ETH Zürich	D-MATH	Symmetric Spaces
Prof. Dr. Marc Burger	Raphael Appenzeller	April 1, 2020

Solution Sheet 2

Exercise 1: Prop II. 22 (4)

Let $\gamma: \mathbb{R} \rightarrow M$ be a geodesic to a globally symmetric space M. Consider the transvection

$$
\mathcal{T}_{t}^{\gamma}=s_{\gamma\left(\frac{t}{2}\right)} \circ s_{\gamma(0)} \in \operatorname{Is}(M)^{\circ}
$$

along γ. For $b \in \mathbb{R}, \eta(t)=\gamma(t+b)$ is also a geodesic and we can define the transvection \mathcal{T}_{t}^{η} along η. Use the fact that $t \mapsto \mathcal{T}_{t}$ is a 1-parameter group (Prop II. 22 (3)) to show that

$$
\mathcal{T}_{t}^{\gamma}=\mathcal{T}_{t}^{\eta}
$$

Solution:

We calculate:

$$
\begin{aligned}
\mathcal{T}_{t}^{\eta} & =s_{\eta(t / 2)} \circ s_{\eta(0)} \\
& =s_{\gamma(t / 2+b)} \circ s_{\gamma(b)} \\
& =s_{\gamma(t / 2+b)} \circ s_{\gamma(0)} \circ s_{\gamma(-b)} \circ s_{\gamma(0)} \\
& =s_{\gamma\left(\frac{t+2 b}{2}\right)}^{\circ} \circ s_{\gamma(0)} \circ s_{\gamma\left(-\frac{-2 b}{2}\right)} \circ s_{\gamma(0)} \\
& =\mathcal{T}_{t+2 b}^{\gamma} \circ \mathcal{T}_{-2 b}^{\gamma} \\
& =\mathcal{T}_{t}^{\gamma} .
\end{aligned}
$$

Exercise 2: A symmetric space with non-compact K.

Let

$$
\begin{aligned}
A & =\left\{\left(\begin{array}{cc}
\lambda & 0 \\
0 & \lambda^{-1}
\end{array}\right): \lambda>0\right\} \\
N & =\left\{\left(\begin{array}{cc}
1 & t \\
0 & 1
\end{array}\right): t \in \mathbb{R}\right\}
\end{aligned}
$$

then the Iwasawa-decomposition states that the map

$$
\begin{aligned}
\mathrm{SO}(2) \times A \times N & \rightarrow \mathrm{SL}(2, \mathbb{R}) \\
(k, a, n) & \mapsto k a n
\end{aligned}
$$

is a diffeomorphism (but not a group-homomorphism).
(1) Explain why $\pi_{1}(\mathrm{SL}(2, \mathbb{R}))=\mathbb{Z}$.

Solution: By the Iwasawa-decomposition we have homeomorphisms $\operatorname{SL}(2, \mathbb{R}) \cong$ $\mathrm{SO}(2) \times A \times N \cong S^{1} \times \mathbb{R} \times \mathbb{R}$ and thus $\pi_{1}(\operatorname{SL}(2, \mathbb{R}))=\pi_{1}\left(S^{1}\right)=\mathbb{Z}$.
(2) Check that $\sigma: \mathrm{SL}(2, \mathbb{R}) \rightarrow \mathrm{SL}(2, \mathbb{R}), g \mapsto^{t} g^{-1}$ is an involution.

Solution: Note that σ needs to be an automorphism. Being a homomorphism $\sigma(g h)=\sigma(g) \sigma(h)$ and $\sigma \circ \sigma=$ Id follows directly from properties of the inverse and the transpose. Bijectivity follows from $\sigma \circ \sigma=$ Id. Finally, most matrices in $\mathrm{SL}(2, \mathbb{R})$ are not fixed by σ, so $\sigma \neq \mathrm{Id}$.

ETH Zürich	D-MATH	Symmetric Spaces
Prof. Dr. Marc Burger	Raphael Appenzeller	April 1, 2020

(3) By covering space theory we can lift σ to the universal cover $\widetilde{\operatorname{SL}(2, \mathbb{R})}$. Argue why $\tilde{\sigma}: \widetilde{\mathrm{SL}(2, \mathbb{R})} \rightarrow \widetilde{\mathrm{SL}(2, \mathbb{R})}$ is also an involution. You may use that the universal cover of a path-connected topological group is again a topological group.

Solution:

Recall from covering space theory the following fact:
Let $\pi: C \rightarrow X$ be a cover and $f: Y \rightarrow X$ a continuous map. Pick $y_{0} \in Y$ and $c_{0} \in C$, which lies over $f\left(y_{0}\right)$, i.e. $\pi\left(c_{0}\right)=f\left(y_{0}\right)$. If Y is simply connected, then there exists a unique lift $\tilde{f}: Y \rightarrow C$ with $\pi \circ \tilde{f}=f$ and $\tilde{f}\left(y_{0}\right)=c_{0}$.

In our case, $Y=C=\widehat{\mathrm{SL}(2, \mathbb{R})}$ is the universal cover and thus simply connected. Let us write $\pi: \widetilde{\mathrm{SL}(2, \mathbb{R})} \rightarrow \mathrm{SL}(2, \mathbb{R})$, and $f=\sigma \circ \pi$. Fix an element $\tilde{I d}$ in the universal cover with $\pi(\tilde{\mathrm{Id}})=\mathrm{Id}$, then we get a unique map $\tilde{\sigma}: \widetilde{\mathrm{SL}(2, \mathbb{R})} \rightarrow \mathrm{SL}(2, \mathbb{R})$ with $\tilde{\sigma}(\tilde{\mathrm{Id}})=\tilde{\mathrm{Id}}$ (Note: $\tilde{\sigma}$ is called the lift of σ, even though strictly speaking it is the lift of $\sigma \circ \pi)$.

We have to show that $\tilde{\sigma}$ is a homomorphism: For this, consider the map

$$
\begin{aligned}
h: \widetilde{\mathrm{SL}(2, \mathbb{R})} \times \widetilde{\mathrm{SL}(2, \mathbb{R})} & \rightarrow \widetilde{\mathrm{SL}(2, \mathbb{R})} \\
(g, h) & \mapsto \tilde{\sigma}(g h)^{-1} \tilde{\sigma}(g) \tilde{\sigma}(h)
\end{aligned}
$$

Since $\pi(g h)=\pi(g) \pi(h)$ (the multiplication in the universal covering is the lift of the multiplication in the group), π is a homomorphism. We have

$$
\begin{aligned}
\pi(h(g, h)) & =\pi\left(\tilde{\sigma}(g h)^{-1} \tilde{\sigma}(g) \tilde{\sigma}(h)\right) \\
& =\pi\left(\tilde{\sigma}(g h)^{-1}\right) \pi(\tilde{\sigma}(h)) \pi(\tilde{\sigma}(h)) \\
& =\pi(\tilde{\sigma}(g h))^{-1} \pi(\tilde{\sigma}(h)) \pi(\tilde{\sigma}(h)) \\
& =\sigma(\pi(g h))^{-1} \sigma(\pi(g)) \sigma(\pi(h)) \\
& =\sigma(\pi(g) \pi(h))^{-1} \sigma(\pi(g) \pi(h)) \\
& =\operatorname{Id}=\pi(\tilde{\mathrm{Id}})
\end{aligned}
$$

so h is a lift of $\pi \circ h$ and so is the constant function $(g, h) \mapsto \tilde{I} d$. Since the lift is unique we have $h(g, h)=\tilde{\mathrm{Id}}$, i.e. $\tilde{\sigma}(g h)=\tilde{\sigma}(g) \tilde{\sigma}(h)$.

The composition $\tilde{\sigma} \circ \tilde{\sigma}$ satisfies $\pi \circ \tilde{\sigma} \circ \tilde{\sigma}=\sigma \circ \pi \circ \tilde{\sigma}=\sigma \circ \sigma \circ \pi=\pi$, so $\tilde{\sigma} \circ \tilde{\sigma}$ as well as the constant function $g \mapsto \tilde{I d}$ is a lift of π. By the uniqueness, we get that $\tilde{\sigma} \circ \tilde{\sigma}(g)=\tilde{\mathrm{Id}}$ for all $g \in \widetilde{\mathrm{SL}(2, \mathbb{R})}$. In particular, $\tilde{\sigma}$ is an automorphism.

Finally, since σ is not the identity, its lift is also not the lift of the identity, i.e. $\tilde{\sigma}$ is not the identity-map on $\mathrm{SL}(2, \mathbb{R})$. This concludes the proof that $\tilde{\sigma}$ is an involution.
(4) Prove that $\widetilde{\mathrm{SL}(2, \mathbb{R})^{\tilde{\sigma}}}=\widetilde{\mathrm{SO}(2)} \cong \mathbb{R}$.

ETH Zürich	D-MATH	Symmetric Spaces
Prof. Dr. Marc Burger	Raphael Appenzeller	April 1, 2020

Solution:

Solution:
The map $\left.\sigma\right|_{\mathrm{SO}(2)}: \mathrm{SO}(2) \rightarrow \mathrm{SO}(2)$ is the identity. Its lift $\left.\tilde{\sigma}\right|_{\widetilde{\mathrm{SO}(2)}}: \widetilde{\mathrm{SO}(2)} \rightarrow$ $\widetilde{\mathrm{SO}(2)}$ therefore also has to be the identity by uniqueness of the lift. So if $g \in$ $\widetilde{\mathrm{SO}(2)}$, then $\tilde{\sigma}(g)=g$, i.e. $g \in \widetilde{\mathrm{SL}(2, \mathbb{R})} \tilde{\sigma}$.

If on the other hand $g \in \widetilde{\mathrm{SL}(2, \mathbb{R})}$ satisfies $\tilde{\sigma}(g)=g$, then $\pi(g)=\pi(\tilde{\sigma}(g))=$ $\sigma(\pi(g))$, so $\pi(g) \in \mathrm{SL}(2, \mathbb{R})^{\sigma}=\mathrm{SO}(2)$. Thus $g \in \widetilde{\mathrm{SO}(2)}$.

This implies $\widetilde{\mathrm{SL}(2, \mathbb{R})}{ }^{\tilde{\sigma}}=\widetilde{\mathrm{SO}(2)}$.
Recall that for a closed subgroup $G<\operatorname{GL}(n, \mathbb{R})$, the adjoint representation is given by

$$
\begin{aligned}
\operatorname{Ad}_{G}: G & \rightarrow \mathrm{GL}(\mathfrak{g}) \\
g & \mapsto\left(X \mapsto g X g^{-1}\right)
\end{aligned}
$$

(5) Calculate the kernel of $\left.\operatorname{Ad}_{\mathrm{SL}(2, \mathbb{R})}\right|_{\mathrm{SO}(2, \mathbb{R})}$ to see that

$$
\operatorname{Ad}_{\mathrm{SL}(2, \mathbb{R})}(\mathrm{SO}(2, \mathbb{R}))=\operatorname{SO}(2, \mathbb{R}) / \pm 1
$$

Solution:

The elements g in the kernel satisfy $X=g X g^{-1}$ for all $X \in \mathfrak{s l}(2, \mathbb{R})=$ $\left\{X \in \mathbb{R}^{2 \times 2}: \operatorname{tr}(X)=0\right\}$. Let

$$
g=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \quad X=\left(\begin{array}{cc}
x & y \\
z & -x
\end{array}\right)
$$

then we have $X=g X g^{-1}$ implies

$$
X g=\left(\begin{array}{ll}
a x+b z & a y-b x \\
c x+d z & c y-d x
\end{array}\right)=\left(\begin{array}{ll}
a x+c y & b x+d y \\
a z-c x & b z-d x
\end{array}\right)=g X
$$

so $b z=c y$ for all $z, y \in \mathbb{R}$, so $b=0=c$. So we have $a y=d y$ and $d z=a z$ which imply $a=d$. Since $g \in \operatorname{SO}(2)$, $\operatorname{det}(g)=a d=a^{2}=1$. So $a= \pm 1$. We conclude that g has to be $\pm \mathrm{Id}$. And indeed both $\pm \mathrm{Id}$ are in $\mathrm{SO}(2)$. By the isomorphism-theorem we have

$$
\operatorname{Ad}_{\mathrm{SL}(2, \mathbb{R})}(\mathrm{SO}(2, \mathbb{R})) \cong \mathrm{SO}(2, \mathbb{R}) / \pm \operatorname{Id}
$$

(6) Argue why $\operatorname{Ad}_{\mathrm{SL}(2, \mathbb{R})}(\widetilde{\mathrm{SO}(2, \mathbb{R})})=\operatorname{Ad}_{\mathrm{SL}(2, \mathbb{R})}(\mathrm{SO}(2, \mathbb{R}))$.

Solution:

The Lie algebra \mathfrak{g} only depends on a neighborhood, so

$$
\operatorname{Lie}(\operatorname{SL}(2, \mathbb{R}))=\mathfrak{g}=\operatorname{Lie}(\widetilde{\operatorname{SL}(2, \mathbb{R})})
$$

Since the left-multiplication on the universal cover is the lift of the left-multiplication of $\operatorname{SL}(2, \mathbb{R})$, they can be identified in a small neighborhood around $o=\mathrm{Id}$. The adjoint representation $\operatorname{Ad}(g)=\mathrm{D}_{o} \operatorname{Int}(g)$ is a derivative at a point and thus also only depends on a neighborhood. We conclude that image of the adjoint representations is equal.

We set $G=\widetilde{\mathrm{SL(2,} \mathrm{\mathbb{R})}}$ and $K=\widetilde{\mathrm{SO}(2, \mathbb{R})}$. Note that K is not compact but $\operatorname{Ad}_{G}(K)$ is. We therefore still get a symmetric space G / K.

ETH Zürich	D-MATH	Symmetric Spaces
Prof. Dr. Marc Burger	Raphael Appenzeller	April 1, 2020

Exercise 3: K-invariant scalar product

Let V be real vectorspace and $K<\mathrm{GL}(V)$ a compact subgroup. Prove that there exists a K-invariant scalar product on V.

Solution: Recall that for any topological group G, there exists a left-Haar measure μ, i.e. for any $f \in C^{\infty}(G)$, we have

$$
\int_{G} f(g h) d \mu=\int_{G} f(g) d \mu
$$

Since K is compact, the Haar measure is finite $\mu(K)<\infty$. Let $\langle\cdot, \cdot\rangle$ be any scalar product on V. As $K<\mathrm{GL}(V)$, we can define

$$
B(v, w)=\frac{1}{\mu(K)} \int_{K}\langle g v, g w\rangle d \mu
$$

for $v, w \in V$. Clearly, B is bilinear and symmetric. Positive definiteness follows from the positive definiteness and continuity of $\langle\cdot, \cdot\rangle$. Using the left-invariance of the Haar-measure for $f(g)=\langle g v, g w\rangle$,

$$
\begin{aligned}
B(h v, h w) & =\frac{1}{\mu(K)} \int_{K}\langle g h v, g h w\rangle d \mu=\frac{1}{\mu(K)} \int_{K} f(g h) d \mu \\
& =\frac{1}{\mu(K)} \int_{K} f(g) d \mu=B(v, w)
\end{aligned}
$$

we see that B is K-invariant.

Exercise 4: The center

(1) Let G be a connected topological group and $N \triangleleft G$ a normal subgroup which is discrete. Show that $N \subset Z(G)$ is contained in the center $Z(G)$ of G.

Solution:
Fix $n \in N$. Consider the set $X=\left\{g n g^{-1}: g \in G\right\}$. It is a subset of N by construction. It is connected since it is the image of the connected set G under a continuous map. Since N is discrete, X consists of only one point. When we consider $g=e_{G}$, we see that X must contain n. So $X=\{n\}$. In particular $\forall g \in G: g n g^{-1}=n$. So n lies in the center $Z(G)$.
(2) Let (G, K) be a Riemannian symmetric pair and $Z(G)$ the center of G. Show that $\operatorname{Ad}_{G}: G \rightarrow \mathrm{GL}(\mathfrak{g})$ induces an isomorphism of Lie groups:

$$
K /(K \cap Z(G)) \rightarrow \operatorname{Ad}_{G}(K)<\operatorname{GL}(\mathfrak{g})
$$

Solution:

In the definition of Riemannian symmetric pair, G is assumed to be connected. Let Ad: $G \rightarrow \mathrm{GL}(\mathfrak{g})$ be the adjoint representation and $Z(G)$ the center.
Claim 1: $\operatorname{ker} \operatorname{Ad} \subset Z(G)$.
Proof:

We have the commuting diagram:

Let $g \in \operatorname{ker} \operatorname{Ad}$, i.e. $\operatorname{Ad}(g)=\mathrm{D}_{e} \operatorname{Int}(g)=\mathrm{Id}_{\mathfrak{g}}$. By the commuting diagram we have

$$
\exp X=\exp \operatorname{Ad}(g) X=\operatorname{Int}(g) \exp X=g \exp X g^{-1}
$$

for any $X \in \mathfrak{g}$. In particular, $g h g^{-1}=h$ for all $h=\exp (X)$ in a neighborhood of e. Since G is connected, by sheet 1, Exercise 3 (5), $G^{\circ}=G$ is generated by such a neighborhood. This means that all $h \in G$ can be written as $h=h_{1} \cdot \ldots \cdot h_{n}$ where for all $i, g h_{i} g^{-1}=h_{i}$ and thus $g h g^{-1}=h$.

Claim 2: $Z(G) \subset$ ker Ad.
Proof:
Let $g \in Z(G)$, i.e. $g h g^{-1}=h$ for all $h \in G$. Now $\operatorname{Int}(g)=\operatorname{Id}_{G}$, so $\operatorname{Ad}(g)=$ $\mathrm{D}_{e} \operatorname{Int}(g)=\mathrm{D}_{e} \mathrm{Id}_{G}=\mathrm{Id}_{\mathfrak{g}}$.

The two claims imply ker $\mathrm{Ad}=Z(G)$, so by the isomorphism theorem

$$
G / Z(G) \underset{\rightarrow}{\operatorname{Ad}} \operatorname{Ad}(G)
$$

and we can restrict to K to get

$$
K /(K \cap Z(G)) \underset{\rightarrow}{\operatorname{Ad}_{G}}(K)
$$

