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Solution Sheet 2

Exercise 1: Prop 11.22 (4)

Let v : R — M be a geodesic to a globally symmetric space M. Consider the
transvection
7?’ = S’Y( ) 0 S4(0) € IS(M)O

t
2

along v. For b € R, n(t) = v(t + b) is also a geodesic and we can define the
transvection 7;" along 1. Use the fact that ¢ — T; is a 1-parameter group (Prop
I1.22 (3)) to show that

T, =T

Solution:
We calculate:
T = sn(t/2) © $y(0)
= Sy(t/2+b) © Sy(b)
= Sy(t/24b) © 8~4(0) © Sy(—b) © S4(0)
= 57(#) [e] S’y(O) o S,Y(szb) [¢] 57(0)

= 7:&-2b O 9

=7

Exercise 2: A symmetric space with non-compact K.

N A:{(é )\01>:>\>0},
(o

then the Iwasawa-decomposition states that the map

SO(2) x A x N — SL(2,R)
(k,a,n) — kan

is a diffeomorphism (but not a group-homomorphism).

(1) Explain why 71 (SL(2,R)) = Z.

o~

Solution: By the Iwasawa-decomposition we have homeomorphisms SL(2, R)
SO(2) x Ax N = S' x R xR and thus m (SL(2,R)) = m (S!) = Z.

(2) Check that o: SL(2,R) — SL(2,R), g + g~ is an involution.

Solution: Note that ¢ needs to be an automorphism. Being a homomorphism
o(gh) = o(g)o(h) and o o 0 = 1d follows directly from properties of the inverse
and the transpose. Bijectivity follows from ¢ o ¢ = Id. Finally, most matrices in
SL(2,R) are not fixed by o, so o # 1d.
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(3) By covering space theory we can lift o to the universal cover SI?(E,/R)

Argue why &: SL(2,R) — SL(2,R) is also an involution. You may use
that the universal cover of a path-connected topological group is again a
topological group.

Solution:
Recall from covering space theory the following fact:

Let 7: C — X be a cover and f: Y — X a continuous map. Pick yg € Y
and ¢g € C, which lies over f(yo), i.e. m(co) = f(yo). I Y is simply connected,
then there exists a unique lift f: ¥ — C with 7o f = f and f(yo) = co.

. C
3!]/0//j lﬁ

-
-

YTX

—_~—

In our case, Y = C = SL(2,R) is the universal cover and thus simply

connected. Let us write 7: SL(2,R) — SL(2,R), and f = o o 7. Fix an el-
ement Id in the universal cover with 7(Id) = Id, then we get a unique map

&: SL(2,R) — SL(2,R) with &(Id) = Id (Note:  is called the lift of o, even
though strictly speaking it is the lift of o o 7).
We have to show that ¢ is a homomorphism: For this, consider the map

—_—~  —~—

h:SL(2,R) x SL(2,R) — ,
(9, h) = &(gh) ' (g)a(h)

Since m(gh) = 7(g)m(h) (the multiplication in the universal covering is the lift
of the multiplication in the group), m is a homomorphism. We have

so h is a lift of 7 o h and so is the constant function (g, h) — Id. Since the lift
is unique we have h(g, h) = Id, i.e. 6(gh) = 5(g)5(h).

The composition 7 o ¢ satisfies ToG o =comrog=0co00com=m,50000
as well as the constant function g — Id is a lift of 7. By the uniqueness, we get

—_

that 6o d(g) = Id for all g € SL(2,R). In particular, ¢ is an automorphism.

Finally, since ¢ is not the identity, its lift is also not the lift of the identity,
i.e. ¢ is not the identity-map on SL(2,R). This concludes the proof that & is an
involution.

—~~— O —

(4) Prove that SL(2,R) = SO(2)

Il

R.
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Solution: o
The map olgo(2): SO(2) — SO(2) is the identity. Its lift &|S/o\/(2): SO(2) —

SO(2) therefore also has to be the identity by uniqueness of the lift. So if g €

—_— —_~— O

SO(2), then 5(g) = g, i.e. g € SL(2,R) .

—_~—

If on the other hand g € SL(2,R) satisfies 6(g) = g, then 7(g) = 7(6(g)) =

a(m(g)), so 7(g) E/S_E(/?,R)" :/§9(2) Thus g € S/O\_/(2)

This implies SL(2,R) = SO(2).

Recall that for a closed subgroup G < GL(n,R), the adjoint representation is
given by
Adg: G — GL(g)
g (X = gXg™h)
(5) Calculate the kernel of Adgr,(2,r) [so(2,r) to see that
Adgp(2,r) (SO(2,R)) = SO2R)/+1.

Solution:
The elements g in the kernel satisfy X = ¢gXg=! for all X € sl(2,R) =
{X e R¥*: t1(X) = 0}. Let

(00 x=(n)

then we have X = ¢gX ¢~ ! implies

_fax+bz ay—bx\ [(ar+cy br+dy\ Y
" \ex+dz cy—dr)  \az—cr bz—dx =9

so bz = ¢y for all z,y € R, s0 b = 0 = ¢. So we have ay = dy and dz = az
which imply a = d. Since g € SO(2), det(g) = ad = a®> = 1. So a = +1. We
conclude that g has to be £1Id. And indeed both +£1Id are in SO(2). By the
isomorphism-theorem we have

Adgr,2,r)(SO(2,R)) 2 SO(2,R)/ £ 1d.

(6) Argue why Adsm)(SO(Z,R)) = Adgr,(2,r)(SO(2,R)).

Solution:
The Lie algebra g only depends on a neighborhood, so

Lie(SL(2,R)) = g = Lie (sf(ﬁa)) .

Since the left-multiplication on the universal cover is the lift of the left-multiplication
of SL(2,R), they can be identified in a small neighborhood around o = Id. The
adjoint representation Ad(g) = D,Int(g) is a derivative at a point and thus
also only depends on a neighborhood. We conclude that image of the adjoint
representations is equal.

—_~—

We set G = SL(2,R) and K = SO(2,R). Note that K is not compact but
Adg(K) is. We therefore still get a symmetric space G/k.
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Exercise 3: K-invariant scalar product

Let V be real vectorspace and K < GL(V) a compact subgroup. Prove that
there exists a K-invariant scalar product on V.

Solution: Recall that for any topological group G, there exists a left-Haar mea-
sure p, i.e. for any f € C*(G), we have

/Gf(gh)d/«t:/Gf(g)dw

Since K is compact, the Haar measure is finite u(K) < oco. Let (-,-) be any
scalar product on V. As K < GL(V), we can define

1
B(v,w) = M(K)/KWU,QWWM

for v,w € V. Clearly, B is bilinear and symmetric. Positive definiteness follows
from the positive definiteness and continuity of (-,-). Using the left-invariance
of the Haar-measure for f(g) = (gv, gw),

1 1
Bk, ) =~ /K (ghv, ghu)dp = s /K F(gh)dp

; /
= f(g)du = B(v,w),
M(K) K
we see that B is K-invariant.

Exercise 4: The center

(1) Let G be a connected topological group and N <1 G a normal subgroup
which is discrete. Show that N C Z(G) is contained in the center Z(G) of
G.

Solution:

Fix n € N. Consider the set X = {gng*I: g€ G}. It is a subset of N by
construction. It is connected since it is the image of the connected set G under
a continuous map. Since N is discrete, X consists of only one point. When we
consider g = eq, we see that X must contain n. So X = {n}. In particular
Vg € G: gng~! = n. So n lies in the center Z(Q).

(2) Let (G, K) be a Riemannian symmetric pair and Z(G) the center of G.
Show that Adg: G — GL(g) induces an isomorphism of Lie groups:

K/(K N Z(G)) — Ada(K) < GL(g).

Solution:

In the definition of Riemannian symmetric pair, G is assumed to be connected.
Let Ad: G — GL(g) be the adjoint representation and Z(G) the center.
Claim 1: ker Ad C Z(G).

Proof:
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We have the commuting diagram:
G Int(g)

G
expT Texp
g g

Let g € ker Ad, i.e. Ad(g) = DcInt(g) = Idy. By the commuting diagram we
have

Ad(g)

exp X = exp Ad(g)X = Int(g)exp X = gexp Xg~*

for any X € g. In particular, ghg~! = h for all h = exp(X) in a neighborhood of
e. Since G is connected, by sheet 1, Exercise 3 (5), G° = G is generated by such
a neighborhood. This means that all h € G can be written as h = hy - ... h,
where for all 4, gh;g~' = h; and thus ghg~' = h. O

Claim 2: Z(G) C ker Ad.

Proof:
Let g € Z(G), i.e. ghg™ = h for all h € G. Now Int(g) = Idg, so Ad(g) =
D. Int(g) = D, ldg = Id,. 0

The two claims imply ker Ad = Z(G), so by the isomorphism theorem
G/Z(G)= Ad(G)
and we can restrict to K to get

K/(K N Z(G)= Ada(K)



