Exercise 3.1 Let I :=]a, b[for $-\infty \le a < b \le \infty$. Let $u \in L^p(I)$ and let $(u_k)_{k \in \mathbb{N}}$ be a bounded sequence in the Sobolev space $W^{1,p}(I)$ with $||u - u_k||_{L^p(I)} \to 0$ as $k \to \infty$.

- (i) If $1 , prove <math>u \in W^{1,p}(I)$.
- (ii) Is the assumption $p \neq 1$ in part (i) necessary?

Exercise 3.2 Consider the function $f(x) = \log |x|$. From one variable calculus we know that $f \in L^p((-1, 1))$ for every $p \in [1, \infty)$.

- (i) Prove that f does not have a weak derivative in any $L^p((-1,1))$.
- (ii) Prove that instead there holds, for every $\varphi \in C_c^{\infty}((-1,1))$,

$$-\int_{-1}^{1} f(x)\varphi'(x)dx = p. v. \int_{-1}^{1} \frac{\varphi(x)}{x}dx := \lim_{\varepsilon \to 0} \int_{(-1,1)\setminus [-\varepsilon,\varepsilon]} \frac{\varphi(x)}{x}dx,$$

The operator $\varphi \mapsto p. v. \int_{-1}^{1} \frac{\varphi(x)}{x} dx$ is called *Cauchy principal value* of 1/x.

(iii) Find an explicit expression for p. v. $\int_{-1}^{1} \frac{\varphi(x)}{x} dx$ an absolutely convergent integral involving φ .

Remark. This exercise hints at the following fact: the weak derivative of $\log |x|$ is p. v.(1/x), which is not an ordinary function of x but rather a linear operator over the space of test functions. This heuristic consideration, familiar to every physicists, becomes rigorous and systematic in the *theory of distributions*.

Exercise 3.3 Let $1 \leq p \leq \infty$. Recall from the lecture that a continuous linear extension operator $E: W^{1,p}(\mathbb{R}_+) \to W^{1,p}(\mathbb{R})$ can be constructed by even reflection across 0 (Satz 7.3.3).

Construct a linear operator $E: W^{2,p}(\mathbb{R}_+) \to W^{2,p}(\mathbb{R})$ satisfying:

- $(Eu)|_{\mathbb{R}_+} = u$ for every $u \in W^{2,p}(\mathbb{R}_+);$
- $||Eu||_{W^{2,p}(\mathbb{R})} \leq C ||u||_{W^{2,p}(\mathbb{R}_+)}$ for a constant C > 0 independent of u.

Exercise 3.4 *Note:* this exercise is supplementary to the previous one. Solve that first! The solution you find may differ from the procedure here described.

(i) Let $k \in \mathbb{N}$. Show that there exist $a_1, \ldots, a_k \in \mathbb{R}$ such that for any polynomial $p: \mathbb{R} \to \mathbb{R}, \ p(x) = \sum_{\ell=0}^{k-1} p_\ell x^\ell$ of degree k-1 and every x < 0, there holds

$$\sum_{j=1}^{k} a_j \, p\left(\frac{-x}{j}\right) = p(x).$$

 $1/_{3}$

(ii) Let $1 \le p \le \infty$ and $k \in \mathbb{N}$. Let $a_1, \ldots, a_k \in \mathbb{R}$ as in (i). Prove that the map

$$E: u \mapsto Eu, \qquad (Eu)(x) := \begin{cases} u(x) & \text{for } x > 0, \\ \sum_{j=1}^{k} a_j u\left(\frac{-x}{j}\right) & \text{for } x < 0, \end{cases}$$

defines a linear operator $E: W^{k,p}(\mathbb{R}_+) \to W^{k,p}(\mathbb{R})$ so that for every $u \in W^{k,p}(\mathbb{R}_+)$ and any integer $0 \le \alpha \le k$

 $||D^{\alpha}(Eu)||_{L^{p}(\mathbb{R})} \leq C||D^{\alpha}u||_{L^{p}(\mathbb{R}_{+})},$

for a constant C > 0 independent of u.

Hints to Exercises.

- **3.1** Recall that L^p spaces are reflexive for $p \in (1, \infty)$ and that L^{∞} is the dual of the separable space L^1 .
- **3.2** write $\int_{-1}^{1} f(x)\varphi'(x)dx = \lim_{\varepsilon \to 0} \int_{(-1,1)\setminus [-\varepsilon,\varepsilon]} f(x)\varphi'(x)dx$, use that f is smooth away from 0 and integrate by parts.
- **3.3** Argue carefully by odd reflection, and then use cut-off functions.