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Exercise 5.1 For p € [1,00], the space of periodic Sobolev functions W) 2((0,2)) is
the subset of functions ¢ € W1P((0,27)) so that

[ @t = [ oty @)

for every smooth function ¢ € C*°([0, 27]) so that *)(0) = ¢*)(27) for every k € N.
A similar definition is given for WEP((0,2m)).
Recall that, for a periodic function ¢ : (0,27) — R, its Fourier coefficients are

1

" or

27 .
o) = o [ @ dz, neN,
0

and its Fourier series is

FS(p)(x) =Y @(n)e™, x€l0,2n].

ne”

Fact: For ¢ € L*((0,27)), FS(p) converges to ¢ in L?-norm.

(i) Prove that p € W12((0,2m)) if and only if

per

%(1 +n%)[@(n)]* < oo,

(ii) Prove Sobolev embedding for periodic functions using only (i) and the “Fact”
above, that is, show that if ¢ € W12((0,27)), then ¢ can be identified with a

per

function in C°[0, 27] so that »(0) = ¢(27) and

lelleoo2my < Cllllwrz(o.2ry)-

(iii) Argue similarly as in (i) and prove functions ¢ € WE2((0,2m)) are exactly those
so that

%(1 +n*)|@(n)* < oco.

Solution. (i) From Parseval’s identity we have

1 N —
||g0||12/V112((0,27r)) = ||90H%2((o,27r)) + ||90/||%2((o,27r)) = %(Z |<P(n)|2 + Z |90'(”)|2 :
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(iii)

Since x — €™ is smooth and periodic, for the Fourier coefficients of ¢’ we have,

integrating by parts

- 1 2 / —inx in —inx
P = o [ e e =T [T paye
2m Jo 2m Jo
and so ¢'(n) = in@(n). Consequently
1 ~
H(:OH%/VL?((O,%T)) = o Y (1+n)|@(n)P,
T nez

and thus ¢ is in W7 if and only if the sum in question is finite.

We prove that the Fourier series of ¢ is uniformly convergent: since it converges
in L? to ¢, by the uniqueness of the limit then the convergence must be also
uniform and so ¢ will be (identified with) a continuous function. By the
Cauchy-Schwarz inequality over 62, we see that, for any N € N,

g( _ )(i L+ ol

<CZ 1+n 16(n)|?

neL

< Cllellwr2(o,2r),

and this implies the uniform convergence of SF(y), in particular

=> " @(n)e™* vz €|0,2n].

nel

Clearly then ¢(0) = ¢(27) and also ||¢]|co < C||e|lwr.2 by the triangle inequality
and the fact that [e™®| = 1.

Similarly as in (i), one has
o®)(n) = (in)"@(n),
hence one sees that the W*2-norm squared of ¢ is equivalent to

Y (A +n+- 4+ 0")@(n)

ne’

and since in turn we can always estimate
(1+n%) < (A 4n?4 - +n) < Cp(1 +n?),

for a suitable constant C} > 0 depending only on k, the thesis follows. m
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Exercise 5.2 Find an open set  C R? and a function v € WH*(Q) which is not
Lipschitz continuous.

Solution. Let Q = (]—1,1[ x |—1,1]) \ ([0, 1] x {0}) and let u: © — R be given by

u(zy, x9) =

0 if -1 <2y <0orxz <0,
ry if xy > 0and x9 > 0.

U
X2

2
x

Then, 2 C R? is open and u is bounded. For any ¢ € C2°(Q)), we have

171 9
/ (9x1 dx__/o (/ xlazdxl)dm
1 r1=1
:/ ((/ 90d$1 — r1p(71, 12) 1_0> dxy
0 0 T1=
1 1
:/ / pdzy dxy,
0o Jo

1/ /19
/ u%d:c——/o (/ :cla;’;dxg) dzq
1 xo=1
= / (0 — z1p(1, $2)‘ 0) dx, = 0,
0 Tp=

where we used that (1,z5), (x1,1) € 09 for any 1,29 € |—1,1[ and (x1,0) € 99 for
x1 > 0 which implies that ¢ vanishes at these points. Hence, the weak derivatives
g—;‘l = Xjoap2 € L>*(€2) and 88—;‘2 =0 € L>(Q) exist and u € W*°(Q). However, since

and

is well-defined for any k£ > 1 and unbounded for £k — oo, we conclude that u is not
Lipschitz continuous.

Remark. There are many more kinds of examples. The one we showed may very much
differ from the one you found. ]

3/8
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Exercise 5.3 (A tent for Rudolf L.) Let Q = {(z1,22) € R? | |z1] < 1, |zo] < 1}.
Let u: Q — R be given by

1—x, ifz;>0and |z <,

( ) 1 + x4, if T <0 and |l’2| < —I,

w(zy, x9) =
b2 1 —x9, ifxy>0and |z1] < o,

1+, ifzy<0and|z| < —xs.

For which exponents 1 < p < oo is u € WHP(Q)?

X1

Solution. The function u: @ — R is given by u(zy, x2) = 1 — max{|z1], |z2|} and it
is bounded in Q. Let x = (z1,x2),y = (y1,y2) € @ be arbitrary; w.lL.o.g. u(y) > u(x).
Then

u(y) — u(z) = max{[z], [22]} — max{[yl, [4a]}

< |z1| — |y1] < |z1 — | if 2] > |22,
|za| — |yo| < |w2 —wo|  if 21| < |22

< |z —y

which implies that v is Lipschitz continuous. Hence u € W1*°(Q). Since Q is bounded,
u e WhHe(Q) Cc Wh?(Q) for any 1 < p < oo. O

Exercise 5.4 Let  C R™ be open. Given 1 < p < oo, let u € WP(Q).

(i) Let uy(z) = max{u(x),0} and u_(xr) = —min{u(x),0}. Prove uj,u_ €
W1P(Q) and show that their weak gradients are given by

Vu(z) for almost all x with u(z) > 0,
Vu,(z) = .

0 for almost all z with u(x) <0,
Vu_(z) = —Vu(xz) for almost all x W%th u(x) <0

0 for almost all = with u(z) >0

(i) Given u,v € W'?(Q) and w(z) = max{u(x),v(x)} show that w € Wr(Q).

(iii) Prove that Vu(z) = 0 for almost all z € 2 with u(z) = 0, which means that if
Z={xeQ|u(z)=0} and W ={z € Q| Vu(z) = 0 classically}, then Z \ W
has Lebesgue measure zero.

(iv) Let A € R. Conclude that Vu(xz) = 0 for almost all z € Q with u(z) = .

4/8
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Solution. Let Q C R™ be open. Given 1 < p < oo, let u € WhP(Q).

(i)

(i)

(iii)

In order to prove u, € WHP(Q), we consider the function G, € C*(R) and its
derivative G. given by

Vy?+e?—e  fory >0,
Ge(y) =

0 for y < 0,

Ge

Y >
G;<y>:{m fory =0,

0 for y <0

for some € > 0. Then, G.(0) = 0 and |G.| < 1. By the chain rule, G. ou €
Whr(Q) with weak gradient V(G. o u) = (GLou)Vu € LP(Q). Since |G o u| <
|u| € LP(§2) and since (Geou)(z) — uy(x) as € — 0 pointwise almost everywhere,
Lebesgue’s dominated convergence theorem implies that ||uy —(G-ou)| rp) — 0
as € — 0. Similarly, |V(G: o u)| = |GL o u||Vu| < |Vu| € LP(Q2). If u(x) > 0,
then GL(u(z)) — 1 as ¢ — 0. Otherwise, GL(u(z)) = 0. Therefore, we have
pointwise convergence

Vu(z) for almost all x with u(x) > 0,

v Gs e—0, —
(G- ou)(x) g(x) {() for almost all x with u(z) <0

and after application of the dominated convergence theorem, |g — V(G. o
u)||r) — 0 as e — 0. Since the space WP(€2) is complete, and since (G, o u)
converges (for a sequence € — 0) in W'P(Q), we conclude u, € WH?(Q) with
weak gradient Vu, = g. The proof of u_ € W'P(Q) is identical after replacing
Ge(y) with Ge(~y).

Let u,v € WHP(Q). Then, (u —v), € WHP(Q) by part i. Since
w(x) := max{u(z),v(z)} = max{u(z) — v(z),0} + v(x),
we have w = (u —v); +v € WHP(Q).
Any u € WP(Q) satisfies u = uy — u_ with weak gradient Vu = Vu, — Vu_.
Part (i) implies in particular, that Vu,(z) = 0 and Vu_(z) = 0 for almost

all x € Q with u(z) = 0. Consequently, Vu(z) = 0 for almost all x € Q with
u(z) = 0.

Given A € R we define uy(z) = u(x) — A. However, unless 2 is bounded, we
only have uy € W,'?(Q). Let r > 1. Then, uy, € W'"(Q N B,). By part (iii),
Vu(z) = Vuy(z) = 0 for almost all x € QN B, with uy(x) = 0. Since a countable
union of sets of measure zero still has measure zero and since 2 = J,en(€2 N B,)
we conclude that Vu(z) = 0 for almost all z € 2 with u(z) = \. O

5/8
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Exercise 5.5 Let « > 0. For any > 0 we define
H(A) = mf{zrg | ACJB(x:), 0<m <6, € R”}.
i=1 i=1

The a-dimensional Hausdorff measure of any subset A C R" is defined by
H(A) = i A (A)

Suppose, K C R™ is a compact subset with J#"~%(K) = 0 for some 1 < a < n.
(i) For all 1 < p < «, prove that K has vanishing W'P-capacity.

(ii) Let 1 < p < ¢ < oo and % + é < 1. Let Q C R™ be open and bounded and
ue LI(Q)NCHQ\ K) with |Vu| € LP(Q\ K). Prove that u € WP(Q).

Solution. (i) Let 1 < p < «. Let £ > 0. By definition, there exists a collection of
balls { B, (z;) }ien so that

K c | B, (z), it <e.
i=1 i=1
Since K is compact, we may suppose that the collection is finite: ¢ =1,..., V.
For every i € {1,..., N} there exists a function ¢, € C°(R") satisfying
2
wi =0 mR" \ B3n‘('ri)a wl =1 in BQT‘z‘(xi)7 ’v¢l| = ;
Let ¢(z) := max{¢(z),...,¥n(x)}. Then, ¢ € WP as shown in Exercise 5.4
Moreover, there exists a constant C' depending only on n and p such that

[ IVopdr < é/ﬁ}

N N
)|Wi\p de <> Cri P <> Orf= < Ce,
=1 =1

3r; (:E’L

where we used r; ? <r;® for p < a and r; < 1. Let 79 := min{ry,...,ry} and
let 0 < pe CX(B,,(0)) with [zn pdz = 1. Then the mollification ¢ 1= p* ¢ €
C>(R™) has the property that for any i € {1,..., N} and all x € B,,(z;)

ola) = [ pw)ole —y)dy = [

- py)o(r —y)dy = / p(y)dy =1,

Bry (0)

as [(x —y) — x| < |z — o)+ |y| < ri+7ro < 2r; for all @ € B, (x;) and all
y € B,,(0). Hence, ¢ = 1 in UY, B,,(z;) D K. Furthermore,

IV@llo@n = [lp* Vollo@ny < llpllor @) IVollo@n) = (VO Lr@ny < (Ce)

3=
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For every k£ € N, let ¢, be the function ¢ constructed above for the choice
e =1 > 0. Then ||V o@®n) — 0 as k — oco. By construction, ¢x(z) — 0 for
every x € R"\ K. In particular, ¢x(z) — 0 for almost every z € R"™ because
A" (K) = 0 implies that K has vanishing Lebesgue measure. Since ¢ = 1
in a neighbourhood of K, we have shown that K has vanishing WP-capacity.

(ii) Let 1 < p < g < o0 and % + é < 1. Let © C R™ be open and bounded and
uwe L1YQ)NCHQ\ K) with |Vu| € LP(2\ K). Let 1 < s < oo such that
é + 1 =1. Then, s < a which by i implies capy1..(K) = 0. By Satz 8.1.1,
u € WHP(Q) as claimed.

O
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Hints to Exercises.

5.1 Use Parseval’s identity: |32, ane™||[7200n = 37 2on |@n|* and the Cauchy-

Schwarz inequality in the space of £? sequences.
5.2 The domain must be nonconvex.
5.3 Who is Rudolf L.?
5.4 For (i), consider the function G, o u, where G, € C'(R) is given by

{\/y2—|—€2—5 for y > 0,

G.(y) =
) 0 for y < 0.

5.5 Use that for any r > 0 there exists some ¢ € C'°(Bs,.) satisfying ¢ = 1 in By,

and |V < 2.



