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Exercise 7.1 Let 1 ≤ p ≤ ∞. Consider the open set

Ω = (−1, 1)× (−1, 1) \
(
[0, 1)× {0}

)
⊂ R2.

Prove that there is no extension operator E : W 1,p(Ω)→ W 1,p(R2).

Exercise 7.2 In this exercise we want to prove that, for every bounded, C1 domain
Ω ⊂ Rn and every 1 ≤ p <∞, W 1,p

0 (Ω) consists exactly of those functions in W 1,p(Ω)
with vanishing trace, similarly to Remark 7.5.1 in the 1-dimensional case or Corollary
8.4.3 for the case p = 2.

Let u ∈ W 1,p(Ω).

(i) Prove that for every ϕ ∈ C∞
c (Rn) and every i = 1, . . . , n there holds∫

Ω
∂iuϕdx = −

∫
Ω
u ∂iϕdx+

∫
∂Ω
u|∂Ω ϕν

i dσ,

where ν = (ν1, . . . , νn) denotes the outer unit normal of ∂Ω and u|∂Ω ∈ Lp(∂Ω)
denotes the trace of u.

(ii) Consider the extension of U by zero to Rn:

U(x) =

u(x) for x ∈ Ω,
0 for x ∈ Rn \ Ω.

Prove that, if the weak derivative of U exist, they are necessarily given by

∂iU(x) =

∂iu(x) for x ∈ Ω,
0 for x ∈ Rn \ Ω

(∗)

for i = 1, . . . , n.

Prove then that u|∂Ω = 0 if and only if U is in W 1,p(Rn).

(iii) Prove that, for every v ∈ W 1,p(Rn) so that v|Rn\Ω = 0 then v|Ω ∈ W 1,p
0 (Ω) and

conclude.

Exercise 7.3 Show that the assumption that Ω is of class C1 cannot be dropped
in the characterization of W 1,p

0 (Ω) given in Exercise 7.2: find a bounded, connected,
open set Ω ⊂ R2 and w ∈ H1(R2) satisfying w(x) = 0 for almost every x ∈ R2 \ Ω
such that w|Ω /∈ H1

0 (Ω).
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Exercise 7.4 (Hardy’s inequalities)

(i) Let 1 < p <∞, let f ∈ Lp((0,∞)) and define

g(x) = 1
x

∫ x

0
f(y)dy, for x > 0.

Prove that g ∈ Lp((0,∞)) with

‖g‖Lp((0,∞)) ≤ C‖f‖Lp((0,∞)),

for some constant C > 0 depending only on p.

(ii) Let n ≥ 2, 1 < p < n, Ω ⊆ Rn be an open subset and let u ∈ W 1,p
0 (Ω). Then

the function x 7→ u(x)
|x| is in Lp(Ω) with

∥∥∥∥∥ u| · |
∥∥∥∥∥

Lp(Ω)
≤ C‖u‖W 1,p(Ω),

for a constant C > 0 depending only on n and p.
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Hints to Exercises.

7.1 Recall Exercise 5.2.

7.2 For (iii), deal first with the basic case on cylinders.

7.3 Compare with Exercises 5.2 and 7.1.

7.4 Minkowski inequality for integrals: ‖
∫
f(x, ·)dx‖Lp ≤

∫
‖f(x, ·)‖Lpdx will be

useful.

For (ii), argue first for u ∈ C∞
c (Rn) and write u as integral of its radial derivative

u(x) = −
∫∞

|x| ∂ru(rθx)dr.
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