Exercise 5.1 For $p \in [1, \infty]$, the space of *periodic Sobolev functions* $W^{1,p}_{\text{per}}((0, 2\pi))$ is the subset of functions $\varphi \in W^{1,p}((0, 2\pi))$ so that

$$\int_0^{2\pi} \varphi'(x)\psi(x)dx = -\int_0^{2\pi} \varphi(x)\psi'(x)dx$$

for every smooth function $\psi \in C^{\infty}([0, 2\pi])$ so that $\psi^{(k)}(0) = \psi^{(k)}(2\pi)$ for every $k \in \mathbb{N}$. A similar definition is given for $W^{k,p}_{\text{per}}((0, 2\pi))$.

Recall that, for a periodic function $\varphi: (0, 2\pi) \to \mathbb{R}$, its Fourier coefficients are

$$\widehat{\varphi}(n) = \frac{1}{2\pi} \int_0^{2\pi} \varphi(x) \mathrm{e}^{-inx} dx, \quad n \in \mathbb{N},$$

and its Fourier series is

$$FS(\varphi)(x) = \sum_{n \in \mathbb{Z}} \widehat{\varphi}(n) e^{inx}, \quad x \in [0, 2\pi].$$

Fact: For $\varphi \in L^2((0, 2\pi))$, $FS(\varphi)$ converges to φ in L^2 -norm.

(i) Prove that $\varphi \in W^{1,2}_{\text{per}}((0,2\pi))$ if and only if

$$\sum_{n\in\mathbb{Z}}(1+n^2)|\widehat{\varphi}(n)|^2<\infty,$$

(ii) Prove Sobolev embedding for periodic functions using only (i) and the "Fact" above, that is, show that if $\varphi \in W^{1,2}_{\rm per}((0,2\pi))$, then φ can be identified with a function in $C^0[0,2\pi]$ so that $\varphi(0) = \varphi(2\pi)$ and

$$\|\varphi\|_{C^0((0,2\pi))} \le C \|\varphi\|_{W^{1,2}((0,2\pi))}.$$

(iii) Argue similarly as in (i) and prove functions $\varphi \in W^{k,2}_{\text{per}}((0,2\pi))$ are exactly those so that

$$\sum_{n\in\mathbb{Z}} (1+n^{2k}) |\widehat{\varphi}(n)|^2 < \infty.$$

Solution. (i) From Parseval's identity we have

$$\|\varphi\|_{W^{1,2}((0,2\pi))}^2 = \|\varphi\|_{L^2((0,2\pi))}^2 + \|\varphi'\|_{L^2((0,2\pi))}^2 = \frac{1}{2\pi} \left(\sum_{n \in \mathbb{Z}} |\widehat{\varphi}(n)|^2 + \sum_{n \in \mathbb{Z}} |\widehat{\varphi'}(n)|^2\right)$$

Since $x \mapsto e^{inx}$ is smooth and periodic, for the Fourier coefficients of φ' we have, integrating by parts

$$\widehat{\varphi'}(n) = \frac{1}{2\pi} \int_0^{2\pi} \varphi'(x) \mathrm{e}^{-inx} dx = \frac{in}{2\pi} \int_0^{2\pi} \varphi(x) \mathrm{e}^{-inx} dx,$$

and so $\widehat{\varphi'}(n) = in\widehat{\varphi}(n)$. Consequently

$$\|\varphi\|_{W^{1,2}((0,2\pi))}^2 = \frac{1}{2\pi} \sum_{n \in \mathbb{Z}} (1+n^2) |\widehat{\varphi}(n)|^2,$$

and thus φ is in $W_{\rm per}^{1,2}$ if and only if the sum in question is finite.

(ii) We prove that the Fourier series of φ is uniformly convergent: since it converges in L^2 to φ , by the uniqueness of the limit then the convergence must be also uniform and so φ will be (identified with) a continuous function. By the Cauchy-Schwarz inequality over ℓ^2 , we see that, for any $N \in \mathbb{N}$,

$$\begin{split} \sum_{n=-N}^{N} |\widehat{\varphi}(n)| &= \sum_{n=-N}^{N} \frac{\sqrt{1+n^2}}{\sqrt{1+n^2}} |\widehat{\varphi}(n)| \\ &\leq \left(\sum_{n=-N}^{N} \frac{1}{1+n^2}\right) \left(\sum_{n=-N}^{N} (1+n^2) |\widehat{\varphi}(n)|^2\right) \\ &\leq C \sum_{n \in \mathbb{Z}} (1+n^2) |\widehat{\varphi}(n)|^2 \\ &\leq C \|\varphi\|_{W^{1,2}((0,2\pi))}, \end{split}$$

and this implies the uniform convergence of $SF(\varphi)$, in particular

$$\varphi(x) = \sum_{n \in \mathbb{Z}} \widehat{\varphi}(n) e^{inx} \quad \forall x \in [0, 2\pi].$$

Clearly then $\varphi(0) = \varphi(2\pi)$ and also $\|\varphi\|_{C^0} \leq C \|\varphi\|_{W^{1,2}}$ by the triangle inequality and the fact that $|e^{inx}| \equiv 1$.

(iii) Similarly as in (i), one has

$$\widehat{\varphi^{(k)}}(n) = (in)^k \widehat{\varphi}(n),$$

hence one sees that the $W^{k,2}$ -norm squared of φ is equivalent to

$$\sum_{n\in\mathbb{Z}}(1+n^2+\cdots+n^{2k})|\widehat{\varphi}(n)|^2,$$

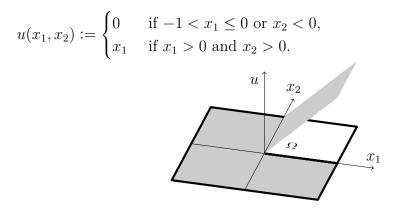
and since in turn we can always estimate

$$(1+n^{2k}) \le (1+n^2+\dots+n^{2k}) \le C_k(1+n^{2k}),$$

for a suitable constant $C_k > 0$ depending only on k, the thesis follows.

Exercise 5.2 Find an open set $\Omega \subset \mathbb{R}^2$ and a function $u \in W^{1,\infty}(\Omega)$ which is not Lipschitz continuous.

Solution. Let $\Omega = (]-1, 1[\times]-1, 1[) \setminus ([0, 1[\times \{0\}) \text{ and let } u \colon \Omega \to \mathbb{R} \text{ be given by}$



Then, $\Omega \subset \mathbb{R}^2$ is open and u is bounded. For any $\varphi \in C_c^{\infty}(\Omega)$, we have

$$-\int_{\Omega} u \frac{\partial \varphi}{\partial x_1} dx = -\int_0^1 \left(\int_0^1 x_1 \frac{\partial \varphi}{\partial x_1} dx_1 \right) dx_2$$
$$= \int_0^1 \left(\left(\int_0^1 \varphi \, dx_1 \right) - x_1 \varphi(x_1, x_2) \Big|_{x_1=0}^{x_1=1} \right) dx_2$$
$$= \int_0^1 \int_0^1 \varphi \, dx_1 \, dx_2,$$

and

$$-\int_{\Omega} u \frac{\partial \varphi}{\partial x_2} dx = -\int_0^1 \left(\int_0^1 x_1 \frac{\partial \varphi}{\partial x_2} dx_2 \right) dx_1$$
$$= \int_0^1 \left(0 - x_1 \varphi(x_1, x_2) \Big|_{x_2=0}^{x_2=1} \right) dx_1 = 0,$$

where we used that $(1, x_2), (x_1, 1) \in \partial\Omega$ for any $x_1, x_2 \in]-1, 1[$ and $(x_1, 0) \in \partial\Omega$ for $x_1 > 0$ which implies that φ vanishes at these points. Hence, the weak derivatives $\frac{\partial u}{\partial x_1} = \chi_{]0,1[^2} \in L^{\infty}(\Omega)$ and $\frac{\partial u}{\partial x_2} = 0 \in L^{\infty}(\Omega)$ exist and $u \in W^{1,\infty}(\Omega)$. However, since

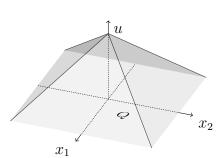
$$\frac{|u(\frac{1}{2}, -\frac{1}{k}) - u(\frac{1}{2}, \frac{1}{k})|}{|(\frac{1}{2}, -\frac{1}{k}) - (\frac{1}{2}, \frac{1}{k})|} = \frac{\frac{1}{2}}{\frac{2}{k}} = \frac{k}{4}$$

is well-defined for any k > 1 and unbounded for $k \to \infty$, we conclude that u is not Lipschitz continuous.

Remark. There are many more kinds of examples. The one we showed may very much differ from the one you found. \Box

Exercise 5.3 (A tent for Rudolf L.) Let $Q = \{(x_1, x_2) \in \mathbb{R}^2 \mid |x_1| < 1, |x_2| < 1\}$. Let $u: Q \to \mathbb{R}$ be given by

$$u(x_1, x_2) = \begin{cases} 1 - x_1, & \text{if } x_1 > 0 \text{ and } |x_2| < x_1, \\ 1 + x_1, & \text{if } x_1 < 0 \text{ and } |x_2| < -x_1, \\ 1 - x_2, & \text{if } x_2 > 0 \text{ and } |x_1| < x_2, \\ 1 + x_2, & \text{if } x_2 < 0 \text{ and } |x_1| < -x_2. \end{cases}$$



For which exponents $1 \le p \le \infty$ is $u \in W^{1,p}(Q)$?

Solution. The function $u: Q \to \mathbb{R}$ is given by $u(x_1, x_2) = 1 - \max\{|x_1|, |x_2|\}$ and it is bounded in Q. Let $x = (x_1, x_2), y = (y_1, y_2) \in Q$ be arbitrary; w.l.o.g. u(y) > u(x). Then

$$u(y) - u(x) = \max\{|x_1|, |x_2|\} - \max\{|y_1|, |y_2|\}$$

$$\leq \begin{cases} |x_1| - |y_1| \le |x_1 - y_1| & \text{if } |x_1| \ge |x_2|, \\ |x_2| - |y_2| \le |x_2 - y_2| & \text{if } |x_1| < |x_2| \\ \le |x - y| \end{cases}$$

which implies that u is Lipschitz continuous. Hence $u \in W^{1,\infty}(Q)$. Since Q is bounded, $u \in W^{1,\infty}(Q) \subset W^{1,p}(Q)$ for any $1 \le p \le \infty$. \Box

Exercise 5.4 Let $\Omega \subset \mathbb{R}^n$ be open. Given $1 \leq p < \infty$, let $u \in W^{1,p}(\Omega)$.

(i) Let $u_+(x) = \max\{u(x), 0\}$ and $u_-(x) = -\min\{u(x), 0\}$. Prove $u_+, u_- \in W^{1,p}(\Omega)$ and show that their weak gradients are given by

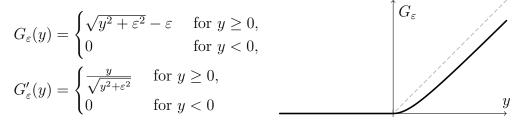
$$\nabla u_{+}(x) = \begin{cases} \nabla u(x) & \text{for almost all } x \text{ with } u(x) > 0, \\ 0 & \text{for almost all } x \text{ with } u(x) \le 0, \end{cases}$$
$$\nabla u_{-}(x) = \begin{cases} -\nabla u(x) & \text{for almost all } x \text{ with } u(x) < 0, \\ 0 & \text{for almost all } x \text{ with } u(x) \ge 0. \end{cases}$$

- (ii) Given $u, v \in W^{1,p}(\Omega)$ and $w(x) = \max\{u(x), v(x)\}$ show that $w \in W^{1,p}(\Omega)$.
- (iii) Prove that $\nabla u(x) = 0$ for almost all $x \in \Omega$ with u(x) = 0, which means that if $Z = \{x \in \Omega \mid u(x) = 0\}$ and $W = \{x \in \Omega \mid \nabla u(x) = 0 \text{ classically}\}$, then $Z \setminus W$ has Lebesgue measure zero.
- (iv) Let $\lambda \in \mathbb{R}$. Conclude that $\nabla u(x) = 0$ for almost all $x \in \Omega$ with $u(x) = \lambda$.

D-MATH	Functional Analysis II	ETH Zürich
Prof. M. Struwe	Exercise Sheet 5	Spring 2020

Solution. Let $\Omega \subset \mathbb{R}^n$ be open. Given $1 \leq p < \infty$, let $u \in W^{1,p}(\Omega)$.

(i) In order to prove $u_+ \in W^{1,p}(\Omega)$, we consider the function $G_{\varepsilon} \in C^1(\mathbb{R})$ and its derivative G'_{ε} given by



for some $\varepsilon > 0$. Then, $G_{\varepsilon}(0) = 0$ and $|G'_{\varepsilon}| < 1$. By the chain rule, $G_{\varepsilon} \circ u \in W^{1,p}(\Omega)$ with weak gradient $\nabla(G_{\varepsilon} \circ u) = (G'_{\varepsilon} \circ u)\nabla u \in L^{p}(\Omega)$. Since $|G_{\varepsilon} \circ u| \leq |u| \in L^{p}(\Omega)$ and since $(G_{\varepsilon} \circ u)(x) \to u_{+}(x)$ as $\varepsilon \to 0$ pointwise almost everywhere, Lebesgue's dominated convergence theorem implies that $||u_{+} - (G_{\varepsilon} \circ u)||_{L^{p}(\Omega)} \to 0$ as $\varepsilon \to 0$. Similarly, $|\nabla(G_{\varepsilon} \circ u)| = |G'_{\varepsilon} \circ u||\nabla u| \leq |\nabla u| \in L^{p}(\Omega)$. If u(x) > 0, then $G'_{\varepsilon}(u(x)) \to 1$ as $\varepsilon \to 0$. Otherwise, $G'_{\varepsilon}(u(x)) = 0$. Therefore, we have pointwise convergence

$$\nabla(G_{\varepsilon} \circ u)(x) \xrightarrow{\varepsilon \to 0} g(x) := \begin{cases} \nabla u(x) & \text{ for almost all } x \text{ with } u(x) > 0, \\ 0 & \text{ for almost all } x \text{ with } u(x) \le 0 \end{cases}$$

and after application of the dominated convergence theorem, $||g - \nabla(G_{\varepsilon} \circ u)||_{L^{p}(\Omega)} \to 0$ as $\varepsilon \to 0$. Since the space $W^{1,p}(\Omega)$ is complete, and since $(G_{\varepsilon} \circ u)$ converges (for a sequence $\varepsilon \to 0$) in $W^{1,p}(\Omega)$, we conclude $u_{+} \in W^{1,p}(\Omega)$ with weak gradient $\nabla u_{+} = g$. The proof of $u_{-} \in W^{1,p}(\Omega)$ is identical after replacing $G_{\varepsilon}(y)$ with $G_{\varepsilon}(-y)$.

(ii) Let $u, v \in W^{1,p}(\Omega)$. Then, $(u-v)_+ \in W^{1,p}(\Omega)$ by part i. Since

$$w(x) := \max\{u(x), v(x)\} = \max\{u(x) - v(x), 0\} + v(x),$$

we have $w = (u - v)_+ + v \in W^{1,p}(\Omega)$.

- (iii) Any $u \in W^{1,p}(\Omega)$ satisfies $u = u_+ u_-$ with weak gradient $\nabla u = \nabla u_+ \nabla u_-$. Part (i) implies in particular, that $\nabla u_+(x) = 0$ and $\nabla u_-(x) = 0$ for almost all $x \in \Omega$ with u(x) = 0. Consequently, $\nabla u(x) = 0$ for almost all $x \in \Omega$ with u(x) = 0.
- (iv) Given $\lambda \in \mathbb{R}$ we define $u_{\lambda}(x) = u(x) \lambda$. However, unless Ω is bounded, we only have $u_{\lambda} \in W^{1,p}_{\text{loc}}(\Omega)$. Let $r \geq 1$. Then, $u_{\lambda} \in W^{1,p}(\Omega \cap B_r)$. By part (iii), $\nabla u(x) = \nabla u_{\lambda}(x) = 0$ for almost all $x \in \Omega \cap B_r$ with $u_{\lambda}(x) = 0$. Since a countable union of sets of measure zero still has measure zero and since $\Omega = \bigcup_{r \in \mathbb{N}} (\Omega \cap B_r)$ we conclude that $\nabla u(x) = 0$ for almost all $x \in \Omega$ with $u(x) = \lambda$.

Exercise 5.5 Let $\alpha \geq 0$. For any $\delta > 0$ we define

$$\mathscr{H}^{\alpha}_{\delta}(A) := \inf \left\{ \sum_{i=1}^{\infty} r_i^{\alpha} \mid A \subset \bigcup_{i=1}^{\infty} B_{r_i}(x_i), \ 0 < r_i < \delta, \ x_i \in \mathbb{R}^n \right\}.$$

The α -dimensional Hausdorff measure of any subset $A \subseteq \mathbb{R}^n$ is defined by

$$\mathscr{H}^{\alpha}(A) := \lim_{\delta \searrow 0} \mathscr{H}^{\alpha}_{\delta}(A)$$

Suppose, $K \subset \mathbb{R}^n$ is a compact subset with $\mathscr{H}^{n-\alpha}(K) = 0$ for some $1 \leq \alpha < n$.

- (i) For all $1 \le p \le \alpha$, prove that K has vanishing $W^{1,p}$ -capacity.
- (ii) Let $1 \leq p \leq q \leq \infty$ and $\frac{1}{q} + \frac{1}{\alpha} \leq 1$. Let $\Omega \subset \mathbb{R}^n$ be open and bounded and $u \in L^q(\Omega) \cap C^1(\Omega \setminus K)$ with $|\nabla u| \in L^p(\Omega \setminus K)$. Prove that $u \in W^{1,p}(\Omega)$.
- **Solution.** (i) Let $1 \le p \le \alpha$. Let $\varepsilon > 0$. By definition, there exists a collection of balls $\{B_{r_i}(x_i)\}_{i\in\mathbb{N}}$ so that

$$K \subset \bigcup_{i=1}^{\infty} B_{r_i}(x_i),$$
 $\sum_{i=1}^{\infty} r_i^{n-\alpha} < \varepsilon.$

Since K is compact, we may suppose that the collection is finite: i = 1, ..., N. For every $i \in \{1, ..., N\}$ there exists a function $\psi_i \in C_c^{\infty}(\mathbb{R}^n)$ satisfying

$$\psi_i = 0$$
 in $\mathbb{R}^n \setminus B_{3r_i}(x_i)$, $\psi_i = 1$ in $B_{2r_i}(x_i)$, $|\nabla \psi_i| \le \frac{2}{r_i}$.

Let $\phi(x) := \max{\{\psi_1(x), \ldots, \psi_N(x)\}}$. Then, $\phi \in W^{1,p}$ as shown in Exercise 5.4 Moreover, there exists a constant C depending only on n and p such that

$$\int_{\mathbb{R}^n} |\nabla \phi|^p \, dx \le \sum_{i=1}^N \int_{B_{3r_i}(x_i)} |\nabla \psi_i|^p \, dx \le \sum_{i=1}^N Cr_i^{n-p} \le \sum_{i=1}^N Cr_i^{n-\alpha} < C\varepsilon,$$

where we used $r_i^{-p} \leq r_i^{-\alpha}$ for $p \leq \alpha$ and $r_i < 1$. Let $r_0 := \min\{r_1, \ldots, r_N\}$ and let $0 \leq \rho \in C_c^{\infty}(B_{r_0}(0))$ with $\int_{\mathbb{R}^n} \rho \, dx = 1$. Then the mollification $\varphi := \rho * \phi \in C_c^{\infty}(\mathbb{R}^n)$ has the property that for any $i \in \{1, \ldots, N\}$ and all $x \in B_{r_i}(x_i)$

$$\varphi(x) = \int_{\mathbb{R}^n} \rho(y)\phi(x-y)\,dy = \int_{B_{r_0}(0)} \rho(y)\phi(x-y)\,dy = \int_{B_{r_0}(0)} \rho(y)\,dy = 1,$$

as $|(x-y) - x_i| \leq |x-x_i| + |y| < r_i + r_0 < 2r_i$ for all $x \in B_{r_i}(x_i)$ and all $y \in B_{r_0}(0)$. Hence, $\varphi = 1$ in $\bigcup_{i=1}^N B_{r_i}(x_i) \supset K$. Furthermore,

$$\|\nabla\varphi\|_{L^p(\mathbb{R}^n)} = \|\rho * \nabla\phi\|_{L^p(\mathbb{R}^n)} \le \|\rho\|_{L^1(\mathbb{R}^n)} \|\nabla\phi\|_{L^p(\mathbb{R}^n)} = \|\nabla\phi\|_{L^p(\mathbb{R}^n)} \le (C\varepsilon)^{\frac{1}{p}}.$$

D-MATH	Functional Analysis II	ETH Zürich
Prof. M. Struwe	Exercise Sheet 5	Spring 2020

For every $k \in \mathbb{N}$, let φ_k be the function φ constructed above for the choice $\varepsilon = \frac{1}{k} > 0$. Then $\|\nabla \varphi_k\|_{L^p(\mathbb{R}^n)} \to 0$ as $k \to \infty$. By construction, $\varphi_k(x) \to 0$ for every $x \in \mathbb{R}^n \setminus K$. In particular, $\varphi_k(x) \to 0$ for almost every $x \in \mathbb{R}^n$ because $\mathscr{H}^{n-\alpha}(K) = 0$ implies that K has vanishing Lebesgue measure. Since $\varphi_k = 1$ in a neighbourhood of K, we have shown that K has vanishing $W^{1,p}$ -capacity.

(ii) Let $1 \leq p \leq q \leq \infty$ and $\frac{1}{q} + \frac{1}{\alpha} \leq 1$. Let $\Omega \subset \mathbb{R}^n$ be open and bounded and $u \in L^q(\Omega) \cap C^1(\Omega \setminus K)$ with $|\nabla u| \in L^p(\Omega \setminus K)$. Let $1 \leq s \leq \infty$ such that $\frac{1}{q} + \frac{1}{s} = 1$. Then, $s \leq \alpha$ which by i implies $\operatorname{cap}_{W^{1,s}}(K) = 0$. By Satz 8.1.1, $u \in W^{1,p}(\Omega)$ as claimed.

Hints to Exercises.

- **5.1** Use Parseval's identity: $\|\sum_n a_n e^{inx}\|_{L^2(0,2\pi)}^2 = \frac{1}{2\pi} \sum_n |a_n|^2$ and the Cauchy-Schwarz inequality in the space of ℓ^2 sequences.
- 5.2 The domain must be nonconvex.
- **5.3** Who is Rudolf L.?
- **5.4** For (i), consider the function $G_{\varepsilon} \circ u$, where $G_{\varepsilon} \in C^1(\mathbb{R})$ is given by

$$G_{\varepsilon}(y) = \begin{cases} \sqrt{y^2 + \varepsilon^2} - \varepsilon & \text{ for } y \ge 0, \\ 0 & \text{ for } y < 0. \end{cases}$$

5.5 Use that for any r > 0 there exists some $\psi \in C_c^{\infty}(B_{3r})$ satisfying $\psi = 1$ in B_{2r} and $|\nabla \psi| \leq \frac{2}{r}$.