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Solution Sheet 1

Exercise 1: The hyperbolic plane
Consider the hyperbolic n-space

Hn =
{
p ∈ Rn+1 : b(p, p) = −1 and pn+1 ≥ 1

}
defined by the bilinear form b(p, q) = p1q1 + . . .+pnqn−pn+1qn+1. The tangent
space at a point p ∈ Hn is defined as

Tp Hn =

{
x ∈ Rn+1 :

There exists a smooth path γ : (−1, 1)→ Hn

such that γ(0) = p and γ̇(0) = x

}
.

(1) Show that Tp Hn =
{
x ∈ Rn+1 : b(p, x) = 0

}
.

Solution:
Let x ∈ Tp Hn. Let γ : (−1, 1) → Hn be a smooth path such that γ(0) = p

and γ̇(0) = x. For every t ∈ (−1, 1), b(γ(t), γ(t)) = −1, since γ takes values in
Hn. We write γ(t) = (γ1(t), · · · , γn+1(t)). Taking derivatives results in

0 =
d

dt
b(γ(t), γ(t)) =

d

dt

(
n∑

i=1

γi(t)
2 − γ2n+1

)
=

n∑
i=1

2γi(t)γ̇i(t)−2γn+1(t)γ̇n+1(t)

and at t = 0 this is

0 =

n∑
i=1

γi(0)γ̇i(0)− γn+1(0)γ̇n+1(0) =

n∑
i=1

pixi − pn+1 · xn+1 = b(p, x).

We have shown that Tp Hn ⊂
{
x ∈ Rn+1 : b(p, x) = 0

}
but since dimTp Hn = n

we have equality.

(2) Show that gp = b|Tp Hn : Tp Hn×Tp Hn → R is a positive definite symmet-
ric bilinear form on Tp Hn. This means that gp is a scalar product and
(Hn, g) is a Riemannian manifold.

Hint: Use (1) and the Cauchy-Schwarz-inequality on Rn.

Solution:
Bilinearity and symmetry b(x, y) = b(y, x) follow directly. To show positive

definiteness, we use the definition of Hn and (1) to write

p =

(
−→p ,
√
|−→p |2 + 1

)
∈ Hn ⊂ Rn×R

x =

(
−→x , <

−→p ,−→x >√
|−→p |2 + 1

)
∈ Tp Hn ⊂ Rn×R

where< · , · > is the standard scalar product in Rn. To show positive definiteness
it remains to prove that for all x ∈ Tp Hn

b(x, x) ≥ 0.
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Indeed, by the Cauchy-Schwarz-inequality

< p, x >2 ≤ |−→p |2|−→x |2 ≤ |−→p |2|−→x |2 + |−→x |2 = (|−→p |2 + 1)|−→x |2

and thus

|−→x |2 ≥ < p, x >2

|−→p |2
+ 1

and

b(x, x) = |−→x |2 − < p, x >2

|−→p |2 + 1
≥ 0.

(3) Show that the map sp : Rn+1 → Rn+1, q 7→ −2p·b(p, q)−q is a well defined
geodesic symmetry of Hn, i.e. it is an involution, with an isolated fixed
point p. This means that the hyperbolic plane Hn is a symmetric space.

Solution:
To see that sp is well-defined we write

p =

( −→p√
|−→p |2 + 1

)
, q =

( −→q√
|−→q |2 + 1

)
∈ Hn ⊂ Rn×R .

We have

sp(q) = −2pb(p, q)− q =

(
−2−→p b(p, q)−−→q

−2
√
|−→p |2 + 1b(p, q)−

√
|−→q |2 + 1

)
where

b(p, q) =< −→p ,−→q > −
√
|−→p |2 + 1

√
|−→q |2 + 1.

The calculation

b(sp(q), sp(q)) = 4|−→p |2b(p, q)2 + 4 < −→p ,−→q > b(p, q) + |−→q |2

−
[
4(|−→p |2 + 1)b(p, q)2 + 4

√
|−→p |2 + 1

√
|−→q |2 + 1b(p, q) + |−→q |2 + 1

]
= 4 < −→p ,−→q > b(p, q)− 4b(p, q)2 − 4

√
|−→p |2 + 1

√
|−→q |2 + 1b(p, q)− 1

= 4b(p, q)b(p, q)− 4b(p, q)2 − 1 = −1

shows that sp(q) ∈ H2.
Note that sp(p) = −2p(−1)− p = p is a fixed point.
Next we show that sp is an isometry. We need to look at the differential

Dp sp : TpM → Tsp(p)M = TpM.

of sp : q 7→ −2pb(p, q) − q. If we write the points q, p ∈ Hn ⊂ Rn+1 in the
standard basis {ei}i, we get the partial derivatives

∂

∂xi
b(p, ·) =

{
pi if i ≤ n

−pn+1 if i = n+ 1

∂

∂xi
sp =

{
−2p · pi − ei if i ≤ n

2p · pn+1 − en+1 if i = n+ 1
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and thus for v ∈ TpM we have

(Dp sp)v =


−2p21 − 1 −2p1p2 · · · 2p1pn+1

−2p2p1 −2p22 − 1 · · · 2p2pn+1

...
...

. . .
...

−2pn+1p1 −2pn+1p2 · · · 2p2n+1 − 1

 v

=


−2p21v1 − 2p1p2v2 − · · ·+ 2p1pn+1vn+1

−2p2p1v1 − 2p22v2 − · · ·+ 2p2pn+1vn+1

...
−2pn+1p1v1 − 2pn+1p2v2 − · · ·+ 2p2n+1vn+1

− v

=


−2b(p, v)p1
−2b(p, v)p2

...
−2b(p, v)pn

− v = −v

where we used that b(p, v) = 0 from part (1). By bilinearity from (2)

gsp(p)((Dpsp)v, (Dpsp)w) = gp(−v,−w) = gp(v, w),

so sp is an isometry.
We need to show that sp is a symmetry. By lemma II.6 of the lecture, Dpsp =

− IdTp Hn is equivalent to sp ◦ sp = IdHn . Alternatively the calculation

sp ◦ sp(q) = sp(−2pb(p, q)− q)
= −2pb(p,−2pb(p, q)− q)− (−2pb(p, q)− q)
= 4pb(p, q)b(p, p) + 2pb(p, q) + 2pb(p, q) + q = q

shows the same. That p is an isolated fixed point of sp can be seen by the
following argument. Let q ∈ Hn be a fixed point sp(q) = q, then −2pb(p, q)−q =
q, so q = −b(p, q)p, in particular q = λp is a scaled version of p for λ = −b(p, q).
But since p, q ∈ Hn, −1 = b(q, q) = b(λp, λp) = λ2b(p, p) = −1, so λ = ±1. The
λ = −1 solution corresponds to qn+1 < 0 which is excluded since Hn is only
the upper hyperboloid. We showed that q = p is the only fixed point of sp, in
particular it is an isolated fixed point.

This concludes the proof, that Hn is a symmetric space.

Exercise 2: The symmetric space P1(n)

Show that A 7→ gA tg defines a group action of SL(n,R) 3 g on

P1(n) =
{
A ∈Mn×n(R) : A = tA, detA = 1, A >> 0

}
.

Show that this action is transitive, i.e. ∀A,B ∈ P1(n) ∃g ∈ SL(n,R) : gA tg = B.
You may use the Linear-Algebra-fact that symmetric matrices are orthogonally
diagonalizable, i.e. if A = tA, then ∃Q ∈ SO(n,R) such that QA tQ is diagonal.
Solution:

We write the group action as g.A = gA tg. We first need to show that the
action is well defined.

Symmetry: t
(g.A) =

t
(gA tg) = g tA tg = gA tg = g.A.
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Determinant: det(g.A) = det g detA det tg = detA = 1.
Positive definiteness: Let x ∈ Rn \0. txg.Ax = txgA tgx =

t
(tgx)A tgx > 0,

since tgx ∈ Rn \0. Next, we check the two axioms of a group action.
Identity: IdSL(n,R) .A = IdA Id = A.
Compatibility: (gh).A = ghA

t
(gh) = ghA th tg = g(h.A) tg = g.(h.A).

It remains to show that the action is transitive. Let A,B ∈ P1(n). We can use
Linear Algebra to get Q,R ∈ SO(n) < SL(n,R) such that Q.A and R.B are
diagonal, have determinant 1 and are positive definite (by the well-definedness of
the group action). Positive definiteness implies that all entries are non-negative.
Then the matrix Λ = (Q.A) · (R.B)−1 is also diagonal, has determinant 1 and
positive elements on the diagonal. We can therefore take the component wise
root

√
Λ of Λ. Define g = Q−1

√
ΛR ∈ SL(n,R) and use the fact that R.B

commutes with
√

Λ since they are diagonal to see that

g.B = Q−1.
√

Λ.R.B = Q−1.
√

Λ(R.B)
t√

Λ = Q−1.
(√

Λ
t√

Λ ·R.B
)

= Q−1.(Λ ·R.B) = Q−1.((Q.A)(R.B)−1(R.B)) = Q−1.Q.A = A.

this shows that from any point B ∈ P you can go to any point A ∈ P by the
action of SL(n,R), i.e. the action is transitive.

Exercise 3: Topological groups
A group G with a topology is a topological group if multiplicationm : G×G→ G
and inverse ι : G → G are continuous maps. Let G be a topological group and
e ∈ G the identity.

(1) Show that ∀g ∈ G, the inner automorphism φg(h) = ghg−1 is a homeo-
morphism.

Solution:
m and ι are continuous, so also the composition φg : h 7→ m(m(g, h), ι(g))

for any g ∈ G. Note that φ−1g = φg−1, so the inverse is also continuous, i.e. φg
is homeomorph.

(2) Show that the connected component of the identity G◦ is a normal closed
subgroup of G.

Solution:
The image under a continuous map of a connected set is connected. Let

g, h ∈ G◦. First consider the continuous map a 7→ m(g, a). Since h is in the
same connected component as e, also m(g, h) = gh is in the same connected
component as m(g, e) = g, which is G◦. Since ι(e) = e, also ι(g) = g−1 is in the
same connected component as g. Therefore G◦ is a subgroup of G.

The image φg(G◦) is connected and contains e, therefore gG◦g−1 ⊂ G◦, i.e.
G◦ is normal.

Connected components are always open and closed.

(3) Show that any open subgroup H < G is also closed.

Hint: Cosets.
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Solution:
The coset gH is also open, since it is the preimage of H under the continuous

map h 7→ m(g−1, h). The complement of H is a union of open cosets, therefore
H is closed.

(4) Let U 3 e be an open neighborhood of e. Let H be the subgroup generated
by U , i.e.

H =
⋃
n≥1

(
U ∪ U−1

)n
.

Show that H is open.

Solution:
If U is open, then also ι(U) = U−1 open and U∪U−1 open. For any g ∈ G, gU

and gU−1 are open, since they are preimages of the continuous map h 7→ g−1h.
Using gU ∪ gU−1 = g(U ∪ U−1) we get that

(U ∪ U−1)n =
⋃
g∈U

g(U ∪ U−1)n−1

is open for any n ≥ 2 by induction. Thus H is a union of open sets and therefore
open.

(5) Show that G◦ is generated by any neighborhood of e.

Solution:
Any neighborhood of e contains an open neighborhood U . By the construc-

tion of (4), this generates an open subgroup H. By (3) H is also closed. The
only clopen sets in a connected component are the empty set and the component
itself. Since e ∈ H and G◦ connected, H = G◦.

Exercise 4: Lemma II.17
Recall that ∀f ∈ C∞(M), X ∈ Vect(M), we have f ·X ∈ C∞(M) via (f ·X)(p) =
f(p)X(p). If c is a smooth curve, we denote by Vect(c∗(TM)) the space of vector
fields along c. Prove the following lemma.

Lemma II.17: Let M be a smooth manifold, ∇ a connection on M and c : I →
M a smooth curve. Then there exists a unique linear map

D

dt
: Vect (c∗(TM))→ Vect (c∗(TM))

such that

(1) D
dt (f · V ) = f ′ · V + f · DdtV for all V ∈ Vect(c∗(TM)), f ∈ C∞(M)

(2)
(
D
dtV

)
(t) = (∇ċ(t)Y )(c(t)) for all V ∈ Vect(c∗(TM)), Y ∈ Vect(M), t ∈ I

with V (t) = Y (c(t)).

Hint: Work in local coordinates.
Solution:

LetM be a n-dimensional manifold. Since c is a smooth immersion, for every
point c(t0) we can find ε > 0, a neighborhood U 3 c(t0) and a chart ψ : U → Rn
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such that ψ(c(t0)) = 0 and for t ∈ (−ε, ε), ψ(U ∩ c(t)) = t×{0}n−1 ⊂ Rn. This
means that we can assume without loss of generality that M ⊂ Rn and c(t) = t

for t 3 I ⊂ R×{0}n−1.
Let V : I → TM be a vector field along c and Y, Y ′ ∈ Vect(M) with

Y (c(t)) = V (t) = Y ′(c(t)). We can write Y =
∑n

j=1 yjej and Y ′ =
∑n

j=1 y
′
jej

for functions yj , y′j : I → R. Let X ∈ Vect(M) be defined by X(p) = e1 = ∂
∂x1

,
in particular X(c(t)) = ċ(t) for t ∈ I.

Let us define
(
D
dtV

)
(t) = (∇XY )(c(t)). We have to show that this is well

defined (independent of Y ). Note that

∂

∂x1
Y (c(t0)) =

∂

∂x1
Y ′(c(t0)) =

d

dt
V (t0). (♣)

We have(
D

dt
V

)
(t) = ∇XY (c(t0))

= ∇e1

 n∑
j=1

yjej

 (c(t0))

=

 n∑
j=1

yj · ∇e1ej + (e1yj) · ej

 (c(t0)) (Rule (3) for connections)

=

 n∑
j,k=1

yj · Γk
1j · ek +

n∑
j=1

∂

∂x1
yj · ej

 (c(t0)) (for Christoffel symbols Γk
ij : M → R)

=

 n∑
j,k=1

yj · Γk
1j · ek

 (c(t0)) +
∂

∂x1
Y (c(t0))

=

 n∑
j,k=1

yj · Γk
1j · ek

 (c(t0)) +
d

dt
V (t0), (Equation (♣))

which is an expression which does not depend on Y . This shows that a map
D
dt : Vect(c∗TM)→ Vect(c∗TM) that satisfies (2) exists and is unique.

We have to show (1). Let f : I → R. We can extend it to f̃ ∈ C∞(M) with
f̃(t, 0n−1) = f(t) for t ∈ I. then

D

dt
(f · V )(t0) = ∇X(f̃ · Y )(c(t0))

=
[
f̃ · ∇XY + (Xf̃) · Y

]
(c(t0))

=

(
f · D

dt
V

)
(t0) +

[(
∂

∂x1
f̃

)
· Y
]

(c(t0))

=

(
f · D

dt
V

)
(t0) + (f ′ · V ) (t0),

which concludes the proof of lemma II.17.
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Exercise 5: Lemma II.20
Let now ϕ : M →M be a diffeomorphism. Recall that the pushforward ϕ∗X is
defined as (ϕ∗X)(p) =

(
Dϕ−1(p) ϕ

) (
X(ϕ−1(p))

)
for X ∈ Vect(M), p ∈ M . The

goal is to prove the following lemma.

Lemma II.20: Let ∇ be the Levi-Civita connection of a Riemannian manifold
(M, g) and ϕ ∈ Is(X). Then ∇ϕ∗Xϕ∗Y = ϕ∗(∇XY ).

Solution:
Throughout this exercise, letX,Y,X1, X2, Y1, Y2, Z ∈ Vect(M), f, g ∈ C∞(M), p ∈
M,λ, µ ∈ R. We first want to collect some properties of ϕ∗ : Vect(M) →
Vect(M).

Lemma (automorphism): ϕ∗ is a Lie-algebra-automorphism of Vect(M).

Proof:

• Linearity ϕ∗(λX1 + µX2) = λϕ∗X1 + µϕ∗X2.

ϕ∗(λX1 + µX2)(p) = (Dϕ−1(p) ϕ) · (λX1(ϕ−1(p)) + µX2(ϕ−1(p)))

= λ · (Dϕ−1(p) ϕ) ·X1(ϕ−1(p)) + µ · (Dϕ−1(p) ϕ) ·X2(ϕ−1(p))

= λ(ϕ∗X1)(p) + µ(ϕ∗X2)(p).

• Inverse (ϕ∗)
−1 = (ϕ−1)∗

(ϕ∗ ◦ (ϕ−1)∗X)(p) = (ϕ∗((ϕ
−1)∗X))(p)

= (Dϕ−1(p) ϕ) · ((ϕ−1)∗X)(ϕ−1(p))

= (Dϕ−1(p) ϕ) · (Dp ϕ
−1) ·X(p)

= (Dp ϕ ◦ ϕ−1) ·X(p) = X(p)

• Lie brackets ϕ∗[X,Y ] = [ϕ∗X.ϕ∗Y ].

To show that the Lie-brackets are preserved we want to use Lemma 2, which is
proven a bit later. To make sense of the Lie bracket, we need to think of X,Y
and [X,Y ] as derivations C∞(M)→ C∞(M).

(ϕ∗[X,Y ])(f) = ϕ∗
(
[X,Y ](ϕ−1∗ f)

)
(Lemma 2)

= ϕ∗
(
X(Y (ϕ−1∗ f))− Y (X(ϕ−1∗ f))

)
(Def of [·, ·])

= ϕ∗
(
X(ϕ−1∗ (ϕ∗Y )(f))− Y (ϕ−1∗ (ϕ∗X)f)

)
(Lemma 2)

= ϕ∗ϕ
−1
∗ ((ϕ∗X)((ϕ∗Y )f)− (ϕ∗Y )((ϕ∗X)f)) (Lemma 2)

= [ϕ∗X,ϕ∗Y ](f) (Def of [·, ·])

At various occasions we will see need to use how f interacts with ϕ∗ and X,
so we state two more lemmas. It will be convenient to use the notation of the
pushforward ϕ∗f = f ◦ ϕ−1 of f .

Lemma 1: ϕ∗(f ·X) = (ϕ∗f) · (ϕ∗X).
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Proof:

(ϕ∗(fX))(p) = (Dϕ−1(p) ϕ) · f(ϕ−1(p)) ·X(ϕ−1(p))

= f(ϕ−1(p)) · (Dϕ−1(p) ϕ) ·X(ϕ−1(p))

= ((f ◦ ϕ−1) · ϕ∗X)(p)

= ((ϕ∗f) · (ϕ∗X))(p)

Lemma 2: ϕ∗(Xf) = (ϕ∗X)(ϕ∗f).

Proof:

((ϕ∗X)(ϕ∗f))(p) = (Dp ϕ∗f) · ϕ∗X(p)

= (Dp f ◦ ϕ) · (Dϕ−1
∗ (p) ϕ) ·X(ϕ−1)

= (Dϕ−1(p) ϕ∗f) ·X(ϕ−1(p))

= (Xf)(ϕ−1(p))

= (ϕ∗(Xf))(p)

(1) Show that DX Y = ϕ−1∗ (∇ϕ∗X(ϕ∗Y )) is a connection.

Solution:
We have to check three conditions. First C∞(M)-linearity in X

DfXY = ϕ−1∗
(
∇ϕ∗(fX)(ϕ∗Y )

)
(Definition)

= ϕ−1∗
(
∇(ϕ∗f)·ϕ∗X(ϕ∗Y )

)
(Lemma 1)

= ϕ−1∗ ((ϕ∗f) · ∇ϕ∗X(ϕ∗Y )) (C∞(M)-linearity of ∇)
= (ϕ−1∗ ϕ∗f) · ϕ−1∗ (∇ϕ∗X(ϕ∗Y )) (Lemma 1)
= fDXY. (Definition)

and

DX1+X2Y = ϕ−1∗
(
∇ϕ∗(X1+X2)(ϕ∗Y )

)
(Definition)

= ϕ−1∗ (∇ϕ∗X1
ϕ∗Y +∇ϕ∗X2

ϕ∗Y ) (C∞(M)-linearity of ∇)
= ϕ−1∗ (∇ϕ∗X1

ϕ∗Y ) + ϕ−1 (∇ϕ∗X2
ϕ∗Y ) (ϕ∗ is automorphism)

= DX1
Y +DX2

Y. (Definition)

Second, R-linearity in Y follows directly from R-linearity of ∇ and ϕ−1.
Third,

DXfY = ϕ−1∗ (∇ϕ∗X(ϕ∗(fY ))) (Definition)

= ϕ−1∗ (∇ϕ∗X((ϕ∗f) · ϕ∗Y )) (Lemma 1)

= ϕ−1∗ ((ϕ∗f) · ∇ϕ∗X(ϕ∗Y ) + ((ϕ∗X)(ϕ∗f)) · ϕ∗Y ) (Rules for ∇)
= ϕ−1∗ ϕ∗f · ϕ−1∗ (∇ϕ∗Xϕ∗Y ) + ϕ−1∗ ((ϕ∗X) (ϕ∗f)) · ϕ−1∗ (ϕ∗Y ) (Lemma 1)

= f · ϕ−1∗ (∇ϕ∗Xϕ∗Y ) + ϕ−1∗ (ϕ∗(Xf)) · ϕ−1∗ (ϕ∗Y ) (Lemma 2)

= f · ϕ−1∗ (∇ϕ∗Xϕ∗Y ) + (Xf) · Y
= f ·DXY + (Xf) · Y (Definition)
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This completes the proof that DX Y is a connection.

(2) Show that DX Y −DY X = [X,Y ].

Solution:

DX Y −DY X = ϕ−1∗ (∇ϕ∗X(ϕ∗Y ))− ϕ−1 (∇ϕ∗Y (ϕ∗X))

= ϕ−1∗ (∇ϕ∗X(ϕ∗Y )−∇ϕ∗Y (ϕ∗X)) (linearity of ϕ−1∗ )

= ϕ−1∗ ([ϕ∗X,ϕ∗Y ]) (∇ is Levi-civita connection)

= ϕ−1∗ (ϕ∗ [X,Y ]) (ϕ∗ preserves brackets)
= [X,Y ]

(3) Show that X〈Y, Z〉 = 〈DX Y,Z〉+ 〈Y,DX Z〉.

Solution:
We first show that 〈ϕ∗X,ϕ∗Y 〉 = ϕ∗〈X,Y 〉.

〈ϕ∗X,ϕ∗Y 〉(p) = gp
(
Dϕ−1(p) ϕ ·X(ϕ−1(p)),Dϕ−1(p) ϕ · Y (ϕ−1(p))

)
= gϕ−1(p)

(
X(ϕ−1(p)), Y (ϕ−1(p))

)
(ϕ is an isometry)

= 〈X,Y 〉(ϕ−1(p)) = (ϕ∗〈X,Y 〉)(p)

Now

〈DXY, Z〉+ 〈Y,DX Z〉
= 〈ϕ−1∗ (∇ϕ∗X(ϕ∗Y )) , Z〉+ 〈Y, ϕ−1∗ (∇ϕ∗X(ϕ∗Z))〉
= ϕ−1∗ 〈∇ϕ∗X(ϕ∗Y ), ϕ∗Z〉+ ϕ−1∗ 〈ϕ∗Y,∇ϕ∗X(ϕ∗Z)〉 (Remark above)

= ϕ−1∗ (〈∇ϕ∗X(ϕ∗Y ), ϕ∗Z〉+ 〈ϕ∗Y,∇ϕ∗X(ϕ∗Z)〉) (Linearity of C∞(M))

= ϕ−1∗ (ϕ∗X〈ϕ∗Y, ϕ∗Z〉) (∇ is a Levi-Civita-connection)

= ϕ−1∗ ((ϕ∗X)(ϕ∗〈Y,Z〉)) (Remark above)

= ϕ−1∗ ϕ∗(X〈Y, Z〉) (Lemma 2)
= X〈Y,Z〉

(4) Show the lemma by using that the Levi-Civita-connection is unique.

Solution: The Levi-Civita-connection is unique, and DX Y satisfies is a Levi-
Civita-connection. So ∇XY = DX Y = ϕ−1∗ (∇ϕ∗Xϕ∗Y ). Applying ϕ∗ on both
sides results in

ϕ∗(∇XY ) = ∇ϕ∗Xϕ∗Y.
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