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Exercise 3.1 Let I := ]a, b[ for −∞ ≤ a < b ≤ ∞. Let u ∈ Lp(I) and let (uk)k∈N be
a bounded sequence in the Sobolev space W 1,p(I) with ‖u− uk‖Lp(I) → 0 as k →∞.

(i) If 1 < p ≤ ∞, prove u ∈ W 1,p(I).

(ii) Is the assumption p 6= 1 in part (i) necessary?

Solution. (i) Let u′k be the weak derivative of uk. By assumption, the sequence
(u′k)k∈N is bounded in Lp(I).

Case 1 < p < ∞. In this case, the space Lp(I) is reflexive and the Eberlein–
Šmulyan Theorem applies: (u′k)k∈N has a subsequence which converges weakly
in Lp(I). Let g ∈ Lp(I) be the corresponding weak limit and Λ ⊂ N the
subsequence’s indices. Since for any ϕ ∈ C∞c (I), the maps Lp(I) → R given
by f 7→

∫
I fϕ dx or by f 7→ −

∫
I fϕ

′ dx are elements of (Lp(I))∗ and since
‖uk − u‖Lp → 0 implies uk w

⇁ u, we have by definition of weak convergence

−
∫
I
uϕ′ dx = lim

Λ3k→∞

(
−
∫
I
ukϕ

′ dx
)

= lim
Λ3k→∞

(∫
I
u′kϕdx

)
=
∫
I
gϕ dx

for any ϕ ∈ C∞c (I). Hence, g ∈ Lp(I) is indeed the weak derivative of u ∈ Lp(I)
and u ∈ W 1,p(I) follows.

Case p = ∞. Since L1(I) is separable, the Banach–Alaoglu Theorem applies:
(u′k)k∈N being bounded in L∞(I) ∼= (L1(I))∗ has a subsequence (given by Λ ⊂ N)
which weak∗-converges to some g ∈ (L1(I))∗. For any ϕ ∈ C∞c (]0, 1[) ⊂ L1(]0, 1[),

−
∫
I
uϕ′ dx = lim

Λ3k→∞

(
−
∫
I
ukϕ

′ dx
)

= lim
Λ3k→∞

(∫
I
u′kϕdx

)
=
∫
I
gϕ dx

follows as in part (i). Hence, g ∈ (L1(I))∗ ∼= L∞(I) is indeed the weak derivative
of u ∈ L∞(I) and u ∈ W 1,∞(I) follows.

(ii) The assumption p 6= 1 is necessary. Consider I = ]−1, 1[ and u = χ]0,1[ ∈ L1(I).
For every k ∈ N let uk : I → R be given by

uk(x) =


0, for − 1 < x ≤ 0,
kx, for 0 < x ≤ 1

k
,

1, for 1
k
< x ≤ 1.

x

+1

+
0

+
1

+
−1

u1u2u3···

Then, uk ∈ W 1,1(I) with ‖uk‖L1 = 1 − 1
2k and ‖u′k‖L1 = 1

k
k = 1. Moreover,

there holds ‖uk − u‖L1 = 1
2k → 0 as k →∞. However, u /∈ W 1,1(I), otherwise u

would have a continuous representative.
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Exercise 3.2 Consider the function f(x) = log |x|. From one variable calculus we
know that f ∈ Lp((−1, 1)) for every p ∈ [1,∞).

(i) Prove that f does not have a weak derivative in any Lp((−1, 1)).

(ii) Prove that instead there holds, for every ϕ ∈ C∞c ((−1, 1)),

−
∫ 1

−1
f(x)ϕ′(x)dx = p. v.

∫ 1

−1

ϕ(x)
x

dx := lim
ε→0

∫
(−1,1)\[−ε,ε]

ϕ(x)
x

dx,

The operator ϕ 7→ p. v.
∫ 1
−1

ϕ(x)
x
dx is called Cauchy principal value of 1/x.

(iii) Find an explicit expression for p. v.
∫ 1
−1

ϕ(x)
x
dx an absolutely convergent integral

involving ϕ.
Remark. This exercise hints at the following fact: the weak derivative of log |x| is
p. v.(1/x), which is not an ordinary function of x but rather a linear operator over
the space of test functions. This heuristic consideration, familiar to every physicists,
becomes rigorous and systematic in the theory of distributions.

Solution. (i) Suppose that f ′ existed in L1((−1, 1)). Then the integral
∫ 1
−1 f

′(x)ϕ(x)dx
had to be absolutely convergent for every ϕ ∈ C∞c ((−1, 1)) and so we may esti-
mate, for every ε ∈ (0, 1),

∫ 1

−1
|f ′(x)ϕ(x)|dx ≥

∫ 1

ε
|f ′(x)||ϕ(x)|dx =

∫ 1

ε

|ϕ(x)|
x

dx,

but if ϕ(0) 6= 0 we get a contradiction by taking the limit as ε→ 0.

(ii) Since f ∈ L1(−1, 1) and is differentiable away from the origin, we may integrate
by parts as follows:∫ 1

−1
f(x)ϕ′(x)dx

= lim
ε→0

∫
(−1,1)\[−ε,ε]

log |x|ϕ′(x)dx

= lim
ε→0

[ ∫ −ε
−1

log |x|ϕ′(x)dx+
∫ 1

ε
log |x|ϕ′(x)dx

]

= lim
ε→0

[
ϕ(−ε) log ε−

∫ −ε
−1

ϕ(x)
x

dx− ϕ(ε) log ε−
∫ 1

ε

ϕ(x)
x

dx

]

= lim
ε→0

[
(ϕ(−ε)− ϕ(ε)) log ε

]
− lim

ε→0

∫
(−1,1)\[−ε,ε]

ϕ(x)
x

dx.
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where we could separate the limits since the first one exists and in particular

lim
ε→0

[
(ϕ(−ε)− ϕ(ε)) log ε

]
= lim

ε→0

[
ϕ(−ε)− ϕ(ε)

ε
ε log ε

]
= 2ϕ′(0) lim

ε→0

[
ε log ε

]
= 0.

(iii) Arguing similarly as in (ii), with a change of variable we obtain

p. v.
∫ 1

−1

ϕ(x)
x

dx = lim
ε→0

[ ∫ −ε
−1

ϕ(x)
x

dx+
∫ 1

ε

ϕ(x)
x

dx

]

= lim
ε→0

[
−
∫ 1

ε

ϕ(−x)
x

dx+
∫ 1

ε

ϕ(x)
x

dx

]

= lim
ε→0

[ ∫ 1

ε

ϕ(x)− ϕ(−x)
x

dx

]

=
∫ 1

0

ϕ(x)− ϕ(−x)
x

dx,

where we could pass to the limit since, by the mean value theorem,∣∣∣∣∣ϕ(x)− ϕ(−x)
x

∣∣∣∣∣ ≤ 2‖ϕ′‖L∞ ,

and so the integral was absolutely convergent.

Exercise 3.3 Let 1 ≤ p ≤ ∞. Recall from the lecture that a continuous linear
extension operator E : W 1,p(R+) → W 1,p(R) can be constructed by even reflection
across 0 (Satz 7.3.3).

Construct a linear operator E : W 2,p(R+)→ W 2,p(R) satisfying:

• (Eu)|R+ = u for every u ∈ W 2,p(R+);
• ‖Eu‖W 2,p(R) ≤ C‖u‖W 2,p(R+) for a constant C > 0 independent of u.

Solution. We begin by defining operator of odd reflection

Fu(x) =

u(x) for x > 0,
2u(0)− u(−x) for x < 0,
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x

u(x) = e−x(Fu)(x)

Figure 1: Extension by odd reflection.

We claim that Fu ∈ W 2,p
loc (R) with

u′(x) =

u′(x) for x > 0,
u′(−x) for x < 0,

and u′′(x) =

u′′(x) for x > 0,
−u′′(−x) for x < 0,

Indeed, call g and h the two functions defined by the expressions above and let
ϕ ∈ C∞c (R) be arbitrary. Then, using integration by parts for Sobolev functions
(Lemma 7.3.0 of the lectures) and the fundamental theorem of calculus for Sobolev
functions (Satz 7.3.1), we obtain

−
∫
R
(Fu)ϕ′ dx = −

∫ 0

−∞
2u(0)ϕ′(x)− u(−x)ϕ′(x) dx−

∫ ∞
0

u(x)ϕ′(x) dx

= −2u(0)ϕ(0) +
∫ 0

−∞
u(−x)ϕ′(x) dx−

∫ ∞
0

u(x)ϕ′(x) dx

= −
∫ 0

−∞
−u′(−x)ϕ(x) dx+

∫ ∞
0

u′(x)ϕ(x) dx =
∫
R
gϕ dx,

which proves that g is the first weak derivative of Fu. Similarly, h is the weak
derivative of g.

Although (Fu)′, (Fu)′′ ∈ Lp(R), the same does not hold for Fu unless u(0) = 0, and
so we let ψ ∈ C∞(R) be a fixed smooth cut-off function identically equal to 1 on R+
and 0 on (−∞,−1) and define the linear operator

Eu(x) = ψ(x)(Fu)(x), x ∈ R.

Recalling that

|u(0)| ≤ ‖u‖L∞(R+) ≤ C‖u‖W 1,p(R+),

we may estimate with the Leibniz rule

‖Eu‖Lp(R) ≤ C
(
|u(0)|+ ‖u‖Lp(R+)

)
≤ C‖u‖W 1,p(R+),

‖(Eu)′‖Lp(R) ≤ C‖u‖W 1,p(R+),

‖(Eu)′′‖Lp(R) ≤ C‖u‖W 2,p(R+),

where we have included in C the dependence on the C2 norm of ψ. So the linear
operator E above constructed is the required one.
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Exercise 3.4 Note: this exercise is supplementary to the previous one. Solve that
first! The solution you find may differ from the procedure here described.

(i) Let k ∈ N. Show that there exist a1, . . . , ak ∈ R such that for any polynomial
p : R→ R, p(x) = ∑k−1

`=0 p`x
` of degree k − 1 and every x < 0, there holds

k∑
j=1

aj p
(−x
j

)
= p(x).

(ii) Let 1 ≤ p ≤ ∞ and k ∈ N. Let a1, . . . , ak ∈ R as in (i). Prove that the map

E : u 7→ Eu, (Eu)(x) :=


u(x) for x > 0,
k∑
j=1

aju
(−x
j

)
for x < 0,

defines a linear operator E : W k,p(R+)→ W k,p(R) so that for every u ∈ W k,p(R+)
and any integer 0 ≤ α ≤ k

‖Dα(Eu)‖Lp(R) ≤ C‖Dαu‖Lp(R+),

for a constant C > 0 independent of u.

Solution. (i) Let k ∈ N. For m ∈ {0, . . . , k − 1} and p(x) = xm, we obtain the
equation

∀x ∈ R
k∑
j=1

aj

(−x
j

)m
= xm ⇐⇒

k∑
j=1

aj
jm

= (−1)m.

Equivalently,

1 1 1 . . . 1
1 1

2
1
3 . . . 1

k

1 (1
2)2 (1

3)2 . . . ( 1
k
)2

... ... ... . . . ...
1 (1

2)k−1 (1
3)k−1 . . . ( 1

k
)k−1





a1
a2
a3
...
ak

 =



1
−1

1
...

(−1)k−1

 .

The matrix A on the left hand side is a Vandermonde matrix. In particular,

detA =
∏

1≤i<j≤k

(1
j
− 1
i

)
6= 0
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which implies that a unique solution (a1, . . . , ak) ∈ Rk to the linear system exists.
By linearity,

k∑
j=1

aj p
(−x
j

)
= p(x).

holds not only for monomials p(x) = xm with m ∈ {0, . . . , k − 1} but in fact for
arbitrary polynomials of degree k − 1.

(ii) Let k ∈ N be fixed and a1, . . . , ak as in part (i). Given u ∈ W k,p(R+), consider
(Eu) as given on the exercise; note that (Eu) ∈ Lp(R) since u ∈ Lp(R+) We are
going to prove that gα (0 ≤ α ≤ k) given by

gα(x) :=

D
αu(x) for x > 0,∑k
j=1

(
−1
j

)α
aj(Dαu)

(
−x
j

)
for x < 0

is the α-th weak derivative of (Eu). First of all, gα ∈ Lp(R) since (Dαu) ∈
Lp(R+).

x

u(x) = e−xk = 2

k = 3

k = 4

Figure 2: Extensions (Eu)(x) of u(x) = e−x for k = 2, 3, 4.

For α = 0 we have g0 = Eu by construction. Suppose Dα(Eu) = gα for some
α < k. For ϕ ∈ C∞c (R), using Lemma 7.3.0 and Satz 7.3.1, we get

(−1)α+1
∫
R
(Eu)Dα+1ϕdx = −

∫
R
Dα(Eu)ϕ′ dx = −

∫
R
gαϕ

′ dx

= −
k∑
j=1

(
−1
j

)α
aj

∫ 0

−∞
(Dαu)

(
−x
j

)
ϕ′(x) dx−

∫ ∞
0

(Dαu)ϕ′ dx

=
k∑
j=1

(
−1
j

)α+1
aj

∫ 0

−∞
(Dα+1u)

(
−x
j

)
ϕ(x) dx−

k∑
j=1

(
−1
j

)α
aj(Dαu)(0)ϕ(0)

+
∫ ∞

0
(Dα+1u)ϕdx+ (Dαu)(0)ϕ(0)

=
∫
R
gα+1ϕdx+

(
1−

k∑
j=1

(
−1
j

)α
aj

)
(Dαu)(0)ϕ(0).

6/8



d-math
Prof. M. Struwe

Functional Analysis II
Exercise Sheet 3

ETH Zürich
Spring 2020

Since ∑k
j=1 (−1

j
)αaj = 1 was proven in part (i) (set x = 1 and m = α), the claim

Dα+1(Eu) = gα+1 follows. Hence, E(W k,p(R+)) ⊂ W k,p(R) and, for any integer
0 ≤ α ≤ k,

‖Dα(Eu)‖Lp(R) ≤ ‖Dαu‖Lp(R+) +
∥∥∥∥ k∑
j=1

(−1
j
)αaj(Dαu)

(
·
j

)∥∥∥∥
Lp(R+)

≤ ‖Dαu‖Lp(R+) +
k∑
j=1

|aj|
jα

j
1
p‖Dαu‖Lp(R+)

≤ Ck,p‖Dαu‖Lp(R+).
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Hints to Exercises.

3.1 Recall that Lp spaces are reflexive for p ∈ (1,∞) and that L∞ is the dual of the
separable space L1.

3.2 write
∫ 1
−1 f(x)ϕ′(x)dx = limε→0

∫
(−1,1)\[−ε,ε] f(x)ϕ′(x)dx, use that f is smooth

away from 0 and integrate by parts.

3.3 Argue carefully by odd reflection, and then use cut-off functions.
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