Exercise 1.1 Let $a, b, c, d \in \mathbb{R}$ with a < b and c < d and let $\Omega := [a, b] \times [c, d] \subset \mathbb{R}^2$.

(i) Find all the harmonic functions on Ω that are of the form u(x, y) = v(x)w(y).

You may appeal to the unique continuation principle stating that if $u, \tilde{u} \in C^2(\Omega)$ satisfy $\Delta u = 0 = \Delta \tilde{u}$ and $u|_Q = \tilde{u}|_Q$ for some open set $Q \subset \Omega$, then $u = \tilde{u}$ in Ω .

(ii) Prove or disprove: For every $u_0 \in C^2(\partial\Omega)$ there is a solution of the form u(x,y) = v(x)w(y) to the boundary value problem

$$\begin{cases} \Delta u = 0 & \text{ in } \Omega, \\ u = u_0 & \text{ on } \partial \Omega. \end{cases}$$

Solution. (i) If $u \in C^2(\Omega)$ is of the form u(x, y) = v(x)w(y), then

$$(\Delta u)(x,y) = v''(x) w(y) + v(x) w''(y).$$

Suppose that $\Delta u = 0$. At every $(x, y) \in \Omega$ where $v(x)w(y) \neq 0$ we obtain

$$\frac{v''(x)}{v(x)} = -\frac{w''(y)}{w(y)}.$$
(‡)

Since the left hand side depends only on x and the right hand side only on y, the equation requires both sides to be constant. More precisely,

$$\frac{v''(x)}{v(x)} = \kappa = -\frac{w''(y)}{w(y)}$$

at every $(x, y) \in \Omega$ where $v(x)w(y) \neq 0$. The resulting equations

$$v''(x) = \kappa v(x), \qquad \qquad w''(y) = -\kappa w(y)$$

can be solved separately by distinguishing three cases.

Case 1. $\kappa = \lambda^2$ for some $\lambda > 0$. Then, with constants $C_1, C_2, C_3, C_4 \in \mathbb{R}$

$$v(x) = C_1 e^{\lambda x} + C_2 e^{-\lambda x}, \qquad \qquad w(y) = C_3 \sin(\lambda y) + C_4 \cos(\lambda y).$$

Case 2. $\kappa = 0$. Then, with constants $C_1, C_2, C_3, C_4 \in \mathbb{R}$

$$v(x) = C_1 x + C_2,$$
 $w(y) = C_3 y + C_4.$

Case 3. $\kappa = -\lambda^2$ for some $\lambda > 0$. Then, with constants $C_1, C_2, C_3, C_4 \in \mathbb{R}$

$$v(x) = C_1 \sin(\lambda x) + C_2 \cos(\lambda x), \qquad w(y) = C_3 e^{\lambda y} + C_4 e^{-\lambda y}$$

1/4

In each of the cases, one verifies directly that u(x, y) = v(x)w(y) is harmonic.

Are these all harmonic functions of this form? Let u(x, y) = v(x)w(y) in $C^2(\Omega)$ satisfy $\Delta u = 0$ in Ω . If u is not identically zero, there are open set $I \subset [a, b]$ and $J \subset [c, d]$ such that $v(x) \neq 0 \ \forall x \in I$ and $w(y) \neq 0 \ \forall y \in J$. Hence equation (‡) is satisfied in $I \times J$ and $u|_{I \times J}$ agrees with the restriction of one of the solutions \tilde{u} found in cases 1–3. Since $I \times J$ is open, the unique continuation principle yields $u = \tilde{u}$ in Ω .

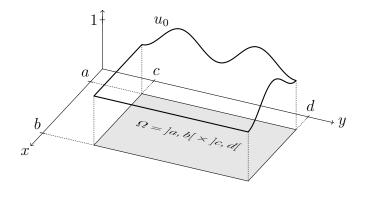
(ii) Let $a, b, c, d \in \mathbb{R}$ with a < b and c < d and let $\Omega :=]a, b[\times]c, d[\subset \mathbb{R}^2$. Let $u_0 \in C^2(\partial \Omega)$ be non-constant satisfying

$$\forall x \in [a, b] \quad u_0(x, c) = 1, \qquad \qquad \forall y \in [c, d] \quad u_0(b, y) = 1.$$

Then, any function u(x,y) = v(x)w(y) in Ω with $u|_{\partial\Omega} = u_0$ must satisfy

$$\begin{aligned} \forall x \in [a, b] \quad 1 &= u_0(x, c) = u(x, c) = v(x)w(c) \quad \Rightarrow \ v(x) = \frac{1}{w(c)}, \\ \forall y \in [c, d] \quad 1 &= u_0(b, y) = u(b, y) = v(b)w(y) \quad \Rightarrow w(y) = \frac{1}{v(b)}. \end{aligned}$$

In particular, both v and w must be constant. This however is in contradiction to u_0 being non-constant.



Exercise 1.2 We have seen that every harmonic function satisfies the mean value property. Prove that the converse is true: let $\Omega \subset \mathbb{R}^n$ be open and let $u \in C^2(\Omega)$ satisfy the mean-value property, i.e. for any $y \in \Omega$ and any r > 0 such that $B_r(y) \subset \Omega$,

$$u(y) = \oint_{\partial B_r(y)} u \, d\sigma = \oint_{B_r(y)} u \, dx.$$

Prove that u is harmonic.

Solution. For R > 0 so that $B_R(y) \subset \Omega$, define $\phi: [0, R[\to \mathbb{R}$ by

$$\phi(r) = \int_{\partial B_r(y)} u \, d\sigma = \int_{\partial B_1(0)} u(y + rz) \, d\sigma(z)$$

and compute

$$\phi'(r) = \int_{\partial B_1(0)} \frac{d}{dr} \left(u(y+rz) \right) d\sigma(z) = \int_{\partial B_1(0)} z \cdot \nabla u(y+rz) \, d\sigma(z)$$
$$= \int_{\partial B_r(y)} \frac{\xi - y}{r} \cdot \nabla u(\xi) \, d\sigma(\xi) = \frac{r}{n} \int_{B_r(y)} \Delta u \, dx, \tag{\dagger}$$

where the divergence theorem applies because $\nu = \frac{\xi - y}{r}$ is the outward unit normal vector along $\partial B_r(y)$. If u satisfies the mean-value property, ϕ is constant. In particular,

$$0 = \phi'(r) = \frac{r}{n} \oint_{B_r(y)} \Delta u \, dx. \tag{(*)}$$

By assumption, Δu is continuous. If $\Delta u \neq 0$, there exist $y \in \Omega$ and r > 0 such that either $\Delta u < 0$ in $B_r(y)$ or $\Delta u > 0$ in $B_r(y)$ which contradicts (*) in both cases. \Box

Exercise 1.3 (Liouville's Theorem)

- (i) Suppose $u \in C^2(\mathbb{R}^n)$ is harmonic and $u \in L^1(\mathbb{R}^n)$. Prove that u = 0.
- (ii) Suppose $u \in C^2(\mathbb{R}^n)$ is harmonic and bounded. Prove that u is constant.
- **Solution.** (i) Let $u \in C^2(\mathbb{R}^n)$ be harmonic and $u \in L^1(\mathbb{R}^n)$. Let $B_r(y) \subset \mathbb{R}^n$ be the open ball of radius r > 0 around y. By the mean-value property implies

$$|u(y)| = \left| \oint_{B_r(y)} u \, dx \right| \le \frac{1}{|B_r|} \int_{B_r(y)} |u| \, dx \le \frac{1}{|B_r|} \|u\|_{L^1(\mathbb{R}^n)} \xrightarrow{r \to \infty} 0$$

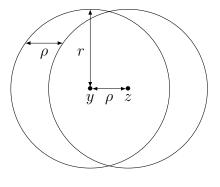
Since $y \in \mathbb{R}^n$ is arbitrary, we obtain $u \equiv 0$.

(ii) Let $u \in C^2(\mathbb{R}^n)$ be harmonic and $|u| \leq c_0$. Let $y, z \in \mathbb{R}^n$ be two arbitrary points and $\rho := |y - z|$. Then, for every $r > \rho$, the mean-value property implies

$$\begin{aligned} u(y) - u(z) &= \int_{B_r(y)} u \, dx - \int_{B_r(z)} u \, dx \\ &= \frac{1}{|B_r|} \int_{B_r(y) \setminus B_r(z)} u \, dx - \frac{1}{|B_r|} \int_{B_r(z) \setminus B_r(y)} u \, dx \\ &\leq \frac{2c_0}{|B_r|} |B_r(y) \setminus B_r(z)| \leq \frac{2c_0 \rho |B_r^{\mathbb{R}^{n-1}}|}{|B_r^{\mathbb{R}^n}|} \xrightarrow{r \to \infty} 0 \end{aligned}$$

i.e. $u(y) \leq u(z)$. Interchanging the roles of y and z gives $u(z) \leq u(y)$, i.e. u(y) = u(z). Since $y, z \in \mathbb{R}^n$ are arbitrary, we conclude that u is constant.

ETH Zürich	Functional Analysis II	D-MATH
Spring 2020	Exercise Sheet 1	Prof. M. Struwe



Exercise 1.4 (Harnack's Inequality) Let $\Omega \subset \mathbb{R}^n$ be open. Let $Q \subset \Omega$ be any bounded and connected open subset such that $\overline{Q} \subset \Omega$. Prove that there exists a constant C depending only on Q such that for every *non-negative* harmonic function $u \in C^2(\Omega)$ there holds

$$\sup_{Q} u \le C \inf_{Q} u.$$

Solution. Given the open set $\Omega \subset \mathbb{R}^n$ and the connected open subset $Q \subset \Omega$ such that $\overline{Q} \subset \Omega$, let $r = \frac{1}{4} \operatorname{dist}(Q, \partial \Omega) > 0$. Let $u \in C^2(\Omega)$ be harmonic. By the mean value property and since u is non-negative,

$$u(y) = \frac{1}{|B_{2r}|} \int_{B_{2r}(y)} u \, dx \ge \frac{1}{|B_{2r}|} \int_{B_{r}(z)} u \, dx = \frac{1}{2^{n}|B_{r}|} \int_{B_{r}(z)} u \, dx = \frac{1}{2^{n}} u(z)$$

for any $y, z \in Q$ with |z - y| < r. Since \overline{Q} is connected and compact, there exist finitely many $x_1, \ldots, x_m \in Q$ such that $Q \subset \bigcup_{i=1}^m B_r(x_i)$ and such that $|x_i - x_{i+1}| < r$ for $i = 2, \ldots, m$. Consequently, for every $x, y \in Q$ there holds $u(x) \ge 2^{-n(m+1)}u(y)$, and thus

$$\sup_{Q} u \le 2^{n(m+1)} \inf_{Q} u.$$