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Exercise 1.1 Let a, b, c, d ∈ R with a < b and c < d and let Ω := ]a, b[× ]c, d[ ⊂ R2.

(i) Find all the harmonic functions on Ω that are of the form u(x, y) = v(x)w(y).

You may appeal to the unique continuation principle stating that if u, ũ ∈ C2(Ω)
satisfy ∆u = 0 = ∆ũ and u|Q = ũ|Q for some open set Q ⊂ Ω, then u = ũ in Ω.

(ii) Prove or disprove: For every u0 ∈ C2(∂Ω) there is a solution of the form
u(x, y) = v(x)w(y) to the boundary value problem{

∆u = 0 in Ω,
u = u0 on ∂Ω.

Solution. (i) If u ∈ C2(Ω) is of the form u(x, y) = v(x)w(y), then

(∆u)(x, y) = v′′(x)w(y) + v(x)w′′(y).

Suppose that ∆u = 0. At every (x, y) ∈ Ω where v(x)w(y) 6= 0 we obtain

v′′(x)
v(x) = −w

′′(y)
w(y) . (‡)

Since the left hand side depends only on x and the right hand side only on y,
the equation requires both sides to be constant. More precisely,

v′′(x)
v(x) = κ = −w

′′(y)
w(y)

at every (x, y) ∈ Ω where v(x)w(y) 6= 0. The resulting equations

v′′(x) = κv(x), w′′(y) = −κw(y)

can be solved separately by distinguishing three cases.

Case 1. κ = λ2 for some λ > 0. Then, with constants C1, C2, C3, C4 ∈ R

v(x) = C1eλx + C2e−λx, w(y) = C3 sin(λy) + C4 cos(λy).

Case 2. κ = 0. Then, with constants C1, C2, C3, C4 ∈ R

v(x) = C1x+ C2, w(y) = C3y + C4.

Case 3. κ = −λ2 for some λ > 0. Then, with constants C1, C2, C3, C4 ∈ R

v(x) = C1 sin(λx) + C2 cos(λx), w(y) = C3eλy + C4e−λy.
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In each of the cases, one verifies directly that u(x, y) = v(x)w(y) is harmonic.

Are these all harmonic functions of this form? Let u(x, y) = v(x)w(y) in C2(Ω)
satisfy ∆u = 0 in Ω. If u is not identically zero, there are open set I ⊂ ]a, b[ and
J ⊂ ]c, d[ such that v(x) 6= 0 ∀x ∈ I and w(y) 6= 0 ∀y ∈ J . Hence equation (‡)
is satisfied in I × J and u|I×J agrees with the restriction of one of the solutions
ũ found in cases 1–3. Since I × J is open, the unique continuation principle
yields u = ũ in Ω.

(ii) Let a, b, c, d ∈ R with a < b and c < d and let Ω := ]a, b[ × ]c, d[ ⊂ R2. Let
u0 ∈ C2(∂Ω) be non-constant satisfying

∀x ∈ [a, b] u0(x, c) = 1, ∀y ∈ [c, d] u0(b, y) = 1.

Then, any function u(x, y) = v(x)w(y) in Ω with u|∂Ω = u0 must satisfy

∀x ∈ [a, b] 1 = u0(x, c) = u(x, c) = v(x)w(c) ⇒ v(x) = 1
w(c) ,

∀y ∈ [c, d] 1 = u0(b, y) = u(b, y) = v(b)w(y) ⇒ w(y) = 1
v(b) .

In particular, both v and w must be constant. This however is in contradiction
to u0 being non-constant.
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Ω = ]a, b[× ]c, d[

Exercise 1.2 We have seen that every harmonic function satisfies the mean value
property. Prove that the converse is true: let Ω ⊂ Rn be open and let u ∈ C2(Ω)
satisfy the mean-value property, i. e. for any y ∈ Ω and any r > 0 such that Br(y) ⊂ Ω,

u(y) = −
∫
∂Br(y)

u dσ = −
∫
Br(y)

u dx.

Prove that u is harmonic.
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Solution. For R > 0 so that BR(y) ⊂ Ω, define φ : ]0, R[→ R by

φ(r) = −
∫
∂Br(y)

u dσ = −
∫
∂B1(0)

u(y + rz) dσ(z)

and compute

φ′(r) = −
∫
∂B1(0)

d

dr

(
u(y + rz)

)
dσ(z) = −

∫
∂B1(0)

z · ∇u(y + rz) dσ(z)

= −
∫
∂Br(y)

ξ − y
r
· ∇u(ξ) dσ(ξ) = r

n
−
∫
Br(y)

∆u dx, (†)

where the divergence theorem applies because ν = ξ−y
r

is the outward unit normal
vector along ∂Br(y). If u satisfies the mean-value property, φ is constant. In particular,

0 = φ′(r) = r

n
−
∫
Br(y)

∆u dx. (∗)

By assumption, ∆u is continuous. If ∆u 6= 0, there exist y ∈ Ω and r > 0 such that
either ∆u < 0 in Br(y) or ∆u > 0 in Br(y) which contradicts (∗) in both cases.

Exercise 1.3 (Liouville’s Theorem)

(i) Suppose u ∈ C2(Rn) is harmonic and u ∈ L1(Rn). Prove that u = 0.

(ii) Suppose u ∈ C2(Rn) is harmonic and bounded. Prove that u is constant.

Solution. (i) Let u ∈ C2(Rn) be harmonic and u ∈ L1(Rn). Let Br(y) ⊂ Rn be
the open ball of radius r > 0 around y. By the mean-value property implies

|u(y)| =
∣∣∣∣−∫
Br(y)

u dx
∣∣∣∣ ≤ 1
|Br|

∫
Br(y)
|u| dx ≤ 1

|Br|
‖u‖L1(Rn)

r→∞−−−→ 0.

Since y ∈ Rn is arbitrary, we obtain u ≡ 0.

(ii) Let u ∈ C2(Rn) be harmonic and |u| ≤ c0. Let y, z ∈ Rn be two arbitrary points
and ρ := |y − z|. Then, for every r > ρ, the mean-value property implies

u(y)− u(z) = −
∫
Br(y)

u dx−−
∫
Br(z)

u dx

= 1
|Br|

∫
Br(y)\Br(z)

u dx− 1
|Br|

∫
Br(z)\Br(y)

u dx

≤ 2c0

|Br|
|Br(y) \Br(z)| ≤ 2c0 ρ |BRn−1

r |
|BRn

r |
r→∞−−−→ 0

i. e. u(y) ≤ u(z). Interchanging the roles of y and z gives u(z) ≤ u(y), i. e.
u(y) = u(z). Since y, z ∈ Rn are arbitrary, we conclude that u is constant.
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Exercise 1.4 (Harnack’s Inequality) Let Ω ⊂ Rn be open. Let Q ⊂ Ω be any
bounded and connected open subset such that Q ⊂ Ω. Prove that there exists a
constant C depending only on Q such that for every non-negative harmonic function
u ∈ C2(Ω) there holds

sup
Q
u ≤ C inf

Q
u.

Solution. Given the open set Ω ⊂ Rn and the connected open subset Q ⊂ Ω such
that Q ⊂ Ω, let r = 1

4 dist(Q, ∂Ω) > 0. Let u ∈ C2(Ω) be harmonic. By the mean
value property and since u is non-negative,

u(y) = 1
|B2r|

∫
B2r(y)

u dx ≥ 1
|B2r|

∫
Br(z)

u dx = 1
2n|Br|

∫
Br(z)

u dx = 1
2nu(z)

for any y, z ∈ Q with |z − y| < r. Since Q is connected and compact, there exist
finitely many x1, . . . , xm ∈ Q such that Q ⊂ ⋃mi=1Br(xi) and such that |xi− xi+1| < r
for i = 2, . . . ,m. Consequently, for every x, y ∈ Q there holds u(x) ≥ 2−n(m+1)u(y),
and thus

sup
Q
u ≤ 2n(m+1) inf

Q
u.
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