ETH Zürich	D-MATH	Symmetric Spaces
Prof. Dr. Marc Burger	Raphael Appenzeller	April 17, 2020

Solution to Exercise Sheet 4

Exercise 1: Compact symmetric spaces

Let K be a compact connected Lie group with $\dim(K) \ge 1$. Define $G = K \times K$ and $\sigma(g,h) = (h,g)$ for $(g,h) \in G$.

(1) Show that (G, G^{σ}) is a Riemannian symmetric pair with involution σ .

Solution: Since K is connected, so is G. $G^{\sigma} = \{(k,k') \in G : \sigma(k,k') = (k,k')\} = \{(k,k) : k \in K\}$ is a closed subgroup of G, which is homeomorphic to K. Since K is compact, so is G^{σ} and so is $\operatorname{Ad}(G^{\sigma})$. Since dim $K \geq 1$, σ is an involution and clearly $(G^{\sigma})^{\circ} \subset G^{\circ}$. Thus (G, G^{σ}) is a RSP and G/G^{σ} is a Riemannian symmetric space.

(2) Consider the action $(g, h).k = gkh^{-1}$ of $(g, h) \in G$ on $k \in K$. Show that

$$G/G^{\sigma} \to K$$

is a homeomorphism.

Solution: We note that the action is transitive $((k',k) \in G \text{ sends } k \in K \text{ to } k' \in K)$. Furthermore, G acts by homeomorphisms on K and K is thus a homogeneous space. Homogeneous spaces are homeomorphic to $G/\operatorname{Stab}_G(o)$ for any point o. We choose $o = e_K \in K$, then $\operatorname{Stab}_G(e_K) = \{(g,h) \in G : (g,h).e_K = e_K\} = G^{\sigma}$.

Recall that by the Hopf-Rinow-theorem, the following are equivalent for a Riemannian manifold M:

- The closed bounded subsets of M are compact.
- *M* is complete as a metric space.
- M is geodesically complete, i.e. $\forall p \in M, \operatorname{Exp}_p: T_pM \to M$ is defined on the entire tangent space T_pM .

Moreover, if M satisfies the above, then any two points $p, q \in M$ can be joined by a (minimal) geodesic.

(3) Use the Hopf-Rinow theorem to show that the Lie group exponential is surjective.

Solution:

Since M is compact, every closed subset is compact. By Hopf-Rinow, M is geodesically complete and we can find geodesics connecting any two points. This implies that the Riemannian exponential $\operatorname{Exp}_p: T_pM \to M$ is surjective. The diagram

ETH Zürich	D-MATH	Symmetric Spaces
Prof. Dr. Marc Burger	Raphael Appenzeller	April 17, 2020

commutes. Thus we have the surjective map

$\operatorname{Lie}(K) \to$	$\mathfrak{p} o$	$G \rightarrow$	K
$X \mapsto$	$(X, -X) \mapsto$	$(\exp(X), \exp(-X)) \mapsto$	$\exp(2X)$

and note that precomposition with the isomorphism $X \mapsto \frac{1}{2}X$ results in the Lie-group-exponential of K, so it is surjective.

Exercise 2: Theorem III.9: Classification of effective OSP

Let (\mathfrak{g}, θ) be an effective orthogonal symmetric Lie-algebra. We have the Cartan decomposition $\mathfrak{g} = \mathfrak{u} \oplus \mathfrak{e}$ $(= \mathfrak{k} \oplus \mathfrak{p})$. We decomposed $\mathfrak{e} = \mathfrak{e}_0 \oplus \mathfrak{e}_+ \oplus \mathfrak{e}_-$ and defined $\mathfrak{u}_+ = [\mathfrak{e}_+, \mathfrak{e}_+]$ and $\mathfrak{u}_- = [\mathfrak{e}_-, \mathfrak{e}_-]$. \mathfrak{u}_0 is defined to be the orthogonal complement of $\mathfrak{u}_+ \oplus \mathfrak{u}_-$ in \mathfrak{u} .

(1) Prove that $\mathfrak{u}_{-} \oplus \mathfrak{e}_{-}$ and $\mathfrak{u}_{+} \oplus \mathfrak{e}_{+}$ are ideals in \mathfrak{g} .

Solution: Throughout the solutions, let $\mu, \eta \in \{0, +, -\}$.

By Lemma II.12(1), \mathfrak{u}_{μ} is an ideal in \mathfrak{u} and by the rest of Lemma II.12 $[\mathfrak{u}_{\mu}, \mathfrak{e}_{\eta}] = 0$, whenever $\mu \neq \eta$. Since $\mathfrak{g} = \mathfrak{u} \oplus \mathfrak{e}$ is the Cartan-decomposition, $\mathrm{ad}(\mathfrak{u})$ preserves the decomposition. So

$$[\mathfrak{u}_{\mu},\mathfrak{e}_{\mu}]\subset\mathfrak{e}_{\mu}.\tag{1}$$

We need one more fact from the proof of Lemma III.10, namely

$$[\mathbf{e}_0, \mathbf{e}] = 0 \tag{2}$$

We calculate

$$\begin{split} [\mathfrak{g},\mathfrak{u}_{\mu}+\mathfrak{e}_{\mu}] &= [\mathfrak{e},\mathfrak{u}_{\mu}]+[\mathfrak{e},\mathfrak{e}_{\mu}]+[\mathfrak{u},\mathfrak{u}_{\mu}]+[\mathfrak{u},\mathfrak{e}_{\mu}] \\ &\subset \mathfrak{e}_{\mu}+([\mathfrak{e}_{0},\mathfrak{e}_{\mu}]+[\mathfrak{e}_{+},\mathfrak{e}_{\mu}]+[\mathfrak{e}_{-},\mathfrak{e}_{\mu}])+[\mathfrak{u},\mathfrak{u}_{\mu}]+\mathfrak{e}_{\mu} \quad (1) \\ &\subset \mathfrak{e}_{\mu}+([\mathfrak{e}_{0},\mathfrak{e}_{\mu}]+[\mathfrak{e}_{+},\mathfrak{e}_{\mu}]+[\mathfrak{e}_{-},\mathfrak{e}_{\mu}])+\mathfrak{u}_{\mu}+\mathfrak{e}_{\mu} \quad (\mathfrak{u}_{\mu} \text{ is an ideal in }\mathfrak{u}) \\ &= \mathfrak{u}_{\mu}+\mathfrak{e}_{\mu}+[\mathfrak{e}_{0},\mathfrak{e}_{\mu}]+[\mathfrak{e}_{\mu},\mathfrak{e}_{\mu}] \quad (\text{Lemma III.10(3)}) \\ &\subset \mathfrak{u}_{\mu}+\mathfrak{e}_{\mu}+0+\mathfrak{u}_{\mu} \quad (2 \text{ and def of }\mathfrak{u}_{\mu}) \end{split}$$

(2) Prove that $\mathfrak{u}_0 \oplus \mathfrak{e}_0, \mathfrak{u}_- \oplus \mathfrak{e}_-$ and $\mathfrak{u}_+ \oplus \mathfrak{e}_+$ are θ -stable and pairwise orthogonal with respect to $B_{\mathfrak{g}}$.

Solution: For elements $X \in \mathfrak{u}$, we have $\theta(X) = X$ and for $Y \in \mathfrak{e}$, we have $\theta(Y) = -Y$. Thus any subvectorspace of \mathfrak{u} and \mathfrak{e} are θ -stable and also direct products of them.

For $\mu \neq \eta$, we have

$$B_{\mathfrak{g}}(\mathfrak{e}_{\mu}+\mathfrak{u}_{\mu},\mathfrak{e}_{\eta}+\mathfrak{u}_{\eta})=B_{\mathfrak{g}}(\mathfrak{e}_{\mu},\mathfrak{e}_{\eta})+B_{\mathfrak{g}}(\mathfrak{e}_{\mu},\mathfrak{u}_{\eta})+B_{\mathfrak{g}}(\mathfrak{u}_{\mu},\mathfrak{e}_{\eta})+B_{\mathfrak{g}}(\mathfrak{u}_{\mu},\mathfrak{u}_{\eta}),$$

where the middle two are 0, since \mathfrak{u} and \mathfrak{e} are orthogonal by Lemma III.6(1). $B_{\mathfrak{g}}(\mathfrak{e}_{\mu},\mathfrak{e}_{\eta}) = 0$ since $\mathfrak{e} = \mathfrak{e}_0 \oplus \mathfrak{e}_+ \oplus \mathfrak{e}_-$ is orthogonal (we chose a ONB in the definition). For $\mu, \eta \neq 0$, we have Lemma III.11, that shows $B_{\mathfrak{g}}(\mathfrak{u}_{\mu},\mathfrak{u}_{\eta}) = 0$. If $\mu = 0$ or $\eta = 0$, then the Killing form is also 0, since \mathfrak{u}_0 was defined to be the orthogonal completement of $\mathfrak{u}_+ \oplus \mathfrak{u}_-$ in \mathfrak{u} .

ETH Zürich	D-MATH	Symmetric Spaces
Prof. Dr. Marc Burger	Raphael Appenzeller	April 17, 2020

(3) Find an OSL (\mathfrak{g}, θ) , such that $\mathfrak{e}_0 = 0$, but $\mathfrak{u}_0 \neq 0$.

Solution: The idea is to have a large \mathfrak{u} and a small \mathfrak{e} . This means that θ should fix lots of points. For example one can take $\mathfrak{g} = \mathfrak{sl}(2,\mathbb{R}) \times \mathfrak{so}(3)$ and define $\theta = \theta_{\mathfrak{sl}(2,\mathbb{R})} \times \mathrm{Id}_{\mathfrak{so}(3)}$, where $\theta_{\mathfrak{sl}(2,\mathbb{R})} = \mathrm{D}_e \sigma$ (for $\sigma(g) = {}^tg^{-1}$) is the usual Cartan-involuion on $\mathfrak{sl}(2,\mathbb{R})$. Then $\mathfrak{u} = E_1 \theta = \mathfrak{k} \times \mathfrak{so}(3)$ and $\mathfrak{e} = E_{-1} \theta = \mathfrak{p} \times 0$, where $\mathfrak{sl}(2,\mathbb{R}) = \mathfrak{k} \oplus \mathfrak{p}$ is the Cartan-decomposition of $\mathfrak{sl}(2,\mathbb{R})$.

We need to check that (\mathfrak{g}, θ) is an orthogonal symmetric Lie-algebra (OSL): θ is an involutive automorphism since $\theta_{\mathfrak{sl}(2,\mathbb{R})}$ and $\mathrm{Id}_{\mathfrak{so}(3)}$ are and we also have $\theta \neq$ $\mathrm{Id}_{\mathfrak{g}}$. The definition of OSL requires \mathfrak{u} to be compactly-embedded in \mathfrak{g} , i.e. $\mathrm{ad}_{\mathfrak{g}}(\mathfrak{u})$ is the Lie-Algebra of a compact subgroup of $\mathrm{GL}(\mathfrak{g})$. This is true since $\mathfrak{k} \times \mathfrak{so}(3)$ is the lie algebra of the compact group $\mathrm{SO}(2) \times \mathrm{SO}(3) < \mathrm{SL}(2,\mathbb{R}) \times \mathrm{SO}(3) < \mathrm{GL}(\mathfrak{g})$. Note that we were forced to take the Lie-algebra of a compact group as the second factor $(\mathfrak{sl}(2,\mathbb{R}) \times \mathfrak{sl}(2,\mathbb{R})$ would not have worked, but $\mathfrak{so}(3) \times \mathfrak{so}(3)$ would have).

Now one can calculate the Killing form

$$A = \begin{pmatrix} -8 & 0 & 0 & & & \\ 0 & 8 & 0 & & 0 & \\ 0 & 0 & 8 & & & \\ & & -2 & 0 & 0 & \\ 0 & 0 & -2 & 0 & \\ & & 0 & 0 & -2 \end{pmatrix}$$

in the basis

$$e_{1} = \left(\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, 0 \right), e_{2} = \left(\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, 0 \right), e_{3} = \left(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, 0 \right)$$
$$e_{4} = \left(0, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \right), e_{5} = \left(0, \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix} \right), e_{6} = \left(0, \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right)$$

of $\mathfrak{g} = \mathfrak{k} \times 0 \oplus \mathfrak{p} \times 0 \oplus 0 \times \mathfrak{so}(3) = \langle e_1 \rangle \oplus \langle e_2, e_3 \rangle \oplus \langle e_4, e_5, e_6 \rangle$. For the first factor $\mathfrak{sl}(2, \mathbb{R})$ this was done in the third exercise class. The second factor $\mathfrak{so}(3)$ is of compact type and therefore all eigenvalues are negative. Following the definitions we get the decomposition of $\mathfrak{e} = \mathfrak{e}_0 \oplus \mathfrak{e}_+ \oplus \mathfrak{e}_- = 0 \oplus \mathfrak{p} \times 0 \oplus 0$.

Now $\mathfrak{u}_+ := [\mathfrak{e}_+, \mathfrak{e}_+] = \mathfrak{k} \times 0$ and $\mathfrak{u}_- := [\mathfrak{e}_-, \mathfrak{e}_-] = 0$. The remaining orthogonal complement is $\mathfrak{u}_0 = 0 \times \mathfrak{so}(3) \neq 0$. So we have found a OSL with $\mathfrak{e}_0 = 0$ and $\mathfrak{u}_0 \neq 0$ and thus it is necessary to make the distinction when defining the \mathfrak{g}_{μ} for $\mu \in \{0, +, -\}$.

(4) Let $\mathfrak{n} \triangleleft \mathfrak{g}$ be an ideal of a Lie-algebra \mathfrak{g} . Prove that $B_{\mathfrak{n}} = B_{\mathfrak{g}}|_{\mathfrak{n} \times \mathfrak{n}}$.

Solution: Let us write a basis $e_1, \ldots, e_n, e_{n+1}, \ldots, e_m$ of \mathfrak{g} , where e_1, \ldots, e_n is a basis of \mathfrak{n} . Since \mathfrak{n} is an ideal, for $X \in \mathfrak{n}, Z \in \mathfrak{g}$, we have $[X, Z] \in \mathfrak{n}$. Therefore $\mathrm{ad}_{\mathfrak{g}}(X)$ is of the form

$$\operatorname{ad}_{\mathfrak{g}}(X) = \begin{pmatrix} \operatorname{ad}_{\mathfrak{n}}(X) & * \\ 0 & 0 \end{pmatrix}$$

and so for $X, Y \in \mathfrak{n}$ we have

$$B_{\mathfrak{g}}(X,Y) = \operatorname{tr}(\operatorname{ad}_{\mathfrak{g}}(X) \circ \operatorname{ad}_{\mathfrak{g}}(Y))$$

= $\operatorname{tr}\begin{pmatrix}\operatorname{ad}_{\mathfrak{n}}(X) \circ \operatorname{ad}_{\mathfrak{n}}(Y) & *\\ 0 & 0 \end{pmatrix}$
= $\operatorname{tr}(\operatorname{ad}_{\mathfrak{n}}(X) \circ \operatorname{ad}_{\mathfrak{n}}(Y))$
= $B_{\mathfrak{n}}(X,Y).$

(5) Find an example of a subalgebra $\mathfrak{n} \subset \mathfrak{g}$, such that $B_{\mathfrak{n}} \neq B_{\mathfrak{g}}|_{\mathfrak{n} \times \mathfrak{n}}$.

Solution: We consider the Cartan-decomposition $\mathfrak{g} = \mathfrak{sl}(2,\mathbb{R}) = \mathfrak{k} \oplus \mathfrak{p}$ and set $\mathfrak{n} := \mathfrak{k}$. We know that \mathfrak{k} is a subalgebra of \mathfrak{g} . Taking the basis

$$e_1 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, e_2 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, e_3 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},$$

we get

$$\operatorname{ad}_{\mathfrak{g}}(e_1) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -2 \\ 0 & 2 & 0 \end{pmatrix}$$

(for a derivation see the third exercise class). Let $X = \lambda_1 \cdot e_1, Y = \lambda_2 \cdot e_1 \in \mathfrak{n} = \langle e_1 \rangle$. Then

$$B_{\mathfrak{g}}(X,Y) = \operatorname{tr}(\operatorname{ad}_{\mathfrak{g}}(X) \circ \operatorname{ad}_{\mathfrak{g}}(X)) = \lambda_1 \cdot \lambda_2 \cdot \operatorname{tr} \begin{pmatrix} 0 & 0 & 0 \\ 0 & -4 & 0 \\ 0 & 0 & -4 \end{pmatrix} = -8 \cdot \lambda_1 \cdot \lambda_2,$$

but

$$B_{\mathfrak{n}}(X,Y) = \operatorname{tr}(\operatorname{ad}_{\mathfrak{n}}(X) \circ \operatorname{ad}_{\mathfrak{n}}(X)) = \operatorname{tr}(0 \cdot 0) = 0$$

since $\operatorname{ad}_{\mathfrak{n}}(X) = 0$ because $[e_1, e_1] = 0$.

(6) Let g = g₁ ⊕ g₂ a direct sum of two ideals g₁ and g₂. Further let t₁ and t₂ be subalgebras of g₁ and g₂. Show that t₁ + t₂ is compactly embedded in g if and only if t₁ and t₂ is compactly embedded in g₁ and g₂.

This implies that $\mathfrak{u}_0, \mathfrak{u}_-, \mathfrak{u}_+$ are compactly embedded in $\mathfrak{g}_0, \mathfrak{g}_-$ and \mathfrak{g}_+ .

Hint: For connected G and K < G, there is an isomorphism

$$K/(K \cap Z(G)) \cong \operatorname{Ad}_G(K)$$

(compare Sheet 2, exercise 4(2)). Use Lie(Ad_G(K)) = ad_{Lie(G)}(Lie(K)).

Solution: By Lie's third theorem, there exist connected, (and simply connected) Lie groups G_1 and G_2 with $\text{Lie}(G_1) = \mathfrak{g}_1$ and $\text{Lie}(G_2) = \mathfrak{g}_2$. The Lie group $G := G_1 \times G_2$ satisfies $\text{Lie}(G) = \mathfrak{g}_1 \times \mathfrak{g}_2$. Since \mathfrak{k}_1 and \mathfrak{k}_2 are Lie-subalgebras, there exist K_1 and K_2 Lie-subgroups of G_1 and G_2 with $\text{Lie}(K_1) = \mathfrak{k}_1$ and $\text{Lie}(K_2) = \mathfrak{k}_2$. We also have $K := K_1 + K_2$ with $\text{Lie}(K) = \mathfrak{k}_1 \times \mathfrak{k}_2$.

Now we have the center $Z(G) = Z(G_1) \times Z(G_2)$ and

$$Z(G) \cap K = (Z(G_1) \times Z(G_2)) \cap (K_1 \times K_2) = (Z(G_1) \cap K_1) \times (Z(G_2) \cap K_2),$$

 \mathbf{SO}

$$\operatorname{Ad}_{G}(K) = K/(Z(G) \cap K)$$

= $(K_1 \times K_2)/(Z(G_1) \cap K_1 \times Z(G_2) \cap K_2)$
= $K_1/(Z(G_1) \cap K_1) \times K_2/(Z(G_2) \cap K_2)$
= $\operatorname{Ad}_{G_1}(K_1) \times \operatorname{Ad}_{G_2}(K_2).$

Now $\operatorname{ad}_{\mathfrak{g}}(\mathfrak{k}_1 + \mathfrak{k}_2)$, $\operatorname{ad}_{\mathfrak{g}_1}(\mathfrak{k}_1)$ and $\operatorname{ad}_{\mathfrak{g}_2}(\mathfrak{k}_2)$ are the Lie-algebras of the groups $\operatorname{Ad}_G(K)$, $\operatorname{Ad}_{G_1}(K_1)$ and $\operatorname{Ad}_{G_2}(K_2)$.

So $\mathfrak{k}_1 + \mathfrak{k}_2$ is compactly embedded in \mathfrak{g} by definition if and only if $\operatorname{Ad}(K)$ is compact which is equivalent to saying $\operatorname{Ad}_{G_1}(K_1)$ and $\operatorname{Ad}_{G_2}(K_2)$ are compact, i.e. both \mathfrak{k}_1 and \mathfrak{k}_2 are compactly embedded in \mathfrak{g}_1 resp. \mathfrak{g}_2 .

Exercise 3: Theorem III.19: Classification of s.c. RSS

(1) Let $H, N \triangleleft G$ be two normal subgroups. Show that $[N, H] \subset N \cap H$.

Solution: Let $nhn^{-1}h^{-1} \in [N, H]$, then $(nhn^1)h^{-1} \in Hh^{-1} \subset H$ and $n(hn^{-1}h^{-1}) \in nN \subset N$. So $nhn^{-1}h^{-1} \in H \cap N$.

(2) Let H, N < G be connected subgroups. Show that [N, H] is a connected subgroup of G.

Solution: The map $[\cdot, \cdot]: N \times H \to G$ is continuous, since it is a composition of multiplications. The image of connected sets under a continuous map is connected.

Let M be a simply connected Riemannian symmetric space. Then $\mathfrak{g} = \text{Lie}(\text{Is}(M)^\circ) = \mathfrak{g}_0 \oplus \mathfrak{g}_+ \oplus \mathfrak{g}_-$. We get corresponding Lie-subgroups $G_0, G_+, G_$ and their universal covers $\tilde{G}_0, \tilde{G}_+, \tilde{G}_-$. Let K_0, K_+, K_- be the Lie-subgroups associated to $\mathfrak{k}_0, \mathfrak{k}_+, \mathfrak{k}_-$, which come from the Cartan-decomposition of $\mathfrak{g}_0, \mathfrak{g}_+, \mathfrak{g}_-$.

(3) Show that $(\tilde{G}_0, K_0), (\tilde{G}_+, K_+)$ and (\tilde{G}_-, K_-) are Riemannian symmetric pairs.

Solution: Let $\mu \in \{0, +, -\}$. The \tilde{G}_{μ} can be assumed to be connected. In the proof of theorem III.19, we have that $\tilde{\psi}|_{K_0 \times K_- \times K_+} : K_0 \times K_- \times K_+ \to p^{-1}(K)$ is a homeomorphism. The product of sets is closed if and only if all the factors are closed, so K_{μ} are closed subgroups of \tilde{G} and therefore also of \tilde{G}_{μ} . Since \mathfrak{k}_{μ} are compactly embedded, we get that $\operatorname{Ad}_{\tilde{G}_{\mu}}(K_{\mu})$ are compact.

By the Lie-group-correspondence, since \tilde{G} is simply connected we get $\sigma: \tilde{G} \to \tilde{G}$ a unique Lie-group automorphism, such that $D_e \sigma = \theta$. Now (using the pullback of the isomorphism ψ), we can restrict σ to $\sigma_{\mu}: \tilde{G}_{\mu} \to \tilde{G}_{\mu}$. Since $\theta_{\mu}: \mathfrak{g}_{\mu} \to \mathfrak{g}_{\mu}$ is an involution, so is σ_{μ} (they are not the identity).

It remains to show that $(\tilde{G}_{\mu}^{\sigma_{\mu}})^{\circ} \subset K_{\mu} \subset \tilde{G}_{\mu}^{\sigma_{\mu}}$. Let $X \in \mathfrak{k}_{\mu}$. Then $\exp(X) \in \tilde{G}_{\mu}$. We have that $\sigma_{\mu}(\exp(X)) = \exp(\theta_{\mu}X) = \exp(X)$. So for all $g \in K_{\mu}$ in a small neighborhood of e, we have $\sigma_{\mu}(g) = g$. Since a neighborhood generates the connected group K_{μ} , we can write elements $g \in K_{\mu}$ as a product $g = g_1 \cdot \ldots \cdot g_n$ and we get $\sigma_{\mu}(g) = \sigma_{\mu}(g_1) \cdot \ldots \cdot \sigma_{\mu}(g_n) = g$. So $K_{\mu} \subset \tilde{G}_{\mu}^{\sigma_{\mu}}$.

Now we consider a neighborhood $V \subset \exp(\mathfrak{g}_{\mu})$ of e of $G\mu$. Let $\exp(tX) \in V \cap (\tilde{G}_{\mu}^{\sigma_{\mu}})^{\circ}$ for $t \in (-\varepsilon, \varepsilon)$. Then $\exp(tX) = \sigma_{\mu}(\exp(tX)) = \exp(t\theta_{\mu}(X))$, so

ETH Zürich	D-MATH	Symmetric Spaces
Prof. Dr. Marc Burger	Raphael Appenzeller	April 17, 2020

(taking the derivative) we get $X = \theta_{\mu}(X)$, i.e. $X \in \mathfrak{k}_{\mu}$ and thus $V \cap (\tilde{G}_{\mu}^{\sigma_{\mu}})^{\circ} \subset K_{\mu}$. Now since $(\tilde{G}_{\mu}^{\sigma_{\mu}})^{\circ}$ is connected, the elements are generated by elements in K_{μ} , i.e. $(\tilde{G}_{\mu}^{\sigma_{\mu}})^{\circ} \subset K_{\mu}$. We conclude that $(\tilde{G}_{\mu}, K_{\mu})$ are Riemannian symmetric pairs for $\{0, -, +\}$.