Solution to Exercise Sheet 6

Exercise 1: Duality between \mathbb{S}^n and \mathbb{H}^n

Consider the Lie algebra

$$\mathfrak{so}(n) = \left\{ X \in \mathfrak{gl}(n, \mathbb{R}) \colon {}^{t}X + X = 0 \right\}$$

and for p + q = n, define

$$\begin{array}{rccc} \theta_{p,q} \colon \mathfrak{gl}(n,\mathbb{R}) & \to & \mathfrak{gl}(n,\mathbb{R}) \\ X & \mapsto & I_{p,q}XI_{p,q} \end{array} \quad \text{where} \quad I_{p,q} = \begin{pmatrix} -\operatorname{Id}_p & 0 \\ 0 & \operatorname{Id}_q \end{pmatrix}$$

(1) Show that for any p + q = n, $(\mathfrak{so}(n), \theta_{p,q})$ is an orthogonal symmetric Lie algebra

Solution: We see that $\theta_{p,q}$ sends $\mathfrak{so}(n)$ to itself, since

$${}^{t}\theta_{p,q}(X) + \theta_{p,q}(X)I_{p,q} {}^{t}XI_{p,q} + I_{p,q}XI_{p,q} = I_{p,q}({}^{t}X + X)I_{p,q} = 0$$

for all $X \in \mathfrak{so}(n)$. For $p, q \ge 1$, $\theta_{p,q}$ is not the identity, since

$$\theta_{p,q} \begin{pmatrix} \cos(t) & 0 & -\sin(t) & 0 \\ 0 & 0_{p-1} & 0 & 0 \\ \hline \sin(t) & 0 & \cos(t) & 0 \\ 0 & 0 & 0 & 0_{q-1} \end{pmatrix} = \begin{pmatrix} \cos(t) & 0 & \sin(t) & 0 \\ 0 & 0_{p-1} & 0 & 0 \\ \hline -\sin(t) & 0 & \cos(t) & 0 \\ 0 & 0 & 0 & 0_{q-1} \end{pmatrix}$$

and clearly $\theta_{p,q}^2 = \text{Id.}$ For

$$X = \begin{pmatrix} A & B \\ \hline C & D \end{pmatrix} \in \mathfrak{so}(n), \quad \text{we have} \quad \theta_{p,q}(X) = \begin{pmatrix} A & -B \\ \hline -C & D \end{pmatrix},$$

so the eigenspace of $\theta_{p,q}$ associated to +1 is

$$\mathfrak{k} = \mathfrak{s}(\mathfrak{o}(p) \times \mathfrak{o}(q)) = \{ X \in \mathfrak{so}(n) \colon I_{p,q} X I_{p,q} = X \}$$

which integrates to the closed subgroup

$$\mathcal{S}(\mathcal{O}(p)\times\mathcal{O}(q))=\{g\in\mathcal{SO}(n)\colon I_{p,q}gI_{p,q}=g\}<\mathcal{SO}(n),$$

so since $\mathfrak{o}(p)$ and $\mathfrak{o}(q)$ are compactly embedded, also \mathfrak{k} is compactly embedded (the S is only a finite quotient).

(2) Show that for (p,q) = (n,1), the OSL $(\mathfrak{so}(n+1), \theta_{n,1})$ is associated to the symmetric space $\mathbb{S}^n = \mathrm{SO}(n+1)/\mathrm{SO}(n)$.

Remark: An OSL (\mathfrak{g}, θ) is associated to a symmetric space G/K given by a RSP (G, K) with involution σ , if $\mathfrak{g} = \text{Lie}(G)$ and $\theta = D_e \sigma$.

Solution:

Taking the derivative of ${}^{t}XX = \mathrm{Id}_{n+1}$ shows that $\mathrm{Lie}(\mathrm{SO}(n+1)) = \mathfrak{so}(n+1)$.

ETH Zürich	D-MATH	Symmetric Spaces
Prof. Dr. Marc Burger	Raphael Appenzeller	May 29, 2020

We choose $SO(n) \cong SO(n) \times \{1\} < SO(n+1)$, then the Riemannian symmetric pair (G, K) = (SO(n+1), SO(n)) has the involution

$$\sigma \colon G \to G$$
$$g \mapsto I_{n,1}gI_{n,1} = \left(\frac{-\operatorname{Id}_n \mid 0}{0 \mid 1}\right)g\left(\frac{-\operatorname{Id}_n \mid 0}{0 \mid 1}\right)$$

and the derivative is $D_e \sigma = \theta_{n,1}$, as can be seen by the following computation. Let $\gamma \colon \mathbb{R} \to G$ be a path with $\gamma(0) = e$ and $\dot{\gamma}(0) = X \in \mathfrak{so}(n+1)$.

$$\frac{d}{dt}\Big|_{t=0}\sigma(\gamma(t)) = I_{n,1}\left(\left.\frac{d}{dt}\right|_{t=0}\gamma(t)\right)I_{n,1} = \theta_{n,1}(X)$$

(3) Show that the complex dual of $(\mathfrak{so}(p+q), \theta_{p,q})$ is isomorphic to $(\mathfrak{so}(p,q), \theta_{p,q})$, where

$$\mathfrak{so}(p,q) := \left\{ X \in \mathfrak{gl}(n,\mathbb{R}) \colon I_{p,q} \, {}^t X + X I_{p,q} = 0 \right\}$$

Remark: Two OSLs $(\mathfrak{g}_1, \theta_1)$ and $(\mathfrak{g}_2, \theta_2)$ are *isomorphic* if there is a Lie algebra isomorphism $\varphi: \mathfrak{g}_1 \to \mathfrak{g}_2$ with $\varphi \circ \theta_1 = \theta_2 \circ \varphi$.

Solution: The complexification

$$\mathfrak{g} = \mathfrak{so}(p+q)^{\mathbb{C}} = \mathfrak{so}(p+q) + i \cdot \mathfrak{so}(p+q)$$

can be decomposed as

$$\mathfrak{g} = \mathfrak{k} + i\,\mathfrak{k} + \mathfrak{p} + i\,\mathfrak{p},$$

where \mathfrak{k} , resp. \mathfrak{p} are the +1, resp -1 eigenspaces of $\theta_{p,q}$. Calculations show that

$$\begin{split} & \mathfrak{k} = \left\{ \begin{pmatrix} A & 0 \\ 0 & D \end{pmatrix} \in \mathfrak{gl}(n, \mathbb{R}) \colon A \in \mathfrak{so}(p), D \in \mathfrak{so}(q) \right\} = \mathfrak{s}(\mathfrak{o}(p) \times \mathfrak{o}(q)) \\ & \mathfrak{p} = \left\{ \begin{pmatrix} 0 & B \\ -{}^{t}\!B & 0 \end{pmatrix} \in \mathfrak{gl}(n, \mathbb{R}) \right\}, \end{split}$$

and we get the dual

$$\mathfrak{g}^* = \mathfrak{k} + i \mathfrak{p} = \left\{ \begin{pmatrix} A & iB \\ -i^t B & D \end{pmatrix} \in \mathfrak{gl}(n, \mathbb{C}) \colon A \in \mathfrak{so}(p), B \in \mathbb{R}^{p \times q} \ D \in \mathfrak{so}(q) \right\}$$

and claim there is a Lie algebra-isomorphism

$$\begin{split} \varphi \colon & \qquad \mathfrak{g}^* \to \mathfrak{so}(p,q) = \left\{ X \in \mathfrak{so}(p+q) \colon I_{p,q} \, {}^t X + X I_{p,q} = 0 \right\} \\ & \begin{pmatrix} A & iB \\ -i \, {}^t B & D \end{pmatrix} \mapsto \begin{pmatrix} A & B \\ {}^t B & D \end{pmatrix} \end{split}$$

This is an \mathbb{R} -linear bijective map, we need to check that the brackets are con-

ETH Zürich	D-MATH	Symmetric Spaces
Prof. Dr. Marc Burger	Raphael Appenzeller	May 29, 2020

sistent:

$$\begin{split} \varphi \left(\begin{bmatrix} \begin{pmatrix} A & iB \\ -i^{t}B & D \end{pmatrix}, \begin{pmatrix} \tilde{A} & i\tilde{B} \\ -i^{t}\tilde{B} & \tilde{D} \end{pmatrix} \end{bmatrix} \right) \\ &= \varphi \left(\begin{pmatrix} A\tilde{A} + B^{t}\tilde{B} & iA\tilde{B} + iB\tilde{D} \\ -i^{t}B\tilde{A} - iD^{t}\tilde{B} & ^{t}B\tilde{B} + D\tilde{D} \end{pmatrix} - \begin{pmatrix} \tilde{A}A + \tilde{B}^{t}B & i\tilde{A}B + i\tilde{B}D \\ -i^{t}\tilde{B}A - i\tilde{D}^{t}B & ^{t}\tilde{B}B + DD \end{pmatrix} \right) \\ &= \begin{pmatrix} A\tilde{A} + B^{t}\tilde{B} & A\tilde{B} + B\tilde{D} \\ ^{t}B\tilde{A} + D^{t}\tilde{B} & ^{t}B\tilde{B} + D\tilde{D} \end{pmatrix} - \begin{pmatrix} \tilde{A}A + \tilde{B}^{t}B & \tilde{A}B + \tilde{B}D \\ ^{t}BA + D^{t}B & ^{t}BB + DD \end{pmatrix} - \begin{pmatrix} \tilde{A}A + \tilde{B}^{t}B & \tilde{A}B + \tilde{B}D \\ ^{t}BA + D^{t}B & ^{t}BB + DD \end{pmatrix} \\ &= \begin{bmatrix} \begin{pmatrix} A & B \\ ^{t}B & D \end{pmatrix}, \begin{pmatrix} \tilde{A} & \tilde{B} \\ ^{t}\tilde{B} & \tilde{D} \end{pmatrix} \end{bmatrix} \\ &= \begin{bmatrix} \varphi \begin{pmatrix} A & iB \\ -i^{t}B & D \end{pmatrix}, \varphi \begin{pmatrix} \tilde{A} & i\tilde{B} \\ -i^{t}\tilde{B} & \tilde{D} \end{pmatrix} \end{bmatrix}. \end{split}$$

The involution on \mathfrak{g}^* is given by conjugation, which on \mathfrak{k} is the identity and on $i\mathfrak{p}$ sends $X \mapsto -X$. When we translate this action via φ we get

$$\begin{pmatrix} A & B \\ {}^{t}B & D \end{pmatrix} = \varphi \begin{pmatrix} A & iB \\ -i \, {}^{t}B & D \end{pmatrix} \mapsto \varphi \begin{pmatrix} A & -iB \\ i \, {}^{t}B & D \end{pmatrix} = \begin{pmatrix} A & -B \\ {}^{t}B & D \end{pmatrix} = \theta_{p,q} \begin{pmatrix} A & B \\ {}^{t}B & D \end{pmatrix},$$

so the dual OSL of $(\mathfrak{so}(p+q), \theta_{p,q})$ is isomorphic to $(\mathfrak{so}(p,q), \theta_{p,q})$.

(4) Show that for (p,q) = (n,1), the OSL $(\mathfrak{so}(n,1), \theta_{n,1})$ is associated to the symmetric space $\mathbb{H}^n = \mathrm{SO}(n,1)/\mathrm{SO}(n)$, where

$$SO(p,q) := \left\{ g \in GL(n,\mathbb{R}) \colon I_{p,q} \,{}^t g I_{p,q} = g^{-1} \right\}.$$

Solution: The Lie algebra of SO(p,q) consists of the elements $X \in \mathfrak{gl}(p+q)$ that satisfy $\exp(tX) \in SO(p,q)$ for all $t \in \mathbb{R}$, i.e. $I_{p,q}{}^t \exp(tX)I_{p,q} = \exp(-tX)$. This is equivalent to $I_{p,q}XI_{p,q} = -X$ (by taking the derivative on both sides). It is also equivalent to $I_{p,q}X = -XI_{p,q}$ and in turn $I_{p,q}X + XI_{p,q} = 0$. So $\mathfrak{so}(p,q)$ is the Lie algebra of SO(p,q).

We have $SO(n) \cong SO(n) \times \{1\} < SO(n, 1)$ and the involution is given by

$$\sigma \colon \operatorname{SO}(n,1) \to \operatorname{SO}(n,1)$$
$$g \mapsto \left(I_{n,1} {}^{t} g I_{n,1}\right)^{-1} = I_{n,1} g I_{n,1}$$

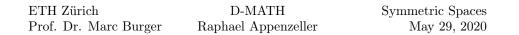
since SO(p,q) < O(p+q) and the derivative is $D_e \sigma = \theta_{n,1}$ as in (2).

Exercise 2: CAT(0)-spaces

Let M be a complete CAT(0)-space. Let C be a (non-empty) closed, convex subset of M. Prove the following:

Prop V.2(2): For any point $x \in M$ there exists a unique point $\pi_c(x) \in C$ with the property that $d(x, \pi_C(x)) \leq d(x, y)$ for any $y \in C$.

Solution: Let x be the point that we want to project on C. We consider a sequence of points x_i with $d(x, x_i) \to d(x, C)$ as $i \to \infty$. We want to show



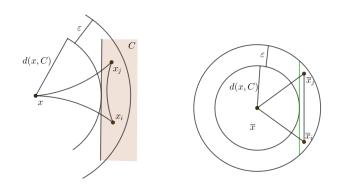


Figure 1: On the left, we have the triangle x, x_i, x_j in the CAT(0) space. On the right we have the comparison triangle. We note that $d(\overline{x}_i, \overline{x}_j)$ can at most be the length of the green line, which can be calculated explicitly.

that x_i is a Cauchy-sequence. So let $\varepsilon > 0$. There exists an N > 0 such that $d(x, x_i) \leq d(x, C) + \varepsilon$ for all $i \geq N$. Consider two points x_i, x_j with $i, j \geq N$. Now consider the comparison triangle $\overline{\Delta}(\overline{x}\overline{x}_i\overline{x}_j)$ of the triangle $\Delta(xx_ix_j)$. This is visualized in figure 1. Since C is convex, all points on the geodesic between x_i and x_j lie in C, so in the comparison triangle they also need to lie in the annulus between d(x, C) and $d(x, C) + \varepsilon$. A calculation in \mathbb{R}^2 shows that such a straight line segment (green line in the figure) can have at most size $2\sqrt{d(x, C) + \varepsilon^2 - d(x, C)^2}$, therefore also $d(\overline{x}_i, \overline{x}_j) = d(x_i, x_j)$ can have at most this distance and as ε goes to 0, so does the distance $d(x_i, x_j)$.

We have shown that $\{x_i\}$ is a Cauchy sequence, so since the space is complete, there exists a limit point, which we call $\pi(x)$. Since C is closed and all $x_i \in C$, also $\pi(x)$ is in C. By construction $d(x, \pi(x)) = d(x, C)$. We have to show uniqueness:

Let y and y' be two points with minimal distance d(x, y) = d(x, y') = d(x, C). Consider the comparison triangle $\overline{\Delta}(\overline{x}, \overline{y}, \overline{y'})$. Since $d(\overline{x}, \overline{y}) = d(x, y) = d(x, y') = d(\overline{x}, \overline{y'})$, $\overline{\Delta}$ is isosceles. Now the midpoint z of y and y' on the unique geodesic between y and y' is in C, since C convex. We also have \overline{z} on the line-segment from \overline{y} to $\overline{y'}$. If $y \neq y'$, then $\overline{z} \neq \overline{y}$ is closer to \overline{x} than \overline{y} , i.e. $d(\overline{z}, \overline{x}) < d(\overline{y}, \overline{x})$, thus by the CAT(0)-property also $d(x, z) \leq d(\overline{x}, \overline{z}) < d(\overline{y}, \overline{x}) = d(x, y)$, but that is impossible since $z \in C$ and d(x, z) is the minimal distance from x to all points in C. We conclude that y = y' and thus the projection π_C is well-defined.

Exercise 3: Dimension and Rank

(1) Calculate the dimension and rank of the symmetric space $SO(p,q)/S(O(p) \times O(q))$.

Solution: From exercise 1, we know that

$$\operatorname{Lie}(\operatorname{SO}(p,q)) = \mathfrak{so}(p,q) = \left\{ \begin{pmatrix} A & B \\ {}^t\!B & D \end{pmatrix} \in \mathfrak{so}(p+q) \colon A \in \mathfrak{o}(p), D \in \mathfrak{o}(q) \right\}$$

We have the Cartan-decomposition:

$$\begin{split} \mathbf{\mathfrak{k}} &= \left\{ \begin{pmatrix} A & 0\\ 0 & D \end{pmatrix} \in \mathfrak{so}(p+q) \colon A \in \mathfrak{o}(p), D \in \mathfrak{o}(q) \right\} \\ \mathbf{\mathfrak{p}} &= \left\{ \begin{pmatrix} 0 & B\\ {}^t\!B & 0 \end{pmatrix} \in \mathfrak{so}(p+q) \colon \right\} \end{split}$$

The dimension of a manifold is the dimension of it's tangent-space, which in our case is isomorphic to \mathfrak{p} . Since we can choose $B \in \mathbb{R}^{p \times q}$ arbitrarily in \mathfrak{p} , \mathfrak{p} and thus the symmetric space is $p \cdot q$ -dimensional.

The rank of a symmetric space is the dimension of a maximal flat, so we need to find abelian subspaces of \mathfrak{p} . Consider

$$\mathfrak{a} = \left\{ \begin{pmatrix} 0 & X \\ {}^{t}\!X & 0 \end{pmatrix} \in \mathfrak{p} \colon X \in \mathbb{R}^{p \times q}, X_{ij} = 0 \ \forall i \neq j \right\},\$$

then a calculation

$$\begin{bmatrix} \begin{pmatrix} 0 & X \\ t_X & 0 \end{pmatrix}, \begin{pmatrix} 0 & Y \\ t_Y & 0 \end{pmatrix} \end{bmatrix} = \begin{pmatrix} X \, {}^t Y - Y \, {}^t X & 0 \\ 0 & {}^t X Y - {}^t Y X \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

shows that \mathfrak{a} is abelian (Use the fact that X, Y in the definition of \mathfrak{a} are like diagonal matrices). To show that \mathfrak{a} is a maximal subspace we have to find a regular element. For this choose

$$H = \begin{pmatrix} 0 & X \\ {}^t\!X & 0 \end{pmatrix} \in \mathfrak{a}$$

with distinct non-zero X_{ii} for $i \leq \min\{p, q\}$. For example for (p, q) = (2, 3), this could look as follows:

$$H = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ \hline 1 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}, \text{ for } X = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \end{pmatrix}$$

We claim that H is a regular element. Since $H \in \mathfrak{a}$ and \mathfrak{a} abelian, \mathfrak{a} is a subset of the centralizer $\mathfrak{z}(H)$ of H. Now let

$$\begin{pmatrix} 0 & Y \\ {}^{t}\!Y & 0 \end{pmatrix} \in \mathfrak{z}(H), \quad \text{then} \\ 0 = \begin{bmatrix} H, \begin{pmatrix} 0 & Y \\ {}^{t}\!Y & 0 \end{bmatrix} \end{bmatrix} = \begin{pmatrix} X \, {}^{t}\!Y - Y \, {}^{t}\!X & 0 \\ 0 & {}^{t}\!XY - {}^{t}\!YX \end{pmatrix},$$

so $X^{t}Y = Y^{t}X$ and ${}^{t}XY = {}^{t}YX$, which can be rewritten as $X^{t}Y^{t}X^{-1} = Y$ and ${}^{t}XYX^{-1} = {}^{t}Y$, so $Y = X^{t}Y^{t}X^{-1} = X^{t}XYX^{-1} {}^{t}X^{-1} = (X^{t}X)Y({}^{t}XX)^{-1}$, where $X^{t}X$ and $({}^{t}XX)^{-1}$ are diagonal matrices. Then $Y_{ij} = X_{ii}^{2}Y_{ij}X_{jj}^{-2}$, which has to be zero for $i \neq j$, because X_{ii} are distinct and non-zero for $i \leq \min\{p,q\}$. This shows that $\mathfrak{a} = \mathfrak{z}(H) \cap \mathfrak{p}$, so H is a regular element and \mathfrak{a} is maximal abelian. The dimension of \mathfrak{a} is $\min\{p,q\}$, so the rank of the symmetric space $\mathrm{SO}(p,q)/\mathrm{S}(\mathrm{O}(p) \times \mathrm{O}(q))$ is $\min\{p,q\}$.

ETH Zürich	D-MATH	Symmetric Spaces
Prof. Dr. Marc Burger	Raphael Appenzeller	May 29, 2020

Consider the Lie group of symplectic matrices

 $\operatorname{Sp}(2n,\mathbb{R}) = \left\{ T \in \operatorname{GL}(2n,\mathbb{R}) \colon {}^{t}\!T I_n T = I_n \right\}, \quad \text{where} \quad I_n = \left(\begin{array}{cc} 0 & \operatorname{Id}_n \\ -\operatorname{Id}_n & 0 \end{array} \right).$

with involution $\sigma: \operatorname{Sp}(2n, \mathbb{R}) \to \operatorname{Sp}(2n, \mathbb{R})$ given by $g \mapsto {}^tg^{-1}$.

(2) Show that the fixed point set of σ is isomorphic to U(n) and show that (Sp(2n), U(n)) is a Riemannian symmetric pair.

$$\mathbf{U}(n) = \left\{ Z = X + iY \in \mathrm{GL}(n, \mathbb{C}) \colon \, {}^{t}\overline{Z}Z = \mathrm{Id} \right\}$$

Hint: Consider $g^{-1} = {}^tg$. Assume without proof that $\operatorname{Sp}(2n, \mathbb{R})$ is connected.

Solution: Let

$$g = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \operatorname{Sp}(2n, \mathbb{R}), \quad \text{i.e.}$$
$${}^{t}AC = {}^{t}CA, \quad {}^{t}BD = {}^{t}DB, \quad {}^{t}AD - {}^{t}CB = \operatorname{Id}_{n}$$

We note that

$$\begin{pmatrix} {}^{t}D & -{}^{t}B \\ -{}^{t}C & {}^{t}A \end{pmatrix} \cdot \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} {}^{t}DA - {}^{t}BC & {}^{t}DB - {}^{t}BD \\ {}^{t}AC - {}^{t}CA & {}^{t}AD - {}^{t}CB \end{pmatrix} = \begin{pmatrix} \mathrm{Id}_{n} & 0 \\ 0 & \mathrm{Id}_{n} \end{pmatrix},$$

so the condition $\sigma(g) = {}^t g^{-1} = g$ of being a fixed point of σ , turns into

$${}^{t}g^{-1} = \begin{pmatrix} D & -C \\ -B & A \end{pmatrix} = \begin{pmatrix} A & B \\ C & D \end{pmatrix},$$

from which we conclude that elements $g \in \text{Sp}(2n, \mathbb{R})$ that are fixed by σ are exactly the matrices of the form

$$g = \begin{pmatrix} A & B \\ -B & A \end{pmatrix}$$

which satisfy ${}^{t}BA = {}^{t}AB$ and ${}^{t}AA + {}^{t}BB = \mathrm{Id}_{n}$. We set up an isomorphism

$$\begin{aligned} \varphi \colon & \operatorname{Sp}(2n,\mathbb{R})^{\sigma} \to U(n) \\ & \begin{pmatrix} A & B \\ -B & A \end{pmatrix} \mapsto A + iB, \end{aligned}$$

indeed this is well defined since ${}^{t}\overline{(A+iB)}(A+iB) = ({}^{t}A - i{}^{t}B)(A+iB) = {}^{t}AA + {}^{t}BB + i({}^{t}AB - {}^{t}BA) = \mathrm{Id}_{n}$. The map is also a group-homomorphism because

$$\begin{split} \varphi \left(\begin{pmatrix} A & B \\ -B & A \end{pmatrix} \cdot \begin{pmatrix} A' & B' \\ -B' & A' \end{pmatrix} \right) &= \varphi \begin{pmatrix} AA' - BB' & AB' + BA' \\ -AB' - BA' & AA' - BB' \end{pmatrix} \\ &= AA' - BB' + i(AB' + BA') \\ &= (A + iB)(A' + iB') \\ &= \varphi \begin{pmatrix} A & B \\ -B & A \end{pmatrix} \cdot \varphi \begin{pmatrix} A' & B' \\ -B' & A' \end{pmatrix} \end{split}$$

ETH Zürich	D-MATH	Symmetric Spaces
Prof. Dr. Marc Burger	Raphael Appenzeller	May 29, 2020

and φ^{-1} is well defined, so φ is an isomorphism.

Now $\operatorname{Sp}(2n, \mathbb{R})$ is a connected group with a closed (since defined by equalities) subgroup, which is isomorphic to $\operatorname{U}(n)$. Since $\operatorname{U}(n)$ is compact, so is $\operatorname{Ad}(\operatorname{U}(n))$. Since $(\operatorname{Sp}(2n, \mathbb{R})^{\sigma})^{\circ} \subset \operatorname{U}(n) \cong \operatorname{Sp}(2n, \mathbb{R})^{\sigma}$, $(\operatorname{Sp}(2n, \mathbb{R}), \operatorname{U}(n))$ is a Riemannian symmetric pair.

(3) Calculate the dimension and rank of the symmetric space $\operatorname{Sp}(2n, \mathbb{R})/\operatorname{U}(n)$.

Solution: We consider the Lie algebra

$$\mathfrak{sp}(2n,\mathbb{R}) = \left\{ X \in \mathfrak{gl}(2n,\mathbb{R}) \colon I_n X + {}^t X I_n = 0 \right\},\$$

which we get by taking the derivative of the condition ${}^{t}gI_{n}g = I_{n}$. These are exactly the matrices

$$X = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \text{ with}$$
$$0 = I_n X + {}^t X I_n = \begin{pmatrix} 0 & \mathrm{Id}_n \\ -\mathrm{Id}_n & 0 \end{pmatrix} \begin{pmatrix} A & B \\ C & D \end{pmatrix} + \begin{pmatrix} {}^t A & {}^t C \\ {}^t B & {}^t D \end{pmatrix} \begin{pmatrix} 0 & \mathrm{Id}_n \\ -\mathrm{Id}_n & 0 \end{pmatrix}$$
$$= \begin{pmatrix} C - {}^t C & D + {}^t A \\ -(A + {}^t D) & {}^t B - B \end{pmatrix},$$

so *B* and *C* symmetric and $D = -{}^{t}A$. For *B* and *C* there are n(n+1)/2 degrees of freedom, *A* has all n^{2} degrees of freedom, but *D* is totally determined by *A*. We get that $\mathfrak{sp}(2n, \mathbb{R})$ and therefore $\operatorname{Sp}(2n, \mathbb{R})$ have dimension $2n^{2} + n$. The Lie algebra $\mathfrak{u}(n)$ of U(n) is given by

$$\mathfrak{u}(n) = \left\{ X \in \mathfrak{gl}(n, \mathbb{C}) \colon {}^t\overline{X} + X = 0 \right\},\,$$

which means that the diagonal entries $X_{ii} = a + bi$ satisfy $0 = \overline{X}_{ii} + X_{ii} = a - bi + a + bi = 2a$, so the real part *a* of X_{ii} is 0. The imaginary part of the diagonal entries is arbitrary. The strict upper triangular part determines the strict lower triangular part, which implies that there are n(n-1) degrees of freedom in the strict upper triangular part. This implies that the real dimension of $\mathfrak{u}(n)$ and therefore of U(n) is $n + n(n-1) = n^2$.

The dimension of the symmetric space $\operatorname{Sp}(2n, \mathbb{R})/\operatorname{U}(n)$ is thus $2n^2 + n - n^2 = n^2 + n$.

For the cartan decomposition $\mathfrak{sp}(2n,\mathbb{R}) = \mathfrak{u}(n) \oplus \mathfrak{p}$, we get

$$\mathfrak{p} = \left\{ X \in \mathfrak{sp}(2n, \mathbb{R}) \colon -{}^{t}X = X \right\}$$
$$= \left\{ \begin{pmatrix} A & B \\ {}^{t}B & D \end{pmatrix} \in \mathfrak{sp}(2n, \mathbb{R}) \colon A = {}^{t}A, \ D = {}^{t}D \right\}$$

For the rank we consider the abelian subspace

$$\mathfrak{a} = \left\{ \begin{pmatrix} X & 0\\ 0 & -X \end{pmatrix} \in \mathfrak{sp}(2n, \mathbb{R}) \colon X \text{ diagonal} \right\}$$

and choose a special element $H \in \mathfrak{a}$ whose X has distinct positive, non-zero entries. Since \mathfrak{a} is abelian and $H \in \mathfrak{a}$, we have $\mathfrak{a} \subset \mathfrak{z}(H) \cap \mathfrak{p}$. Now let $Y \in \mathfrak{z}(H) \cap \mathfrak{p}$, i.e. [H, Y] = 0. This implies

$$0 = [H, Y] = \begin{bmatrix} \begin{pmatrix} X & 0 \\ 0 & -X \end{pmatrix}, \begin{pmatrix} A & B \\ {}^{t}B & D \end{pmatrix} \end{bmatrix} = \begin{pmatrix} XA - AX & XB + BX \\ -{}^{t}BX - X{}^{t}B & CX - XC \end{pmatrix}$$

ETH Zürich	D-MATH	Symmetric Spaces
Prof. Dr. Marc Burger	Raphael Appenzeller	May 29, 2020

Considering the entries of XB + BX = 0, we get $0 = (XB + BX)_{ij} = X_{ii}B_{ij} + X_{jj}B_{ij} = (X_{ii} + X_{jj})B_{ij}$ and since the entries of X are positive, $B_{ij} = 0$ and thus B = 0. Similarly $0 = (XA - AX)_{ij} = (X_{ii} - X_{jj})A_{ij}$ and since the entries of X are distinct, $A_{ij} = 0$ for all $i \neq j$. Thus A is a diagonal matrix. Now we use the condition $D + {}^{t}A = 0$, which holds since $Y \in \mathfrak{sp}(2n, \mathbb{R})$. Since A is diagonal, we get D = -A and thus $Y \in \mathfrak{a}$. We have shown that $\mathfrak{z}(H) \cap \mathfrak{p} = \mathfrak{a}$ is an abelian, and thus maximal abelian (H is a regular element). The dimension of \mathfrak{a} is n, so the rank of the symmetric space $\operatorname{Sp}(2n, \mathbb{R})/\operatorname{U}(n)$ is also n.