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Exercise 1: Prop II.22 (4)
Let γ : R → M be a geodesic to a globally symmetric space M . Consider the
transvection

T γt = sγ( t
2 )
◦ sγ(0) ∈ Is(M)◦

along γ. For b ∈ R, η(t) = γ(t + b) is also a geodesic and we can define the
transvection T ηt along η. Use the fact that t 7→ Tt is a 1-parameter group (Prop
II.22 (3)) to show that

T γt = T ηt .

Solution:
We calculate:

T ηt = sη(t/2) ◦ sη(0)
= sγ(t/2+b) ◦ sγ(b)
= sγ(t/2+b) ◦ sγ(0) ◦ sγ(−b) ◦ sγ(0)
= sγ( t+2b

2 ) ◦ sγ(0) ◦ sγ(−2b
2 ) ◦ sγ(0)

= T γt+2b ◦ T
γ
−2b

= T γt .

Exercise 2: A symmetric space with non-compact K.
Let

A =

{(
λ 0
0 λ−1

)
: λ > 0

}
,

N =

{(
1 t
0 1

)
: t ∈ R

}
,

then the Iwasawa-decomposition states that the map

SO(2)×A×N → SL(2,R)
(k, a, n) 7→ kan

is a diffeomorphism (but not a group-homomorphism).

(1) Explain why π1(SL(2,R)) = Z.

Solution: By the Iwasawa-decomposition we have homeomorphisms SL(2,R) ∼=
SO(2)×A×N ∼= S1 × R×R and thus π1(SL(2,R)) = π1

(
S1
)
= Z.

(2) Check that σ : SL(2,R)→ SL(2,R), g 7→ tg−1 is an involution.

Solution: Note that σ needs to be an automorphism. Being a homomorphism
σ(gh) = σ(g)σ(h) and σ ◦ σ = Id follows directly from properties of the inverse
and the transpose. Bijectivity follows from σ ◦ σ = Id. Finally, most matrices in
SL(2,R) are not fixed by σ, so σ 6= Id.
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(3) By covering space theory we can lift σ to the universal cover ˜SL(2,R).
Argue why σ̃ : ˜SL(2,R) → ˜SL(2,R) is also an involution. You may use
that the universal cover of a path-connected topological group is again a
topological group.

Solution:
Recall from covering space theory the following fact:

Let π : C → X be a cover and f : Y → X a continuous map. Pick y0 ∈ Y
and c0 ∈ C, which lies over f(y0), i.e. π(c0) = f(y0). If Y is simply connected,
then there exists a unique lift f̃ : Y → C with π ◦ f̃ = f and f̃(y0) = c0.

C

Y X

π

f

∃!f̃

In our case, Y = C = ˜SL(2,R) is the universal cover and thus simply
connected. Let us write π : ˜SL(2,R) → SL(2,R), and f = σ ◦ π. Fix an el-
ement Ĩd in the universal cover with π(Ĩd) = Id, then we get a unique map
σ̃ : ˜SL(2,R) → ˜SL(2,R) with σ̃(Ĩd) = Ĩd (Note: σ̃ is called the lift of σ, even
though strictly speaking it is the lift of σ ◦ π).

We have to show that σ̃ is a homomorphism: For this, consider the map

h : ˜SL(2,R)× ˜SL(2,R)→ ˜SL(2,R)
(g, h) 7→ σ̃(gh)−1σ̃(g)σ̃(h)

Since π(gh) = π(g)π(h) (the multiplication in the universal covering is the lift
of the multiplication in the group), π is a homomorphism. We have

π(h(g, h)) = π(σ̃(gh)−1σ̃(g)σ̃(h))

= π(σ̃(gh)−1)π(σ̃(h))π(σ̃(h))

= π(σ̃(gh))−1π(σ̃(h))π(σ̃(h))

= σ(π(gh))−1σ(π(g))σ(π(h))

= σ(π(g)π(h))−1σ(π(g)π(h))

= Id = π(Ĩd)

so h is a lift of π ◦ h and so is the constant function (g, h) 7→ Ĩd. Since the lift
is unique we have h(g, h) = Ĩd, i.e. σ̃(gh) = σ̃(g)σ̃(h).

The composition σ̃ ◦ σ̃ satisfies π ◦ σ̃ ◦ σ̃ = σ ◦ π ◦ σ̃ = σ ◦ σ ◦ π = π, so σ̃ ◦ σ̃
as well as the constant function g 7→ Ĩd is a lift of π. By the uniqueness, we get
that σ̃ ◦ σ̃(g) = Ĩd for all g ∈ ˜SL(2,R). In particular, σ̃ is an automorphism.

Finally, since σ is not the identity, its lift is also not the lift of the identity,
i.e. σ̃ is not the identity-map on ˜SL(2,R). This concludes the proof that σ̃ is an
involution.

(4) Prove that ˜SL(2,R)
σ̃

= S̃O(2) ∼= R .
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Solution:
The map σ|SO(2) : SO(2) → SO(2) is the identity. Its lift σ̃|

S̃O(2)
: S̃O(2) →

S̃O(2) therefore also has to be the identity by uniqueness of the lift. So if g ∈

S̃O(2), then σ̃(g) = g, i.e. g ∈ ˜SL(2,R)
σ̃

.
If on the other hand g ∈ ˜SL(2,R) satisfies σ̃(g) = g, then π(g) = π(σ̃(g)) =

σ(π(g)), so π(g) ∈ SL(2,R)σ = SO(2). Thus g ∈ S̃O(2).

This implies ˜SL(2,R)
σ̃

= S̃O(2).

Recall that for a closed subgroup G < GL(n,R), the adjoint representation is
given by

AdG : G→ GL(g)

g 7→ (X 7→ gXg−1)

(5) Calculate the kernel of AdSL(2,R) |SO(2,R) to see that

AdSL(2,R)(SO(2,R)) = SO(2,R)/±1.

Solution:
The elements g in the kernel satisfy X = gXg−1 for all X ∈ sl(2,R) ={
X ∈ R2×2 : tr(X) = 0

}
. Let

g =

(
a b
c d

)
X =

(
x y
z −x

)
,

then we have X = gXg−1 implies

Xg =

(
ax+ bz ay − bx
cx+ dz cy − dx

)
=

(
ax+ cy bx+ dy
az − cx bz − dx

)
= gX

so bz = cy for all z, y ∈ R, so b = 0 = c. So we have ay = dy and dz = az
which imply a = d. Since g ∈ SO(2), det(g) = ad = a2 = 1. So a = ±1. We
conclude that g has to be ± Id. And indeed both ± Id are in SO(2). By the
isomorphism-theorem we have

AdSL(2,R)(SO(2,R)) ∼= SO(2,R)/± Id .

(6) Argue why Ad ˜SL(2,R)
( ˜SO(2,R)) = AdSL(2,R)(SO(2,R)).

Solution:
The Lie algebra g only depends on a neighborhood, so

Lie(SL(2,R)) = g = Lie
(

˜SL(2,R)
)
.

Since the left-multiplication on the universal cover is the lift of the left-multiplication
of SL(2,R), they can be identified in a small neighborhood around o = Id. The
adjoint representation Ad(g) = Do Int(g) is a derivative at a point and thus
also only depends on a neighborhood. We conclude that image of the adjoint
representations is equal.

We set G = ˜SL(2,R) and K = ˜SO(2,R). Note that K is not compact but
AdG(K) is. We therefore still get a symmetric space G/K.
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Exercise 3: K-invariant scalar product
Let V be real vectorspace and K < GL(V ) a compact subgroup. Prove that
there exists a K-invariant scalar product on V .

Solution: Recall that for any topological group G, there exists a left-Haar mea-
sure µ, i.e. for any f ∈ C∞(G), we have∫

G

f(gh)dµ =

∫
G

f(g)dµ.

Since K is compact, the Haar measure is finite µ(K) < ∞. Let 〈·, ·〉 be any
scalar product on V. As K < GL(V ), we can define

B(v, w) =
1

µ(K)

∫
K

〈gv, gw〉dµ

for v, w ∈ V . Clearly, B is bilinear and symmetric. Positive definiteness follows
from the positive definiteness and continuity of 〈·, ·〉. Using the left-invariance
of the Haar-measure for f(g) = 〈gv, gw〉,

B(hv, hw) =
1

µ(K)

∫
K

〈ghv, ghw〉dµ =
1

µ(K)

∫
K

f(gh)dµ

=
1

µ(K)

∫
K

f(g)dµ = B(v, w),

we see that B is K-invariant.

Exercise 4: The center
(1) Let G be a connected topological group and N C G a normal subgroup

which is discrete. Show that N ⊂ Z(G) is contained in the center Z(G) of
G.

Solution:
Fix n ∈ N . Consider the set X =

{
gng−1 : g ∈ G

}
. It is a subset of N by

construction. It is connected since it is the image of the connected set G under
a continuous map. Since N is discrete, X consists of only one point. When we
consider g = eG, we see that X must contain n. So X = {n}. In particular
∀g ∈ G : gng−1 = n. So n lies in the center Z(G).

(2) Let (G,K) be a Riemannian symmetric pair and Z(G) the center of G.
Show that AdG : G→ GL(g) induces an isomorphism of Lie groups:

K/(K ∩ Z(G))→ AdG(K) < GL(g).

Solution:
In the definition of Riemannian symmetric pair, G is assumed to be connected.
Let Ad: G→ GL(g) be the adjoint representation and Z(G) the center.
Claim 1: kerAd ⊂ Z(G).
Proof:
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We have the commuting diagram:

G G

g g

Int(g)

Ad(g)

exp exp

Let g ∈ kerAd, i.e. Ad(g) = De Int(g) = Idg. By the commuting diagram we
have

expX = expAd(g)X = Int(g) expX = g expXg−1

for any X ∈ g. In particular, ghg−1 = h for all h = exp(X) in a neighborhood of
e. Since G is connected, by sheet 1, Exercise 3 (5), G◦ = G is generated by such
a neighborhood. This means that all h ∈ G can be written as h = h1 · . . . · hn
where for all i, ghig−1 = hi and thus ghg−1 = h.

Claim 2: Z(G) ⊂ kerAd.
Proof:
Let g ∈ Z(G), i.e. ghg−1 = h for all h ∈ G. Now Int(g) = IdG, so Ad(g) =
De Int(g) = De IdG = Idg.

The two claims imply kerAd = Z(G), so by the isomorphism theorem

G/Z(G)→̃Ad(G)

and we can restrict to K to get

K/(K ∩ Z(G))→̃AdG(K)
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