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Exercise 4.1 Let I := ]a, b[ for −∞ < a < b < ∞. Given f ∈ C0(I), consider the
boundary value problem

−v′′ + v = f in I,
v(a) = 0,
v(b) = 0,

(∗)

(i) Show that (∗) has a weak solution u ∈ H1
0 (I), that is, satisfying∫

I
u′ϕ′ dx+

∫
I
uϕ dx =

∫
I
fϕ dx

for every ϕ ∈ H1
0 (I), and that it is unique.

(ii) Prove that the weak solution u from (i) is in fact a classical solution u ∈ C2(I).

(iii) Prove that the boundary-value problem
−v′′ + v = g in I,

v(a) = α,

v(b) = β,

where α, β ∈ R and g ∈ C0(I) has unique classical solution v ∈ C2(I).

Solution. (i) Recall that the space H1
0 (I) is a closed subspace of the Hilbert space

H1(I) and thus is itself Hilbert.

Given f ∈ C0(I), the map

`f : H1
0 (I)→ R, `f (ϕ) :=

∫
I
f(x)ϕ(x) dx

is a linear, continuous functional, with

|`f (ϕ)| ≤ ‖f‖L2‖ϕ‖L2 ≤ ‖f‖L2‖ϕ‖H1 .

By the Riesz representation Theorem, there exists a unique u ∈ H1
0 (I) satisfying∫

I
fϕ dx =: `f (ϕ) = (u, ϕ)H1 =

∫
I
u′ϕ′ dx+

∫
I
uϕ dx

for every ϕ ∈ H1
0 (I).
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(ii) Let u ∈ H1
0 (I) be the weak solution to the equation −u′′ + u = f in I found in

part (i). We have in particular

∀ϕ ∈ C∞c (I) : −
∫

I
u′ϕ′ dx =

∫
I
(u− f)ϕdx.

Hence, the function u′ ∈ L2(I) has the weak derivative (u− f) ∈ L2(I) and we
conclude u′ ∈ H1(I). Therefore, u′ has a continuous representative satisfying

u′(x) = u′(a) +
∫ x

a
(u− f)(t) dt. (1)

Since also f ∈ C0(I), the right hand side is then in C1(I) and this implies
u ∈ C2(I).

(iii) We let v0 ∈ C∞(I) be given by

v0(x) = α + x− a
b− a

(β − α).

and let f = g− v0 ∈ C0(I). For this f we let u ∈ C2(I) be the solution obtained
in (ii). Then v := u+ v0 ∈ C2(I) solves the problem, since

−v′′ + v = −u′′ − v′′0 + u+ v0 = −u′′ + u+ v0 = f + v0 = g,

v(a) = u(a) + u0(a) = u0(a) = α,

v(b) = u(b) + u0(b) = u0(b) = β.

To prove uniqueness, let ṽ ∈ C2(I) be another solution to the boundary value
problem. Then the function u := v − ṽ ∈ C2(I) satisfies −u′′ + u = 0 with
u(a) = 0 = u(b), so (for instance) with integration by parts we see∫

I
u2 dx =

∫
I
u′′u dx = −

∫
I
|u′|2 dx ≤ 0

which implies u ≡ 0 and hence ṽ ≡ v.

Exercise 4.2 Let I := ]a, b[ for −∞ < a < b <∞. Let g ∈ C1(I) and h, f ∈ C0(I).
Assume that g(x) ≥ λ > 0 and h(x) ≥ 0 for every x ∈ I and consider the boundary
value problem

−(g u′)′ + hu = f in I,
u(a) = 0,
u(b) = 0.

(†)
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(i) Apply the Riesz representation theorem in a suitable Hilbert space to prove that
(†) has a unique weak solution u ∈ H1

0 (I).

(ii) Prove that the weak solution u from (i) is in fact a classical solution u ∈ C2(I).

Solution. (i) Define the new scalar product

〈u, v〉 :=
∫

I
(g u′v′ + huv) dx

for all u, v ∈ H1
0 (I). By assumption,

〈u, u〉 =
∫

I
(g |u′|2 + h |u|2) dx ≥ λ

∫
I
|u′|2 dx

for any u ∈ H1
0 (I). Moreover, using Poincaré’s inequality,

〈u, u〉 ≤ ‖g‖C0

∫
I
|u′|2 dx+ ‖h‖C0

∫
I
|u|2 dx

≤
(
‖g‖C0 + (b− a)2‖h‖C0

) ∫
I
|u′|2 dx.

Hence, 〈·, ·〉 is equivalent to the standard scalar product (u, v)H1
0
on H1

0 (I), and
in particular (H1

0 (I), 〈·, ·〉) is Hilbert. Given f ∈ C0(I), the map

`f : H1
0 (I)→ R, `f (ϕ) :=

∫
I
f(x)ϕ(x) dx

is a linear, continuous functional:

|`f (ϕ)| ≤ ‖f‖L2‖ϕ‖L2 ≤ (b− a)‖f‖L2‖ϕ‖H1
0
.

By the Riesz representation Theorem, there exists a unique u ∈ H1
0 (I) satisfying∫

I
fϕ dx =

∫
I
g u′ϕ′ + huϕdx

for every ϕ ∈ H1
0 (I). which is equivalent to being a weak solution of the equation

(†), i.e.

−
∫

I
gu′ϕ′ dx =

∫
I
(hu− f)ϕdx.

for every ϕ ∈ H1
0 (I). Hence, the function gu′ has the weak derivative (hu −

f) ∈ L2(I) and we conclude gu′ ∈ H1(I). Therefore, gu′ has a continuous
representative satisfying

(gu′)(x) = (gu′)(a) +
∫ x

a
(hu− f)(t) dt.

Since h, f ∈ C0(I), the right-hand side is in C1(I). Finally, gu′ ∈ C1(I) and
0 < λ ≤ g ∈ C1(I) imply u′ ∈ C1(I). Hence, u ∈ C2(I) as claimed.
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Exercise 4.3 Let 1 ≤ p ≤ ∞, I =]a, b[ for −∞ < a < b <∞ and u ∈ W 1,p(I).

(i) Let G ∈ C1(R). Prove that G ◦ u is in W 1,p(I) and that the chain rule holds for
weak derivatives:

(G ◦ u)′ = (G′ ◦ u)u′.

(ii) Prove that |u| ∈ W 1,p(I) and compute its weak derivative.

Solution. (i) Assume first p <∞. From the bound

‖u‖L∞(I) ≤ C‖u‖W 1,p(I),

we deduce that G ◦ u is also bounded and in particular in Lp(I).

To compute its weak derivative we argue by density. Let (uk)k∈N ⊆ C∞c (R) be a
sequence of smooth functions with uk → u in W 1,p(I); note in particular that,
because of the above inequality, we have that

un → u uniformly on I;

In particular there exists some M > 0 so that

sup
n∈N
‖un‖L∞(I) ≤M.

For ϕ ∈ C∞c (I) we then have∫
I
(G ◦ un)(x)ϕ′(x)dx = −

∫
I
(G′ ◦ un)(x)u′n(x)ϕ(x)dx. (◦)

Now, on the one hand we have

|(G ◦ un)(x)ϕ′(x)| ≤
(

sup
t∈[−M,M ]

|G(t)|
)
|ϕ′(x)| ∀x ∈ I,

and so the expression on the right-hand side is bounded in x uniformly in n and
pointwise convergent.

On the other hand we have ∀x ∈ I

|(G′ ◦ un)(x)u′n(x)ϕ(x)| ≤
(

sup
t∈[−M,M ]

|G′(t)|
)
|ϕ(x)||u′n(x)|

≤ C|u′(x)|+ C|u′n(x)− u′(x)|,

and so the expression on the right-hand side is, up to an error o(1) → 0, in
Lp(I) bounded by the fixed function C|u′(x)| ∈ Lp(I), uniformly in n.
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By the dominated convergence theorem we may then pass to the limit as n→∞
in (◦) and deduce that G ◦ u has the weak derivative (G′ ◦ u)u′ ∈ Lp(I), as
claimed.

The case p =∞ may now be dealt with as in part (ii) of the proof of Corollary
7.3.2 in the notes.

(ii) Clearly |u| ∈ Lp(I). We now let G(s) = |s| for s ∈ R and consider, for ε > 0,
the function

Gε(x) =
√
x2 + ε2

which is C1(I) and converges uniformly to F as ε→ 0. Moreover we have

G′ε(x) = x√
x2 + ε2

−→ sign(x) :=


1 if x > 0,
0 if x = 0,
−1 if x < 0,

pointwise for x 6= 0 as ε→ 0. By (i) we then have, for fixed ϕ ∈ C∞c (I),∫
I
(Gε ◦ u)(x)ϕ′(x)dx = −

∫
I
(G′ε ◦ u)(x)u′(x)ϕ(x)dx. (?)

Now we notice that

(G′ε ◦ u)(x)u′(x)ϕ(x) −→ sign(u(x))u′(x)ϕ(x) a.e. in I

and moreover, for every ε > 0,

|(G′ε ◦ u)(x)u′(x)ϕ(x)| ≤ |u′(x)ϕ(x)|,

and the right-hand side is in Lp(I). With the dominated convergence theorem we
may then pass to the limit in (?) and deduce that |u| ∈ W 1,p(I) with weak derivative
given by |u|′ = sign(u)u′.

Exercise 4.4 (Euler’s Paradox) Consider the problem of minimizing the functional

F (u) =
∫ 1

0
(u′(t)2 − 1)2dt

among functions u : [0, 1]→ R subject to the boundary condition:

u(0) = u(1) = 0.
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(i) Prove that every u ∈ C1([0, 1]) solving the above minimization problem must
solve the boundary value problem{

u′(t)(u′(t)2 − 1) = c in (0, 1),
u(0) = u(1) = 0.

(on)

for some c ∈ R.

(ii) Find a classical solution to (on) for a c of your choice. Is it also a solution to the
minimization problem for F?

(iii) Find a weak solution u ∈ W 1,∞((0, 1)) solving both (on) and the minimization
problem. Is this solution unique?

(iv) Compute the value

inf
{
F (u) : u ∈ C1((0, 1)), u(0) = 0 = u(1)

}
.

Is this value attained by some u ∈ C1((0, 1))?

Solution. (i) If u minimizes F with the given boundary condition, it must be
true that

d

dε
F (u+ εϕ)

∣∣∣∣∣
ε=0

= 0 for every ϕ ∈ C∞c ((0, 1)).

From
d

dε
F (u+ εϕ) =

∫ 1

0

d

dε

(
(u′(t) + εϕ′(t))2 − 1

)2
dt

=
∫ 1

0
4
(
(u′(t) + εϕ′(t))2 − 1

)
(u′(t) + εϕ′(t))ϕ′(t)dt

we have

d

dε
F (u+ εϕ)

∣∣∣∣∣
ε=0

= 4
∫ 1

0
(u′(t)2 − 1)u′(t)ϕ′(t)dt,

and thus (on) holds by the du Bois-Reymond lemma.

(ii) Perhaps the easiest choice is c = 0 so that a C1 solution (on) is u ≡ 0. It is
not a solution to the minimization problem: since F (0) = 1 we may construct
explicitly another function u with F (u) < 1 (just pick one of the un’s constructed
in (iv)).

No matter what choice is made, it is not a solution to the minimization problem;
we shall prove in (iv) that there is no solution of class C1 to the problem.
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(iii) Inspecting F we infer that, for any u ∈ W 1,∞((0, 1)), F(u) ≥ 0 and F(u) = 0
if and only if |u′(t)| = 1 a.e. A simple choice falls then upon

u(t) =

t for t ∈ [0, 1/2],
1/2− t for t ∈ [1/2, 1],

+
1

+1/2

To see that u is actually a weak solution of (on), namely that∫ 1

0
u′(t)(u′(t)2 − 1)ϕ′(t)dt = 0 ∀ϕ ∈ C∞c ((0, 1)),

we notice that the weak derivative of u is

u′(t) =

1 for t ∈ (0, 1/2),
−1 for t ∈ (1/2, 1),

and thus, for every ϕ ∈ C∞c ((0, 1))∫ 1

0
u′(t)(u′(t)2 − 1)ϕ′(t)dt

=
∫ 1/2

0
u′(t)(u′(t)2 − 1)ϕ′(t)dt+

∫ 1

1/2
u′(t)(u′(t)2 − 1)ϕ′(t)dt

= 0,

since both integrals vanish. Hence (on) is satisfied by the du Bois-Reymond
lemma.

The choice of u is not unique: we can for instance modify u by adding more
spikes, always keeping the slope equal to ±1, as indicated in the Figure 1.

+
1

+1/2

+
1

+1/2

+1/4

+
1

+1/2

+1/4
+1/8

Figure 1: Infinitely many minimizers.

The process of verifying that every piecewise linear function above is also a weak
solution to (on) is analogous to that for u. The possible choices are infinite.
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(iv) We prove that

inf
{
F (u) : u ∈ C1((0, 1)), u(0) = 0 = u(1)

}
= 0

by constructing a sequence (un)n ⊂ C1([0, 1]) with zero boundary value so that
F (un)→ 0 as n→∞. For n ≥ 4, we define

un(t) =


t for t ∈ [0, 1/2− 1/n],
fn(t) for t ∈ [1/2− 1/n, 1/2 + 1/n],
1/2− t for t ∈ [1/2 + 1/n, 1],

where fn(t) is the parabola passing through the points (1/2− 1/n, 1/2− 1/n)
(1/2 + 1/n, 1/2− 1/n) and so that un is of class C1, as shown in Figure 2 (one
may even improve the construction so that the un’s are smooth). Then for this
sequence one has

F (un) = o(1) as n→∞.

+
1
2

+
1

+1
2

Figure 2: Construction of un.

However, no u ∈ C1([0, 1]) with u(0) = 0 = u(1) attains the minimum. If this
were true, by the computation above it had to be F (u) = 0. However, this can
happen if and only if |u′(t)| ≡ 1. On the other hand by Rolle’s theorem there
also exists ξ ∈ (0, 1) where u′(ξ) = 0, contradiction.
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Hints to Exercises.

4.1 For (i), use the Riesz representation theorem. For (iii), construct first directly a
function satisfying the boundary conditions and then resort to (i)-(ii).

4.2 Apply Riesz to a suitable Hilbert space, and argue similarly as in 4.1.

4.3 Argue by approximation on u for (i) and on x 7→ |x| for (ii).

4.4 For (ii), notice that F (u) ≥ 0, and F (u) = 0 if and only if...
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