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Exercise 5.1 For p ∈ [1,∞], the space of periodic Sobolev functions W 1,p
per((0, 2π)) is

the subset of functions ϕ ∈ W 1,p((0, 2π)) so that
∫ 2π

0
ϕ′(x)ψ(x)dx = −

∫ 2π

0
ϕ(x)ψ′(x)dx

for every smooth function ψ ∈ C∞([0, 2π]) so that ψ(k)(0) = ψ(k)(2π) for every k ∈ N.
A similar definition is given for W k,p

per((0, 2π)).

Recall that, for a periodic function ϕ : (0, 2π)→ R, its Fourier coefficients are

ϕ̂(n) = 1
2π

∫ 2π

0
ϕ(x)e−inxdx, n ∈ N,

and its Fourier series is

FS(ϕ)(x) =
∑
n∈Z

ϕ̂(n)einx, x ∈ [0, 2π].

Fact: For ϕ ∈ L2((0, 2π)), FS(ϕ) converges to ϕ in L2-norm.

(i) Prove that ϕ ∈ W 1,2
per((0, 2π)) if and only if

∑
n∈Z

(1 + n2)|ϕ̂(n)|2 <∞,

(ii) Prove Sobolev embedding for periodic functions using only (i) and the “Fact”
above, that is, show that if ϕ ∈ W 1,2

per((0, 2π)), then ϕ can be identified with a
function in C0[0, 2π] so that ϕ(0) = ϕ(2π) and

‖ϕ‖C0((0,2π)) ≤ C‖ϕ‖W 1,2((0,2π)).

(iii) Argue similarly as in (i) and prove functions ϕ ∈ W k,2
per((0, 2π)) are exactly those

so that∑
n∈Z

(1 + n2k)|ϕ̂(n)|2 <∞.

Solution. (i) From Parseval’s identity we have

‖ϕ‖2
W 1,2((0,2π)) = ‖ϕ‖2

L2((0,2π)) + ‖ϕ′‖2
L2((0,2π)) = 1

2π

(∑
n∈Z
|ϕ̂(n)|2 +

∑
n∈Z
|ϕ̂′(n)|2

)
.
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Since x 7→ einx is smooth and periodic, for the Fourier coefficients of ϕ′ we have,
integrating by parts

ϕ̂′(n) = 1
2π

∫ 2π

0
ϕ′(x)e−inxdx = in

2π

∫ 2π

0
ϕ(x)e−inxdx,

and so ϕ̂′(n) = inϕ̂(n). Consequently

‖ϕ‖2
W 1,2((0,2π)) = 1

2π
∑
n∈Z

(1 + n2)|ϕ̂(n)|2,

and thus ϕ is in W 1,2
per if and only if the sum in question is finite.

(ii) We prove that the Fourier series of ϕ is uniformly convergent: since it converges
in L2 to ϕ, by the uniqueness of the limit then the convergence must be also
uniform and so ϕ will be (identified with) a continuous function. By the
Cauchy-Schwarz inequality over `2, we see that, for any N ∈ N,

N∑
n=−N

|ϕ̂(n)| =
N∑

n=−N

√
1 + n2
√

1 + n2
|ϕ̂(n)|

≤
(

N∑
n=−N

1
1 + n2

)(
N∑

n=−N
(1 + n2)|ϕ̂(n)|2

)
≤ C

∑
n∈Z

(1 + n2)|ϕ̂(n)|2

≤ C‖ϕ‖W 1,2((0,2π)),

and this implies the uniform convergence of SF (ϕ), in particular

ϕ(x) =
∑
n∈Z

ϕ̂(n)einx ∀x ∈ [0, 2π].

Clearly then ϕ(0) = ϕ(2π) and also ‖ϕ‖C0 ≤ C‖ϕ‖W 1,2 by the triangle inequality
and the fact that |einx| ≡ 1.

(iii) Similarly as in (i), one has

ϕ̂(k)(n) = (in)kϕ̂(n),

hence one sees that the W k,2-norm squared of ϕ is equivalent to∑
n∈Z

(1 + n2 + · · ·+ n2k)|ϕ̂(n)|2,

and since in turn we can always estimate

(1 + n2k) ≤ (1 + n2 + · · ·+ n2k) ≤ Ck(1 + n2k),

for a suitable constant Ck > 0 depending only on k, the thesis follows.
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Exercise 5.2 Find an open set Ω ⊂ R2 and a function u ∈ W 1,∞(Ω) which is not
Lipschitz continuous.

Solution. Let Ω = (]−1, 1[× ]−1, 1[) \ ([0, 1[× {0}) and let u : Ω→ R be given by

u(x1, x2) :=

0 if −1 < x1 ≤ 0 or x2 < 0,
x1 if x1 > 0 and x2 > 0.

x1

x2
u

Ω

Then, Ω ⊂ R2 is open and u is bounded. For any ϕ ∈ C∞c (Ω), we have

−
∫

Ω
u
∂ϕ

∂x1
dx = −

∫ 1

0

(∫ 1

0
x1
∂ϕ

∂x1
dx1

)
dx2

=
∫ 1

0

((∫ 1

0
ϕdx1

)
− x1ϕ(x1, x2)

∣∣∣x1=1

x1=0

)
dx2

=
∫ 1

0

∫ 1

0
ϕdx1 dx2,

and

−
∫

Ω
u
∂ϕ

∂x2
dx = −

∫ 1

0

(∫ 1

0
x1
∂ϕ

∂x2
dx2

)
dx1

=
∫ 1

0

(
0− x1ϕ(x1, x2)

∣∣∣x2=1

x2=0

)
dx1 = 0,

where we used that (1, x2), (x1, 1) ∈ ∂Ω for any x1, x2 ∈ ]−1, 1[ and (x1, 0) ∈ ∂Ω for
x1 > 0 which implies that ϕ vanishes at these points. Hence, the weak derivatives
∂u
∂x1

= χ]0,1[2 ∈ L∞(Ω) and ∂u
∂x2

= 0 ∈ L∞(Ω) exist and u ∈ W 1,∞(Ω). However, since

|u(1
2 ,−

1
k
)− u(1

2 ,
1
k
)|

|(1
2 ,−

1
k
)− (1

2 ,
1
k
)| =

1
2
2
k

= k

4

is well-defined for any k > 1 and unbounded for k →∞, we conclude that u is not
Lipschitz continuous.
Remark. There are many more kinds of examples. The one we showed may very much
differ from the one you found.
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Exercise 5.3 (A tent for Rudolf L.) Let Q = {(x1, x2) ∈ R2 | |x1| < 1, |x2| < 1}.
Let u : Q→ R be given by

u(x1, x2) =


1− x1, if x1 > 0 and |x2| < x1,
1 + x1, if x1 < 0 and |x2| < −x1,
1− x2, if x2 > 0 and |x1| < x2,
1 + x2, if x2 < 0 and |x1| < −x2.

u

x1

x2
Q

For which exponents 1 ≤ p ≤ ∞ is u ∈ W 1,p(Q)?

Solution. The function u : Q→ R is given by u(x1, x2) = 1−max{|x1|, |x2|} and it
is bounded in Q. Let x = (x1, x2), y = (y1, y2) ∈ Q be arbitrary; w.l.o.g. u(y) > u(x).
Then

u(y)− u(x) = max{|x1|, |x2|} −max{|y1|, |y2|}

≤

|x1| − |y1| ≤ |x1 − y1| if |x1| ≥ |x2|,
|x2| − |y2| ≤ |x2 − y2| if |x1| < |x2|

≤ |x− y|

which implies that u is Lipschitz continuous. Hence u ∈ W 1,∞(Q). Since Q is bounded,
u ∈ W 1,∞(Q) ⊂ W 1,p(Q) for any 1 ≤ p ≤ ∞.

Exercise 5.4 Let Ω ⊂ Rn be open. Given 1 ≤ p <∞, let u ∈ W 1,p(Ω).

(i) Let u+(x) = max{u(x), 0} and u−(x) = −min{u(x), 0}. Prove u+, u− ∈
W 1,p(Ω) and show that their weak gradients are given by

∇u+(x) =

∇u(x) for almost all x with u(x) > 0,
0 for almost all x with u(x) ≤ 0,

∇u−(x) =

−∇u(x) for almost all x with u(x) < 0,
0 for almost all x with u(x) ≥ 0.

(ii) Given u, v ∈ W 1,p(Ω) and w(x) = max{u(x), v(x)} show that w ∈ W 1,p(Ω).

(iii) Prove that ∇u(x) = 0 for almost all x ∈ Ω with u(x) = 0, which means that if
Z = {x ∈ Ω | u(x) = 0} and W = {x ∈ Ω | ∇u(x) = 0 classically}, then Z \W
has Lebesgue measure zero.

(iv) Let λ ∈ R. Conclude that ∇u(x) = 0 for almost all x ∈ Ω with u(x) = λ.
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Solution. Let Ω ⊂ Rn be open. Given 1 ≤ p <∞, let u ∈ W 1,p(Ω).

(i) In order to prove u+ ∈ W 1,p(Ω), we consider the function Gε ∈ C1(R) and its
derivative G′ε given by

Gε(y) =


√
y2 + ε2 − ε for y ≥ 0,

0 for y < 0,

G′ε(y) =


y√
y2+ε2

for y ≥ 0,

0 for y < 0 y
+

Gε

for some ε > 0. Then, Gε(0) = 0 and |G′ε| < 1. By the chain rule, Gε ◦ u ∈
W 1,p(Ω) with weak gradient ∇(Gε ◦ u) = (G′ε ◦ u)∇u ∈ Lp(Ω). Since |Gε ◦ u| ≤
|u| ∈ Lp(Ω) and since (Gε◦u)(x)→ u+(x) as ε→ 0 pointwise almost everywhere,
Lebesgue’s dominated convergence theorem implies that ‖u+−(Gε◦u)‖Lp(Ω) → 0
as ε → 0. Similarly, |∇(Gε ◦ u)| = |G′ε ◦ u||∇u| ≤ |∇u| ∈ Lp(Ω). If u(x) > 0,
then G′ε(u(x)) → 1 as ε → 0. Otherwise, G′ε(u(x)) = 0. Therefore, we have
pointwise convergence

∇(Gε ◦ u)(x) ε→0−−→ g(x) :=

∇u(x) for almost all x with u(x) > 0,
0 for almost all x with u(x) ≤ 0

and after application of the dominated convergence theorem, ‖g − ∇(Gε ◦
u)‖Lp(Ω) → 0 as ε→ 0. Since the space W 1,p(Ω) is complete, and since (Gε ◦ u)
converges (for a sequence ε→ 0) in W 1,p(Ω), we conclude u+ ∈ W 1,p(Ω) with
weak gradient ∇u+ = g. The proof of u− ∈ W 1,p(Ω) is identical after replacing
Gε(y) with Gε(−y).

(ii) Let u, v ∈ W 1,p(Ω). Then, (u− v)+ ∈ W 1,p(Ω) by part i. Since

w(x) := max{u(x), v(x)} = max{u(x)− v(x), 0}+ v(x),

we have w = (u− v)+ + v ∈ W 1,p(Ω).

(iii) Any u ∈ W 1,p(Ω) satisfies u = u+ − u− with weak gradient ∇u = ∇u+ −∇u−.
Part (i) implies in particular, that ∇u+(x) = 0 and ∇u−(x) = 0 for almost
all x ∈ Ω with u(x) = 0. Consequently, ∇u(x) = 0 for almost all x ∈ Ω with
u(x) = 0.

(iv) Given λ ∈ R we define uλ(x) = u(x) − λ. However, unless Ω is bounded, we
only have uλ ∈ W 1,p

loc (Ω). Let r ≥ 1. Then, uλ ∈ W 1,p(Ω ∩ Br). By part (iii),
∇u(x) = ∇uλ(x) = 0 for almost all x ∈ Ω∩Br with uλ(x) = 0. Since a countable
union of sets of measure zero still has measure zero and since Ω = ⋃

r∈N(Ω ∩Br)
we conclude that ∇u(x) = 0 for almost all x ∈ Ω with u(x) = λ.
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Exercise 5.5 Let α ≥ 0. For any δ > 0 we define

H α
δ (A) := inf

{ ∞∑
i=1

rαi | A ⊂
∞⋃
i=1

Bri
(xi), 0 < ri < δ, xi ∈ Rn

}
.

The α-dimensional Hausdorff measure of any subset A ⊆ Rn is defined by

H α(A) := lim
δ↘0

H α
δ (A)

Suppose, K ⊂ Rn is a compact subset with H n−α(K) = 0 for some 1 ≤ α < n.

(i) For all 1 ≤ p ≤ α, prove that K has vanishing W 1,p-capacity.

(ii) Let 1 ≤ p ≤ q ≤ ∞ and 1
q

+ 1
α
≤ 1. Let Ω ⊂ Rn be open and bounded and

u ∈ Lq(Ω) ∩ C1(Ω \K) with |∇u| ∈ Lp(Ω \K). Prove that u ∈ W 1,p(Ω).

Solution. (i) Let 1 ≤ p ≤ α. Let ε > 0. By definition, there exists a collection of
balls {Bri

(xi)}i∈N so that

K ⊂
∞⋃
i=1

Bri
(xi),

∞∑
i=1

rn−αi < ε.

Since K is compact, we may suppose that the collection is finite: i = 1, . . . , N .
For every i ∈ {1, . . . , N} there exists a function ψi ∈ C∞c (Rn) satisfying

ψi = 0 in Rn \B3ri
(xi), ψi = 1 in B2ri

(xi), |∇ψi| ≤
2
ri
.

Let φ(x) := max{ψ1(x), . . . , ψN(x)}. Then, φ ∈ W 1,p as shown in Exercise 5.4
Moreover, there exists a constant C depending only on n and p such that

∫
Rn
|∇φ|p dx ≤

N∑
i=1

∫
B3ri

(xi)
|∇ψi|p dx ≤

N∑
i=1

Crn−pi ≤
N∑
i=1

Crn−αi < Cε,

where we used r−pi ≤ r−αi for p ≤ α and ri < 1. Let r0 := min{r1, . . . , rN} and
let 0 ≤ ρ ∈ C∞c (Br0(0)) with

∫
Rn ρ dx = 1. Then the mollification ϕ := ρ ∗ φ ∈

C∞c (Rn) has the property that for any i ∈ {1, . . . , N} and all x ∈ Bri
(xi)

ϕ(x) =
∫
Rn
ρ(y)φ(x− y) dy =

∫
Br0 (0)

ρ(y)φ(x− y) dy =
∫
Br0 (0)

ρ(y) dy = 1,

as |(x − y) − xi| ≤ |x − xi| + |y| < ri + r0 < 2ri for all x ∈ Bri
(xi) and all

y ∈ Br0(0). Hence, ϕ = 1 in ⋃Ni=1Bri
(xi) ⊃ K. Furthermore,

‖∇ϕ‖Lp(Rn) = ‖ρ ∗ ∇φ‖Lp(Rn) ≤ ‖ρ‖L1(Rn)‖∇φ‖Lp(Rn) = ‖∇φ‖Lp(Rn) ≤ (Cε)
1
p .
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For every k ∈ N, let ϕk be the function ϕ constructed above for the choice
ε = 1

k
> 0. Then ‖∇ϕk‖Lp(Rn) → 0 as k →∞. By construction, ϕk(x)→ 0 for

every x ∈ Rn \K. In particular, ϕk(x) → 0 for almost every x ∈ Rn because
H n−α(K) = 0 implies that K has vanishing Lebesgue measure. Since ϕk = 1
in a neighbourhood of K, we have shown that K has vanishing W 1,p-capacity.

(ii) Let 1 ≤ p ≤ q ≤ ∞ and 1
q

+ 1
α
≤ 1. Let Ω ⊂ Rn be open and bounded and

u ∈ Lq(Ω) ∩ C1(Ω \ K) with |∇u| ∈ Lp(Ω \ K). Let 1 ≤ s ≤ ∞ such that
1
q

+ 1
s

= 1. Then, s ≤ α which by i implies capW 1,s(K) = 0. By Satz 8.1.1,
u ∈ W 1,p(Ω) as claimed.
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Hints to Exercises.

5.1 Use Parseval’s identity: ‖∑n aneinx‖2
L2(0,2π) = 1

2π
∑
n |an|2 and the Cauchy-

Schwarz inequality in the space of `2 sequences.

5.2 The domain must be nonconvex.

5.3 Who is Rudolf L.?

5.4 For (i), consider the function Gε ◦ u, where Gε ∈ C1(R) is given by

Gε(y) =


√
y2 + ε2 − ε for y ≥ 0,

0 for y < 0.

5.5 Use that for any r > 0 there exists some ψ ∈ C∞c (B3r) satisfying ψ = 1 in B2r
and |∇ψ| ≤ 2

r
.
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