X.0,Y].

/\/\AA

To show that the Lie-brackets are preserved we want to use Lemma 2, which is
proven a bit later. To make sense of the Lie bracket, we need to think of X, Y
and [X,Y] as derivations C*(M) — C*°(M).

(P« [ X, Y)(S) = ([X Y(py )) (Lemma 2)
= (XY (1)) =Y (X (1)) (Def of [, ])
= Px (X( ( Y)(f) = Y(es (‘P*X) )) (Lemma 2)
= PxPy ((SD* V(0 Y) ) = (0 Y) (0 X) 1)) (Lemma 2)
= [0« X, 0. Y1(f) (Def of [-, ])
[

At various occasions we will see need to use how f interacts with ¢, and X,
so we state two more lemmas. It will be convenient to use the notation of the
pushforward ¢, f = f o1 of f.

Lemma 1: ¢.(f - X) = (p.f) - (9. X).
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Proof:

(e« (fX))(P) = D1y 9) - (™ (D) - X (¢ (D)
= fe™ ) Dy-1() ©) - X (7} (p)
=((foe™) @ X)(p)

((pxf) - (X)) (p)

O
Lemma 2: . (X f) = (+X) (@« f)-
Proof:
(P« X) (¢ f))(P) = (Dp @ f) - 0 X (p)
—(Dyfog) (Do 0) X(o™h)
= (Dy-1p) ) - X (¢ ()
= (Xf )( ()
= (p(X1)(p)
O
(1) Show that Dx Y = ;! (V,. x(p+Y)) is a connection.
Solution:
We have to check three conditions. First C*°(M)-linearity in X
DixY = ;' (V. (1x)(9:Y)) (Definition)
=07 (Ve e x(9:Y)) (Lemma 1)
— T (9ef) - Vox (9.Y) (C(M)-Jinearity of V)
= (¢ 0uf) 07 (Vo x (94Y) (Lemma 1)
= fDxY. (Definition)
and
Dxix,Y = 00 (Vo (x14x0) (9:Y) (Definition)
T (Ve 02Y + Vi x,0.Y) (C(M)-Jincarity of V)
=0 (Vo x,0:Y) + 0 (V. x,0.Y) (4 is automorphism)
=Dx,Y + Dx,Y. (Definition)

Second, R-linearity in Y follows directly from R-linearity of V and ¢~ 1.

Third,

Dx fY = o' (Vo.x(0:(fY)))
= 0. (Vo x ((uf) - 0:Y))

(Definition)
(
= 0. ((0uf) - Ve x(0:Y) + (02 X) (@4 f)) - 1Y) (Rules for V)
(
(

Lemma 1)

=0 ouf 0 (Vox oY) + 00 (0 X) (9uf) - 02 ' (02Y)  (Lemma 1)
=f 07 (Vo xe:Y) + 07 (0 (X F)) - 05 H i)
= [0l (Vo.xoY)+(Xf)- Y

= f-DxY +(Xf)-Y (Definition)

Lemma 2)
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This completes the proof that Dx Y is a connection.

(2) Show that Dx Y — Dy X = [X,Y].

Solution:
DxY =Dy X = ¢, (Ve x(0.Y)) — 0" (Ve.v (0.X))
=" (Vo x (9:Y) = Vo, v (9. X)) (linearity of ;1)
= ;! ([QD*X, ©.Y]) (V is Levi-civita connection)
=" (pu [X,Y]) (4« preserves brackets)
=[X,Y]

(3) Show that X (Y, Z) = (Dx Y, Z) + (Y, Dx Z).

Solution:
We first show that (0. X, p.Y) = . (X,Y).

(X, 0.Y)(p) = gp (Dyp-1(p) ¢ - X (¢ (9), D1 - Y (" (p)))
= Gp—1(p) (X(Sail(p))v Y
= (X, Y) (¢ (p))

(¢ is an isometry)

[
s

*

ol
).</-T
= =
5=

Now

(DxY, Z) + (Y,Dx Z)
= (0. (Vo.x(0:Y)), Z) + (Y, 0. (Vo x (9:2)))
= 0, (Voux (9:Y),0.2) + 0 Hp.Y, Vo x (0 2))
=t < X (@Y), 04 Z) + (04, Vo, x (92 2))) Linearity of C>(M))

(Remark above)

(
=, (P« (go*Y 0 Z)) (V is a Levi-Civita-connection)

(

(

AAAA

= 0. (e X) (Y, Z))) Remark above)
= o0 (X(Y, Z))

= X(Y,2)

Lemma 2)

(4) Show the lemma by using that the Levi-Civita-connection is unique.

Solution: The Levi-Civita-connection is unique, and Dx Y satisfies is a Levi-
Civita-connection. So VxY =Dx Y = ¢! (V,, x¢.Y). Applying ¢, on both
sides results in

Px (VXY) = VLP*XQQ*Y-



