Exercise 4.1 Let I :=]a, b[for $-\infty < a < b < \infty$. Given $f \in C^0(\overline{I})$, consider the boundary value problem

$$-v'' + v = f$$
 in *I*,
 $v(a) = 0,$ (*)
 $v(b) = 0,$

(i) Show that (*) has a weak solution $u \in H_0^1(I)$, that is, satisfying

$$\int_{I} u'\varphi' \, dx + \int_{I} u\varphi \, dx = \int_{I} f\varphi \, dx$$

for every $\varphi \in H_0^1(I)$, and that it is unique.

- (ii) Prove that the weak solution u from (i) is in fact a classical solution $u \in C^2(\overline{I})$.
- (iii) Prove that the boundary-value problem

$$\begin{cases} -v'' + v = g & \text{in } I, \\ v(a) = \alpha, \\ v(b) = \beta, \end{cases}$$

where $\alpha, \beta \in \mathbb{R}$ and $g \in C^0(\overline{I})$ has unique classical solution $v \in C^2(\overline{I})$.

Solution. (i) Recall that the space $H_0^1(I)$ is a closed subspace of the Hilbert space $H^1(I)$ and thus is itself Hilbert.

Given $f \in C^0(\overline{I})$, the map

$$\ell_f \colon H^1_0(I) \to \mathbb{R}, \qquad \qquad \ell_f(\varphi) \coloneqq \int_I f(x)\varphi(x) \, dx$$

is a linear, continuous functional, with

$$|\ell_f(\varphi)| \le ||f||_{L^2} ||\varphi||_{L^2} \le ||f||_{L^2} ||\varphi||_{H^1}.$$

By the Riesz representation Theorem, there exists a unique $u \in H_0^1(I)$ satisfying

$$\int_{I} f\varphi \, dx =: \ell_f(\varphi) = (u, \varphi)_{H^1} = \int_{I} u' \varphi' \, dx + \int_{I} u\varphi \, dx$$

for every $\varphi \in H_0^1(I)$.

1/9

(ii) Let $u \in H_0^1(I)$ be the weak solution to the equation -u'' + u = f in I found in part (i). We have in particular

$$\forall \varphi \in C_c^{\infty}(I) : -\int_I u' \varphi' \, dx = \int_I (u-f) \varphi \, dx.$$

Hence, the function $u' \in L^2(I)$ has the weak derivative $(u - f) \in L^2(I)$ and we conclude $u' \in H^1(I)$. Therefore, u' has a continuous representative satisfying

$$u'(x) = u'(a) + \int_{a}^{x} (u - f)(t) dt.$$
(1)

Since also $f \in C^0(\overline{I})$, the right hand side is then in $C^1(\overline{I})$ and this implies $u \in C^2(\overline{I})$.

(iii) We let $v_0 \in C^{\infty}(\overline{I})$ be given by

$$v_0(x) = \alpha + \frac{x-a}{b-a}(\beta - \alpha).$$

and let $f = g - v_0 \in C^0(\overline{I})$. For this f we let $u \in C^2(\overline{I})$ be the solution obtained in (ii). Then $v := u + v_0 \in C^2(\overline{I})$ solves the problem, since

$$\begin{cases} -v'' + v = -u'' - v_0'' + u + v_0 = -u'' + u + v_0 = f + v_0 = g, \\ v(a) = u(a) + u_0(a) = u_0(a) = \alpha, \\ v(b) = u(b) + u_0(b) = u_0(b) = \beta. \end{cases}$$

To prove uniqueness, let $\tilde{v} \in C^2(\overline{I})$ be another solution to the boundary value problem. Then the function $u := v - \tilde{v} \in C^2(\overline{I})$ satisfies -u'' + u = 0 with u(a) = 0 = u(b), so (for instance) with integration by parts we see

$$\int_{I} u^{2} dx = \int_{I} u'' u dx = -\int_{I} |u'|^{2} dx \le 0$$

which implies $u \equiv 0$ and hence $\tilde{v} \equiv v$.

Exercise 4.2 Let I :=]a, b[for $-\infty < a < b < \infty$. Let $g \in C^1(\overline{I})$ and $h, f \in C^0(\overline{I})$. Assume that $g(x) \ge \lambda > 0$ and $h(x) \ge 0$ for every $x \in \overline{I}$ and consider the boundary value problem

$$\begin{cases} -(g \, u')' + h \, u = f & \text{in } I, \\ u(a) = 0, \\ u(b) = 0. \end{cases}$$
(†)

- (i) Apply the Riesz representation theorem in a suitable Hilbert space to prove that (†) has a unique weak solution $u \in H_0^1(I)$.
- (ii) Prove that the weak solution u from (i) is in fact a classical solution $u \in C^2(\overline{I})$.

Solution. (i) Define the new scalar product

$$\langle u, v \rangle := \int_{I} (g \, u' v' + h \, u v) \, dx$$

for all $u, v \in H_0^1(I)$. By assumption,

$$\langle u, u \rangle = \int_{I} (g |u'|^2 + h |u|^2) \, dx \ge \lambda \int_{I} |u'|^2 \, dx$$

for any $u \in H_0^1(I)$. Moreover, using Poincaré's inequality,

$$\begin{aligned} \langle u, u \rangle &\leq \|g\|_{C^0} \int_I |u'|^2 \, dx + \|h\|_{C^0} \int_I |u|^2 \, dx \\ &\leq \left(\|g\|_{C^0} + (b-a)^2 \|h\|_{C^0}\right) \int_I |u'|^2 \, dx. \end{aligned}$$

Hence, $\langle \cdot, \cdot \rangle$ is equivalent to the standard scalar product $(u, v)_{H_0^1}$ on $H_0^1(I)$, and in particular $(H_0^1(I), \langle \cdot, \cdot \rangle)$ is Hilbert. Given $f \in C^0(\overline{I})$, the map

$$\ell_f \colon H^1_0(I) \to \mathbb{R}, \qquad \qquad \ell_f(\varphi) \coloneqq \int_I f(x)\varphi(x) \, dx$$

is a linear, continuous functional:

$$|\ell_f(\varphi)| \le ||f||_{L^2} ||\varphi||_{L^2} \le (b-a) ||f||_{L^2} ||\varphi||_{H^1_0}.$$

By the Riesz representation Theorem, there exists a unique $u \in H^1_0(I)$ satisfying

$$\int_{I} f\varphi \, dx = \int_{I} g \, u' \varphi' + h \, u\varphi \, dx$$

for every $\varphi \in H_0^1(I)$. which is equivalent to being a weak solution of the equation (†), i.e.

$$-\int_{I} gu'\varphi'\,dx = \int_{I} (hu - f)\varphi\,dx.$$

for every $\varphi \in H_0^1(I)$. Hence, the function gu' has the weak derivative $(hu - f) \in L^2(I)$ and we conclude $gu' \in H^1(I)$. Therefore, gu' has a continuous representative satisfying

$$(gu')(x) = (gu')(a) + \int_{a}^{x} (hu - f)(t) dt$$

Since $h, f \in C^0(\overline{I})$, the right-hand side is in $C^1(\overline{I})$. Finally, $gu' \in C^1(\overline{I})$ and $0 < \lambda \leq g \in C^1(\overline{I})$ imply $u' \in C^1(\overline{I})$. Hence, $u \in C^2(\overline{I})$ as claimed. \Box

3/9

Exercise 4.3 Let $1 \le p \le \infty$, I =]a, b[for $-\infty < a < b < \infty$ and $u \in W^{1,p}(I)$.

(i) Let $G \in C^1(\mathbb{R})$. Prove that $G \circ u$ is in $W^{1,p}(I)$ and that the chain rule holds for weak derivatives:

$$(G \circ u)' = (G' \circ u)u'.$$

(ii) Prove that $|u| \in W^{1,p}(I)$ and compute its weak derivative.

Solution. (i) Assume first $p < \infty$. From the bound

 $||u||_{L^{\infty}(I)} \le C ||u||_{W^{1,p}(I)},$

we deduce that $G \circ u$ is also bounded and in particular in $L^p(I)$.

To compute its weak derivative we argue by density. Let $(u_k)_{k\in\mathbb{N}} \subseteq C_c^{\infty}(\mathbb{R})$ be a sequence of smooth functions with $u_k \to u$ in $W^{1,p}(I)$; note in particular that, because of the above inequality, we have that

 $u_n \to u$ uniformly on \overline{I} ;

In particular there exists some M > 0 so that

$$\sup_{n \in \mathbb{N}} \|u_n\|_{L^{\infty}(I)} \le M.$$

For $\varphi \in C_c^{\infty}(I)$ we then have

$$\int_{I} (G \circ u_n)(x)\varphi'(x)dx = -\int_{I} (G' \circ u_n)(x)u'_n(x)\varphi(x)dx.$$
(\circ)

Now, on the one hand we have

$$|(G \circ u_n)(x)\varphi'(x)| \le \left(\sup_{t \in [-M,M]} |G(t)|\right)|\varphi'(x)| \quad \forall x \in I,$$

and so the expression on the right-hand side is bounded in x uniformly in n and pointwise convergent.

On the other hand we have $\forall x \in I$

$$\begin{aligned} |(G' \circ u_n)(x)u'_n(x)\varphi(x)| &\leq \Big(\sup_{t \in [-M,M]} |G'(t)|\Big)|\varphi(x)||u'_n(x)| \\ &\leq C|u'(x)| + C|u'_n(x) - u'(x)|, \end{aligned}$$

and so the expression on the right-hand side is, up to an error $o(1) \to 0$, in $L^p(I)$ bounded by the fixed function $C|u'(x)| \in L^p(I)$, uniformly in n.

By the dominated convergence theorem we may then pass to the limit as $n \to \infty$ in (\circ) and deduce that $G \circ u$ has the weak derivative $(G' \circ u)u' \in L^p(I)$, as claimed.

The case $p = \infty$ may now be dealt with as in part (ii) of the proof of Corollary 7.3.2 in the notes.

(ii) Clearly $|u| \in L^p(I)$. We now let G(s) = |s| for $s \in \mathbb{R}$ and consider, for $\varepsilon > 0$, the function

$$G_{\varepsilon}(x) = \sqrt{x^2 + \varepsilon^2}$$

which is $C^1(I)$ and converges uniformly to F as $\varepsilon \to 0$. Moreover we have

$$G'_{\varepsilon}(x) = \frac{x}{\sqrt{x^2 + \varepsilon^2}} \longrightarrow \operatorname{sign}(x) := \begin{cases} 1 & \text{if } x > 0, \\ 0 & \text{if } x = 0, \\ -1 & \text{if } x < 0, \end{cases}$$

pointwise for $x \neq 0$ as $\varepsilon \to 0$. By (i) we then have, for fixed $\varphi \in C_c^{\infty}(I)$,

$$\int_{I} (G_{\varepsilon} \circ u)(x)\varphi'(x)dx = -\int_{I} (G'_{\varepsilon} \circ u)(x)u'(x)\varphi(x)dx.$$
 (*)

Now we notice that

$$(G'_{\varepsilon} \circ u)(x)u'(x)\varphi(x) \longrightarrow \operatorname{sign}(u(x))u'(x)\varphi(x)$$
 a.e. in I

and moreover, for every $\varepsilon > 0$,

$$|(G'_{\varepsilon} \circ u)(x)u'(x)\varphi(x)| \le |u'(x)\varphi(x)|,$$

and the right-hand side is in $L^p(I)$. With the dominated convergence theorem we may then pass to the limit in (\star) and deduce that $|u| \in W^{1,p}(I)$ with weak derivative given by $|u|' = \operatorname{sign}(u)u'$.

Exercise 4.4 (Euler's Paradox) Consider the problem of minimizing the functional

$$\mathscr{F}(u) = \int_0^1 (u'(t)^2 - 1)^2 dt$$

among functions $u: [0,1] \to \mathbb{R}$ subject to the boundary condition:

$$u(0) = u(1) = 0.$$

(i) Prove that every $u \in C^1([0,1])$ solving the above minimization problem must solve the boundary value problem

$$\begin{cases} u'(t)(u'(t)^2 - 1) = c & \text{in } (0, 1), \\ u(0) = u(1) = 0. \end{cases}$$
 (M)

for some $c \in \mathbb{R}$.

- (ii) Find a classical solution to (\bowtie) for a c of your choice. Is it also a solution to the minimization problem for \mathscr{F} ?
- (iii) Find a weak solution $u \in W^{1,\infty}((0,1))$ solving both (\bowtie) and the minimization problem. Is this solution unique?
- (iv) Compute the value

$$\inf \left\{ \mathscr{F}(u) : u \in C^1((0,1)), u(0) = 0 = u(1) \right\}.$$

Is this value attained by some $u \in C^1((0,1))$?

Solution. (i) If u minimizes \mathscr{F} with the given boundary condition, it must be true that

$$\frac{d}{d\varepsilon}\mathscr{F}(u+\varepsilon\varphi)\Big|_{\varepsilon=0} = 0 \quad \text{for every } \varphi \in C_c^{\infty}((0,1)).$$

From

$$\frac{d}{d\varepsilon}\mathscr{F}(u+\varepsilon\varphi) = \int_0^1 \frac{d}{d\varepsilon} \left((u'(t)+\varepsilon\varphi'(t))^2 - 1 \right)^2 dt$$
$$= \int_0^1 4 \left((u'(t)+\varepsilon\varphi'(t))^2 - 1 \right) (u'(t)+\varepsilon\varphi'(t))\varphi'(t) dt$$

we have

$$\left. \frac{d}{d\varepsilon} \mathscr{F}(u+\varepsilon\varphi) \right|_{\varepsilon=0} = 4 \int_0^1 (u'(t)^2 - 1)u'(t)\varphi'(t)dt,$$

and thus (\bowtie) holds by the du Bois-Reymond lemma.

(ii) Perhaps the easiest choice is c = 0 so that a C^1 solution (\bowtie) is $u \equiv 0$. It is not a solution to the minimization problem: since $\mathscr{F}(0) = 1$ we may construct explicitly another function u with $\mathscr{F}(u) < 1$ (just pick one of the u_n 's constructed in (iv)).

No matter what choice is made, it is not a solution to the minimization problem; we shall prove in (iv) that there is no solution of class C^1 to the problem.

(iii) Inspecting \mathscr{F} we infer that, for any $u \in W^{1,\infty}((0,1))$, $\mathcal{F}(u) \ge 0$ and $\mathcal{F}(u) = 0$ if and only if |u'(t)| = 1 a.e. A simple choice falls then upon

To see that u is actually a weak solution of (\bowtie) , namely that

$$\int_0^1 u'(t)(u'(t)^2 - 1)\varphi'(t)dt = 0 \quad \forall \varphi \in C_c^{\infty}((0, 1)),$$

we notice that the weak derivative of u is

$$u'(t) = \begin{cases} 1 & \text{for } t \in (0, 1/2), \\ -1 & \text{for } t \in (1/2, 1), \end{cases}$$

and thus, for every $\varphi \in C^\infty_c((0,1))$

$$\int_{0}^{1} u'(t)(u'(t)^{2} - 1)\varphi'(t)dt$$

= $\int_{0}^{1/2} u'(t)(u'(t)^{2} - 1)\varphi'(t)dt + \int_{1/2}^{1} u'(t)(u'(t)^{2} - 1)\varphi'(t)dt$
= 0,

since both integrals vanish. Hence (\bowtie) is satisfied by the du Bois-Reymond lemma.

The choice of u is not unique: we can for instance modify u by adding more spikes, always keeping the slope equal to ± 1 , as indicated in the Figure 1.

Figure 1: Infinitely many minimizers.

The process of verifying that every piecewise linear function above is also a weak solution to (\bowtie) is analogous to that for u. The possible choices are infinite.

(iv) We prove that

$$\inf\left\{\mathscr{F}(u): u \in C^1((0,1)), u(0) = 0 = u(1)\right\} = 0$$

by constructing a sequence $(u_n)_n \subset C^1([0,1])$ with zero boundary value so that $\mathscr{F}(u_n) \to 0$ as $n \to \infty$. For $n \ge 4$, we define

$$u_n(t) = \begin{cases} t & \text{for } t \in [0, 1/2 - 1/n], \\ f_n(t) & \text{for } t \in [1/2 - 1/n, 1/2 + 1/n], \\ 1/2 - t & \text{for } t \in [1/2 + 1/n, 1], \end{cases}$$

where $f_n(t)$ is the parabola passing through the points (1/2 - 1/n, 1/2 - 1/n)(1/2 + 1/n, 1/2 - 1/n) and so that u_n is of class C^1 , as shown in Figure 2 (one may even improve the construction so that the u_n 's are smooth). Then for this sequence one has

$$\mathscr{F}(u_n) = o(1) \quad \text{as } n \to \infty.$$

Figure 2: Construction of u_n .

However, no $u \in C^1([0,1])$ with u(0) = 0 = u(1) attains the minimum. If this were true, by the computation above it had to be $\mathscr{F}(u) = 0$. However, this can happen if and only if $|u'(t)| \equiv 1$. On the other hand by Rolle's theorem there also exists $\xi \in (0,1)$ where $u'(\xi) = 0$, contradiction.

Hints to Exercises.

- **4.1** For (i), use the Riesz representation theorem. For (iii), construct first directly a function satisfying the boundary conditions and then resort to (i)-(ii).
- 4.2 Apply Riesz to a suitable Hilbert space, and argue similarly as in 4.1.
- **4.3** Argue by approximation on u for (i) and on $x \mapsto |x|$ for (ii).
- **4.4** For (ii), notice that $\mathscr{F}(u) \geq 0$, and $\mathscr{F}(u) = 0$ if and only if...