
d-math
Prof. M. Struwe

Functional Analysis II
Exercise Sheet 6

ETH Zürich
Spring 2020

Exercise 6.1 Let Ω ⊂ Rn be open and bounded with boundary ∂Ω of class C1. Let
1 ≤ p <∞. Prove that there does not exist a continuous linear operator

T : Lp(Ω)→ Lp(∂Ω)

satisfying Tu = u|∂Ω for all u ∈ C0(Ω).

Solution. We argue by contradiction. Given k ∈ N, let uk : Ω→ R be given by

uk(x) =

1− k dist(x, ∂Ω), if dist(x, ∂Ω) ≤ 1
k
,

0 otherwise.

Then, uk ∈ C0(Ω) and uk|∂Ω ≡ 1. Moreover, uk(x)→ 0 as k →∞ for almost every
x ∈ Ω and |uk| ≤ 1 ∈ Lp(Ω) for every k ∈ N. Since 1 ≤ p < ∞, the dominated
convergence theorem implies ‖uk‖Lp(Ω) → 0 as k →∞. But ‖Tuk‖Lp(∂Ω) = ‖1‖Lp(∂Ω)
does not converge to zero which contradicts continuity of T .

Exercise 6.2 Let Ω := ]0, 1[× ]0, 1[ ⊂ R2. Given 1 ≤ p ≤ ∞, let u ∈ W 1,p(Ω).

(i) Prove that for almost every x2 ∈ ]0, 1[ the function g(x1) = u(x1, x2) is well-
defined and in W 1,p(]0, 1[) with weak derivative

g′ = ∂u

∂x1
(·, x2) ∈ Lp(]0, 1[).

(ii) Suppose the weak derivatives ∂u
∂x1

and ∂u
∂x2

vanish almost everyhwere in Ω. Using
part (i), prove that u is constant (i.e. has a constant representative).

(iii) Suppose that v ∈ Lp(Ω) is so that, at almost every x ∈ Ω the partial derivatives
∂v
∂x1
, ∂v
∂x2

exist classically and ∂v
∂x1

(x) = ∂v
∂x2

(x) = 0. Is it still true that v is
constant?

Solution. (i) In the case 1 ≤ p < ∞ we have |u|p ∈ L1(Ω) by assumption and
Fubini’s theorem implies that the map x1 7→ |u(x1, x2)|p is in L1(]0, 1[) for
almost every x2 ∈ ]0, 1[. Hence, g := u(·, x2) ∈ Lp(]0, 1[) and analogously,
f := ∂u

∂x1
(·, x2) ∈ Lp(]0, 1[) for almost every x2 ∈ ]0, 1[.

In the case p = ∞ we know that u ∈ W 1,∞(Ω) has a (globally) Lipschitz
continuous representative because Ω is convex. In particular, g = u(·, x2)
has a Lipschitz continuous representative for almost every x2 ∈ ]0, 1[. Hence,
g ∈ W 1,∞(]0, 1[) for almost every x2 ∈ ]0, 1[.
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It remains to prove that f is actually the weak derivative of g for almost all
x2 ∈ ]0, 1[. Let φ, ψ ∈ C∞c (]0, 1[) and let ϕ(x1, x2) = φ(x1)ψ(x2). Then, since
ϕ ∈ C∞c (Ω),

0 =
∫

Ω

∂u

∂x1
ϕ+ u

∂ϕ

∂x1
dx =

∫ 1

0

(∫ 1

0

∂u

∂x1
φ+ uφ′ dx1

)
ψ dx2.

Since ψ ∈ C∞c (]0, 1[) is arbitrary, Satz 3.4.3 (variational Lemma) applies and
yields

∀φ ∈ C∞c (]0, 1[) ∃Gφ ⊆ ]0, 1[ ∀x2 ∈ Gφ : 0 =
∫ 1

0

∂u

∂x1
φ+ uφ′ dx1

and such that the Lebesgue measure of ]0, 1[ \ Gφ vanishes for any φ. Let
P ⊂ C∞c (]0, 1[) be a countable subset, which is dense in the C1-Topology and
G = ⋂

φ∈P Gφ. Then, since P is countable, the Lebesgue measure of ]0, 1[ \ G
still vanishes and we obtain

∃G ⊆ ]0, 1[ ∀φ ∈ P ∀x2 ∈ G : 0 =
∫ 1

0

∂u

∂x1
φ+ uφ′ dx1. (∗)

Let η ∈ C∞c (]0, 1[) be arbitrary. By density of P we can choose a sequence of
functions φk ∈ P such that ‖φk − η‖C1 → 0 as k →∞ which suffices to pass to
the limit in (∗). Hence, for all x2 ∈ G, i. e. for almost all x2 ∈ ]0, 1[, there holds

∀η ∈ C∞c (]0, 1[) : 0 =
∫ 1

0

∂u

∂x1
η + uη′ dx1 ⇒ −

∫ 1

0
gη′ dx1 =

∫ 1

0
fη dx1

which implies that f is the weak derivative of g for almost all x2 ∈ ]0, 1[ as
claimed.

(ii) If u as weak derivatives ∂u
∂x1

= ∂u
∂x2

= 0, by (i) and Theorem 7.3.1 for almost
every x2 there holds u(·, x2) = C(x2) almost everywhere on ]0, 1[ with C ′ = 0 ∈
Lp(]0, 1[) The same is true for the other variable: u(x1, ·) = C̃(x1) for almost
all x1 ∈ ]0, 1[. Since C(x2) =

∫ 1
0 u(x1, x2) dx1 and C̃(x1) =

∫ 1
0 u(x1, x2) dx2 are

measurable, by Fubini’s theorem we have C(x2) = u(x1, x2) = C̃(x1) for almost
every point (x1, x2). Hence, for almost every fixed x1, we have C(x2) = C̃(x1)
for almost every x2. So C is constant almost everywhere and thus u has a
constant representative.

(iii) No, consider for instance a piecewise constant function:

v(x1, x2) =

1 if x1 > 0,
−1 if x1 ≤ 0.

Then v is classically differentiable away from the line {x1 = 0} with dv ≡ 0, but
it is not constant.
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Exercise 6.3 Let

B1(0) =
{
z : |z| < 1

}
=
{
reiθ : r ∈ (0, 1), θ ∈ [0, 2π)

}
⊂ R2 = C

be the unit disk in the complex plane and let

S1 =
{
z : |z| = 1

}
=
{

eiθ : θ ∈ [0, 2π)
}

be its boundary. We may identify real or complex-valued functions ϕ : S1 → C and
2π-periodic functions simply by identifying ϕ(θ) ' ϕ(eiθ) for θ ∈ R.

Here are three reminiscences from basic complex analysis:

Fact 1. A holomorphic function f : B1(0)→ C can be written as a complex power
series

f(z) =
∞∑
n=0

cnz
n, z ∈ B1(0),

uniformly convergent over compact subset over B1(0). Viceversa, any power
series with the above property defines uniquely a holomorphic function over
B1(0).

Fact 2. The real and complex part of f are harmonic functions.

Fact 3. Any harmonic function u : B1(0)→ R possesses a harmonic conjugate, i.e. a
harmonic function v : B1(0)→ R so that f = u+ iv is holomorphic. Such v
is unique up to an additive constant.

Prove the following.

(i) Let u0 : S1 → R be a smooth function. Extend u as a harmonic function to the
disc B1(0) by solving{

∆u = 0 in B1(0),
u = u0 on S1.

Express u in terms of the coefficients of the Fourier series of u0 (see Exercise 5.1),
wiriting it in a form of a series, using polar polar coordinates (r, θ). Then, express
this in a series in complex coordinates z, z̄. (recall: (x1, x2) ' x1 +ix2 = z = reiθ,
z̄ = x1 − x2).

(ii) Recall that using Green’s function for B1(0), we also have the integral represen-
tation of u as

u(reiθ) =
∫ 2π

0
P (r, θ − α)u0(α)dα,
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where

P (r, θ) = 1
2π

1− r2

1 + r2 − 2r cos θ

is Poisson’s kernel. Verify that this is consistent with the formula found in (i)
deducing one from another.

(iii) With the help of (i) find an expression in complex coordinates for the unique
harmonic conjugate of u vanishing at 0 in terms of the Fourier coefficients of u0.

(iv) Now let v be the harmonic conjugate of u found in (iv). Argue as in (ii) to
obtain an integral representation for v in terms of an integral over S1 involving
u0:

v(reiθ) =
∫ 2π

0
Q(r, α)u0(α)dα,

finding explicitly the function Q, known as the conjugate Poisson kernel. What
happens to this integral when you consider, for any fixed θ0 ∈ [0, 2π),

lim
r→1−
θ→θ0

v(reiθ) ...?

Solution. (i) Writing u0 as Fourier series

u0(eiθ) = u0(θ) =
∑
n∈Z

û0(n)einθ,

since for every n ≥ 0 the functions

rneinθ = zn, rne−inθ = z̄n,

are, respectively, holomorphic and antiholomorphic, and thus harmonic, and
harmonic extension of u0 is unique, we necessarily have

u(reiθ) =
∑
n∈Z

û0(n)r|n|einθ,

and from this we see that the complex representation in term of z and z̄ is

u(z) =
∞∑
n=0

û0(n)zn +
∞∑
n=1

û0(−n)z̄n

All the series are uniformly convergent for r ≤ 1 since so the Fourier series of u0.
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(ii) Recall that we have

û0(n) = 1
2π

∫ 2π

0
u0(α)e−inαdα,

we may rewrite, for any r < 1, with a change of variables,

u(reiθ) =
∑
n∈Z

1
2π

∫ 2π

0
u0(α)ein(θ−α)r|n|dα

=
∑
n∈Z

1
2π

∫ 2π

0
u0(θ − α)einαr|n|dα

= 1
2π

∫ 2π

0
u0(θ − α)

∑
n∈Z

einαr|n|dα

where we could interchange the summation and the integration operation because
of uniform convergence. We can easily work out explicitly the series by working
in complex notation:

∑
n∈Z

einαr|n| =
∞∑
n=0

zn +
∞∑
n=1

z̄n = 1
1− z + z̄

1− z̄ = 1− |z|2
|1− z|2 ,

and since z = reiθ = r(cos θ + i sin θ), we have

1− |z|2
|1− z|2 = 1− r2

1 + r2 − 2r cosα.

We deduce the validity of the integral formula

u(reiθ) = 1− r2

2π

∫ 2π

0

u0(θ − α)
1 + r2 − 2r cos θdα

= 1− r2

2π

∫ 2π

0

u0(α)
1 + r2 − 2r cos(θ − α)dα.

One verifies that this is exactly the representation of u using the Green function.

(iii) We need to find v so that u+ iv is a complex power series. Since v has to be
harmonic, it will have, similarly as for u, the form

v(z) =
∞∑
n=0

cnz
n +

∞∑
n=1

c−nz̄
n,

for appropriate coefficients cn’s. Since u+iv must have vanishing antiholomorphic
part, we deduce

ic−n = −û0(−n) for n ≥ 1.
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On the other hand, v must be real valued, hence v = v and this implies

cn = c−n = iû0(−n) = −iû0(−n) = −iû0(n) for n ≥ 1.

Finally the requirement that v(0) = 0 is equivalent to c0 = 0. We conclude that

v(z) = −i
( ∞∑
n=1

û0(n)zn −
∞∑
n=1

û0(−n)z̄n
)
.

(iv) We argue similarly as in (ii). For any fixed r < 1 we have, in polar coordinates
(below it is, by convention, sign(0) = 0):

v(reiθ) = −i
( ∞∑
n=1

û0(n)rneinθ −
∞∑
n=1

û0(−n)rne−inθ
)

= −i
(∑
n∈Z

û0(n) sign(n)r|n|einθ
)

= −i
(∑
n∈Z

1
2π

∫ 2π

0
u0(α)ein(θ−α) sign(n)r|n|dα

)

= −i
(∑
n∈Z

1
2π

∫ 2π

0
u0(θ − α)einα sign(n)r|n|dα

)

= −i
(

1
2π

∫ 2π

0
u0(θ − α)

∑
n∈Z

einα sign(n)r|n|dα
)

;

now it is∑
n∈Z

einα sign(n)r|n| =
∞∑
n=1

zn −
∞∑
n=1

z̄n = z

1− z −
z̄

1− z̄ = z − z̄
1− z − z̄ + |z|2 ,

which reads in polar coordinates as
z − z̄

1− z − z̄ + |z|2 = 2ir sinα
1− 2r cosα + r2 .

Thus, it is

v(reiθ) = r

π

∫ 2π

0

sinα
1− 2r cosα + r2u0(θ − α)dα

= r

π

∫ 2π

0

sin(θ − α)
1− 2r cos(θ − α) + r2u0(α)dα,

and the cojugate Poisson kernel is then

Q(r, θ) = r

π

r sinα
1− 2r cosα + r2

6/8



d-math
Prof. M. Struwe

Functional Analysis II
Exercise Sheet 6

ETH Zürich
Spring 2020

As we let r → 1−, then

Q(r, θ)→ 1
π

sin θ
2(1− cos θ) ,

and this expression is singular as θ → 0, since

sin θ
2(1− cos θ) ∼θ→0

1
θ
,

and 1
θ
is not even locally integrable around zero. Thus, the integral defining

the boundary value of v is “singular”, i.e. not absolutely convergent even for
smooth u0.
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Hints to Exercises.

6.1 Find a sequence of functions uk ∈ C0(Ω) satisfying uk|∂Ω ≡ 1 and ‖uk‖Lp(Ω)
k→∞−−−→

0.

6.2 For (i): when 1 ≤ p < ∞ apply Fubini’s theorem and for p = ∞, argue with
Lipschitz continuity (Korollar 8.3.1).

For (ii): Apply part (i) and use Lemma 7.3.1.

6.3 For (i): note that rneinθ = zn and rne−inθ = z̄n are (complex) harmonic functions,
thus since the harmonic extension is unique...

For (ii): recall the usual formulas for (real or complex) geometric series: if |z| < 1,∑∞
n=0 z

n = 1
1−z ,

∑∞
n=1 z

n = z
1−z , ecc.

For (iii): Find v in the form v(z) = ∑
cnz

n +∑
c−nz̄

n so that the sum u+ iv has
no z̄-terms.

8/8


