ETH Zürich	D-MATH	Symmetric Spaces
Prof. Dr. Marc Burger	Raphael Appenzeller	April 1, 2020

Solution Sheet 2

Exercise 1: Prop II.22 (4)

Let $\gamma : \mathbb{R} \to M$ be a geodesic to a globally symmetric space M. Consider the transvection

$$\mathcal{T}_t^{\gamma} = s_{\gamma\left(\frac{t}{2}\right)} \circ s_{\gamma(0)} \in \mathrm{Is}(M)^{\circ}$$

along γ . For $b \in \mathbb{R}$, $\eta(t) = \gamma(t+b)$ is also a geodesic and we can define the transvection \mathcal{T}_t^{η} along η . Use the fact that $t \mapsto \mathcal{T}_t$ is a 1-parameter group (Prop II.22 (3)) to show that

$$\mathcal{T}_t^{\gamma} = \mathcal{T}_t^{\eta}.$$

Solution: We calculate:

$$\begin{split} \mathcal{T}_t^\eta &= s_{\eta(t/2)} \circ s_{\eta(0)} \\ &= s_{\gamma(t/2+b)} \circ s_{\gamma(b)} \\ &= s_{\gamma(t/2+b)} \circ s_{\gamma(0)} \circ s_{\gamma(-b)} \circ s_{\gamma(0)} \\ &= s_{\gamma\left(\frac{t+2b}{2}\right)} \circ s_{\gamma(0)} \circ s_{\gamma\left(\frac{-2b}{2}\right)} \circ s_{\gamma(0)} \\ &= \mathcal{T}_{t+2b}^\gamma \circ \mathcal{T}_{-2b}^\gamma \\ &= \mathcal{T}_t^\gamma. \end{split}$$

Exercise 2: A symmetric space with non-compact K. Let

$$A = \left\{ \begin{pmatrix} \lambda & 0\\ 0 & \lambda^{-1} \end{pmatrix} : \lambda > 0 \right\},$$
$$N = \left\{ \begin{pmatrix} 1 & t\\ 0 & 1 \end{pmatrix} : t \in \mathbb{R} \right\},$$

then the Iwasawa-decomposition states that the map

$$\begin{aligned} \mathrm{SO}(2) \times A \times N &\to \mathrm{SL}(2,\mathbb{R}) \\ (k,a,n) &\mapsto kan \end{aligned}$$

is a diffeomorphism (but not a group-homomorphism).

(1) Explain why $\pi_1(\mathrm{SL}(2,\mathbb{R})) = \mathbb{Z}$.

Solution: By the Iwasawa-decomposition we have homeomorphisms $SL(2,\mathbb{R}) \cong$ $SO(2) \times A \times N \cong S^1 \times \mathbb{R} \times \mathbb{R}$ and thus $\pi_1(SL(2,\mathbb{R})) = \pi_1(S^1) = \mathbb{Z}$.

(2) Check that $\sigma \colon \operatorname{SL}(2,\mathbb{R}) \to \operatorname{SL}(2,\mathbb{R}), g \mapsto {}^tg^{-1}$ is an involution.

Solution: Note that σ needs to be an automorphism. Being a homomorphism $\sigma(gh) = \sigma(g)\sigma(h)$ and $\sigma \circ \sigma = \text{Id}$ follows directly from properties of the inverse and the transpose. Bijectivity follows from $\sigma \circ \sigma = \text{Id}$. Finally, most matrices in $SL(2, \mathbb{R})$ are not fixed by σ , so $\sigma \neq \text{Id}$.

ETH Zürich	D-MATH	Symmetric Spaces
Prof. Dr. Marc Burger	Raphael Appenzeller	April 1, 2020

(3) By covering space theory we can lift σ to the universal cover $SL(2, \mathbb{R})$. Argue why $\tilde{\sigma}: \widetilde{SL(2, \mathbb{R})} \to \widetilde{SL(2, \mathbb{R})}$ is also an involution. You may use that the universal cover of a path-connected topological group is again a topological group.

Solution:

Recall from covering space theory the following fact:

Let $\pi: C \to X$ be a cover and $f: Y \to X$ a continuous map. Pick $y_0 \in Y$ and $c_0 \in C$, which lies over $f(y_0)$, i.e. $\pi(c_0) = f(y_0)$. If Y is simply connected, then there exists a unique lift $\tilde{f}: Y \to C$ with $\pi \circ \tilde{f} = f$ and $\tilde{f}(y_0) = c_0$.

$$\begin{array}{c} & C \\ \exists !\tilde{f} & \swarrow^{\pi} \\ & \downarrow^{\pi} \\ Y & \xrightarrow{f} & X \end{array}$$

In our case, $Y = C = \widetilde{SL(2,\mathbb{R})}$ is the universal cover and thus simply connected. Let us write $\pi: \widetilde{SL(2,\mathbb{R})} \to SL(2,\mathbb{R})$, and $f = \sigma \circ \pi$. Fix an element \widetilde{Id} in the universal cover with $\pi(\widetilde{Id}) = Id$, then we get a unique map $\widetilde{\sigma}: \widetilde{SL(2,\mathbb{R})} \to \widetilde{SL(2,\mathbb{R})}$ with $\widetilde{\sigma}(\widetilde{Id}) = \widetilde{Id}$ (Note: $\widetilde{\sigma}$ is called the lift of σ , even though strictly speaking it is the lift of $\sigma \circ \pi$).

We have to show that $\tilde{\sigma}$ is a homomorphism: For this, consider the map

$$h: \widetilde{\mathrm{SL}(2,\mathbb{R})} \times \widetilde{\mathrm{SL}(2,\mathbb{R})} \to \widetilde{\mathrm{SL}(2,\mathbb{R})}$$
$$(g,h) \qquad \mapsto \widetilde{\sigma}(gh)^{-1}\widetilde{\sigma}(g)\widetilde{\sigma}(h)$$

Since $\pi(gh) = \pi(g)\pi(h)$ (the multiplication in the universal covering is the lift of the multiplication in the group), π is a homomorphism. We have

$$\pi(h(g,h)) = \pi(\tilde{\sigma}(gh)^{-1}\tilde{\sigma}(g)\tilde{\sigma}(h))$$

$$= \pi(\tilde{\sigma}(gh)^{-1})\pi(\tilde{\sigma}(h))\pi(\tilde{\sigma}(h))$$

$$= \pi(\tilde{\sigma}(gh))^{-1}\pi(\tilde{\sigma}(h))\pi(\tilde{\sigma}(h))$$

$$= \sigma(\pi(gh))^{-1}\sigma(\pi(g))\sigma(\pi(h))$$

$$= \sigma(\pi(g)\pi(h))^{-1}\sigma(\pi(g)\pi(h))$$

$$= \mathrm{Id} = \pi(\mathrm{Id})$$

so h is a lift of $\pi \circ h$ and so is the constant function $(g,h) \mapsto Id$. Since the lift is unique we have h(g,h) = Id, i.e. $\tilde{\sigma}(gh) = \tilde{\sigma}(g)\tilde{\sigma}(h)$.

The composition $\tilde{\sigma} \circ \tilde{\sigma}$ satisfies $\pi \circ \tilde{\sigma} \circ \tilde{\sigma} = \sigma \circ \pi \circ \tilde{\sigma} = \sigma \circ \sigma \circ \pi = \pi$, so $\tilde{\sigma} \circ \tilde{\sigma}$ as well as the constant function $g \mapsto Id$ is a lift of π . By the uniqueness, we get that $\tilde{\sigma} \circ \tilde{\sigma}(g) = Id$ for all $g \in SL(2, \mathbb{R})$. In particular, $\tilde{\sigma}$ is an automorphism.

Finally, since σ is not the identity, its lift is also not the lift of the identity, i.e. $\tilde{\sigma}$ is not the identity-map on $SL(2, \mathbb{R})$. This concludes the proof that $\tilde{\sigma}$ is an involution.

(4) Prove that $\widetilde{\mathrm{SL}(2,\mathbb{R})}^{\tilde{\sigma}} = \widetilde{\mathrm{SO}(2)} \cong \mathbb{R}$.

ETH Zürich	D-MATH	Symmetric Spaces
Prof. Dr. Marc Burger	Raphael Appenzeller	April 1, 2020

Solution:

The map $\sigma|_{SO(2)}$: SO(2) \rightarrow SO(2) is the identity. Its lift $\tilde{\sigma}|_{\widetilde{SO(2)}}$: $\widetilde{SO(2)} \rightarrow$ $\widetilde{\mathrm{SO}(2)}$ therefore also has to be the identity by uniqueness of the lift. So if $g \in$ $\widetilde{\mathrm{SO}(2)}, \text{ then } \tilde{\sigma}(g) = g, \text{ i.e. } g \in \widetilde{\mathrm{SL}(2,\mathbb{R})}^{\tilde{\sigma}}.$ If on the other hand $g \in \widetilde{SL(2,\mathbb{R})}$ satisfies $\tilde{\sigma}(g) = g$, then $\pi(g) = \pi(\tilde{\sigma}(g)) =$ $\sigma(\pi(g))$, so $\pi(g) \in \mathrm{SL}(2, \mathbb{R})^{\sigma} = \mathrm{SO}(2)$. Thus $g \in \widetilde{\mathrm{SO}(2)}$. This implies $\widetilde{\mathrm{SL}(2, \mathbb{R})}^{\tilde{\sigma}} = \widetilde{\mathrm{SO}(2)}$.

Recall that for a closed subgroup $G < \operatorname{GL}(n, \mathbb{R})$, the adjoint representation is given by

$$\operatorname{Ad}_G \colon G \to \operatorname{GL}(\mathfrak{g})$$
$$g \mapsto (X \mapsto gXg^{-1})$$

(5) Calculate the kernel of $\operatorname{Ad}_{\operatorname{SL}(2,\mathbb{R})}|_{\operatorname{SO}(2,\mathbb{R})}$ to see that

A

$$\operatorname{Ad}_{\operatorname{SL}(2,\mathbb{R})}(\operatorname{SO}(2,\mathbb{R})) = \operatorname{SO}(2,\mathbb{R})/\pm 1.$$

Solution:

The elements g in the kernel satisfy $X = gXg^{-1}$ for all $X \in \mathfrak{sl}(2,\mathbb{R}) =$ $\{X \in \mathbb{R}^{2 \times 2} : \operatorname{tr}(X) = 0\}$. Let

$$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 $X = \begin{pmatrix} x & y \\ z & -x \end{pmatrix}$,

then we have $X = gXg^{-1}$ implies

$$Xg = \begin{pmatrix} ax+bz & ay-bx \\ cx+dz & cy-dx \end{pmatrix} = \begin{pmatrix} ax+cy & bx+dy \\ az-cx & bz-dx \end{pmatrix} = gX$$

so bz = cy for all $z, y \in \mathbb{R}$, so b = 0 = c. So we have ay = dy and dz = azwhich imply a = d. Since $g \in SO(2)$, $det(g) = ad = a^2 = 1$. So $a = \pm 1$. We conclude that g has to be $\pm Id$. And indeed both $\pm Id$ are in SO(2). By the isomorphism-theorem we have

$$\operatorname{Ad}_{\operatorname{SL}(2,\mathbb{R})}(\operatorname{SO}(2,\mathbb{R})) \cong \operatorname{SO}(2,\mathbb{R})/\pm \operatorname{Id}.$$

(6) Argue why
$$\operatorname{Ad}_{\widetilde{\operatorname{SL}(2,\mathbb{R})}}(\operatorname{SO}(2,\mathbb{R})) = \operatorname{Ad}_{\operatorname{SL}(2,\mathbb{R})}(\operatorname{SO}(2,\mathbb{R})).$$

Solution:

The Lie algebra \mathfrak{g} only depends on a neighborhood, so

$$\operatorname{Lie}(\operatorname{SL}(2,\mathbb{R})) = \mathfrak{g} = \operatorname{Lie}\left(\widetilde{\operatorname{SL}(2,\mathbb{R})}\right).$$

Since the left-multiplication on the universal cover is the lift of the left-multiplication of $SL(2,\mathbb{R})$, they can be identified in a small neighborhood around o = Id. The adjoint representation $Ad(q) = D_o Int(q)$ is a derivative at a point and thus also only depends on a neighborhood. We conclude that image of the adjoint representations is equal.

We set $G = SL(2,\mathbb{R})$ and $K = SO(2,\mathbb{R})$. Note that K is not compact but $\operatorname{Ad}_G(K)$ is. We therefore still get a symmetric space G/K.

ETH Zürich	D-MATH	Symmetric Spaces
Prof. Dr. Marc Burger	Raphael Appenzeller	April 1, 2020

Exercise 3: K-invariant scalar product

Let V be real vectorspace and K < GL(V) a compact subgroup. Prove that there exists a K-invariant scalar product on V.

Solution: Recall that for any topological group G, there exists a left-Haar measure μ , i.e. for any $f \in C^{\infty}(G)$, we have

$$\int_G f(gh) d\mu = \int_G f(g) d\mu.$$

Since K is compact, the Haar measure is finite $\mu(K) < \infty$. Let $\langle \cdot, \cdot \rangle$ be any scalar product on V. As $K < \operatorname{GL}(V)$, we can define

$$B(v,w) = \frac{1}{\mu(K)} \int_{K} \langle gv, gw \rangle d\mu$$

for $v, w \in V$. Clearly, B is bilinear and symmetric. Positive definiteness follows from the positive definiteness and continuity of $\langle \cdot, \cdot \rangle$. Using the left-invariance of the Haar-measure for $f(g) = \langle gv, gw \rangle$,

$$\begin{split} B(hv,hw) &= \frac{1}{\mu(K)} \int_{K} \langle ghv, ghw \rangle d\mu = \frac{1}{\mu(K)} \int_{K} f(gh) d\mu \\ &= \frac{1}{\mu(K)} \int_{K} f(g) d\mu = B(v,w), \end{split}$$

we see that B is K-invariant.

Exercise 4: The center

(1) Let G be a connected topological group and $N \triangleleft G$ a normal subgroup which is discrete. Show that $N \subset Z(G)$ is contained in the center Z(G) of G.

Solution:

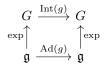
Fix $n \in N$. Consider the set $X = \{gng^{-1} : g \in G\}$. It is a subset of N by construction. It is connected since it is the image of the connected set G under a continuous map. Since N is discrete, X consists of only one point. When we consider $g = e_G$, we see that X must contain n. So $X = \{n\}$. In particular $\forall g \in G : gng^{-1} = n$. So n lies in the center Z(G).

(2) Let (G, K) be a Riemannian symmetric pair and Z(G) the center of G. Show that $\operatorname{Ad}_G : G \to \operatorname{GL}(\mathfrak{g})$ induces an isomorphism of Lie groups:

$$K/(K \cap Z(G)) \to \operatorname{Ad}_G(K) < \operatorname{GL}(\mathfrak{g}).$$

Solution:

In the definition of Riemannian symmetric pair, G is assumed to be connected. Let $\operatorname{Ad}: G \to \operatorname{GL}(\mathfrak{g})$ be the adjoint representation and Z(G) the center. **Claim 1:** ker $\operatorname{Ad} \subset Z(G)$. Proof: We have the commuting diagram:



Let $g \in \ker \operatorname{Ad}$, i.e. $\operatorname{Ad}(g) = \operatorname{D}_e \operatorname{Int}(g) = \operatorname{Id}_{\mathfrak{g}}$. By the commuting diagram we have

$$\exp X = \exp \operatorname{Ad}(g)X = \operatorname{Int}(g)\exp X = g\exp Xg^{-1}$$

for any $X \in \mathfrak{g}$. In particular, $ghg^{-1} = h$ for all $h = \exp(X)$ in a neighborhood of e. Since G is connected, by sheet 1, Exercise 3 (5), $G^{\circ} = G$ is generated by such a neighborhood. This means that all $h \in G$ can be written as $h = h_1 \cdot \ldots \cdot h_n$ where for all $i, gh_ig^{-1} = h_i$ and thus $ghg^{-1} = h$. \Box

Claim 2: $Z(G) \subset \ker \operatorname{Ad}$. Proof: Let $g \in Z(G)$, i.e. $ghg^{-1} = h$ for all $h \in G$. Now $\operatorname{Int}(g) = \operatorname{Id}_G$, so $\operatorname{Ad}(g) = D_e \operatorname{Int}(g) = D_e \operatorname{Id}_G = \operatorname{Id}_{\mathfrak{g}}$. \Box

The two claims imply ker Ad = Z(G), so by the isomorphism theorem

 $G/Z(G) \rightarrow \operatorname{Ad}(G)$

and we can restrict to K to get

$$K/(K \cap Z(G)) \xrightarrow{\sim} \operatorname{Ad}_G(K)$$