Exercise 6.1 Let $\Omega \subset \mathbb{R}^n$ be open and bounded with boundary $\partial \Omega$ of class C^1 . Let $1 \leq p < \infty$. Prove that there does not exist a continuous linear operator

 $T\colon L^p(\Omega)\to L^p(\partial\Omega)$

satisfying $Tu = u|_{\partial\Omega}$ for all $u \in C^0(\overline{\Omega})$.

Solution. We argue by contradiction. Given $k \in \mathbb{N}$, let $u_k \colon \overline{\Omega} \to \mathbb{R}$ be given by

$$u_k(x) = \begin{cases} 1 - k \operatorname{dist}(x, \partial \Omega), & \text{if } \operatorname{dist}(x, \partial \Omega) \leq \frac{1}{k}, \\ 0 & \text{otherwise.} \end{cases}$$

Then, $u_k \in C^0(\overline{\Omega})$ and $u_k|_{\partial\Omega} \equiv 1$. Moreover, $u_k(x) \to 0$ as $k \to \infty$ for almost every $x \in \Omega$ and $|u_k| \leq 1 \in L^p(\Omega)$ for every $k \in \mathbb{N}$. Since $1 \leq p < \infty$, the dominated convergence theorem implies $||u_k||_{L^p(\Omega)} \to 0$ as $k \to \infty$. But $||Tu_k||_{L^p(\partial\Omega)} = ||1||_{L^p(\partial\Omega)}$ does not converge to zero which contradicts continuity of T.

Exercise 6.2 Let $\Omega := [0, 1[\times]0, 1[\subset \mathbb{R}^2]$. Given $1 \le p \le \infty$, let $u \in W^{1,p}(\Omega)$.

(i) Prove that for almost every $x_2 \in [0, 1[$ the function $g(x_1) = u(x_1, x_2)$ is welldefined and in $W^{1,p}([0, 1[)]$ with weak derivative

$$g' = \frac{\partial u}{\partial x_1}(\cdot, x_2) \in L^p(]0, 1[).$$

- (ii) Suppose the weak derivatives $\frac{\partial u}{\partial x_1}$ and $\frac{\partial u}{\partial x_2}$ vanish almost everyhwere in Ω . Using part (i), prove that u is constant (i.e. has a constant representative).
- (iii) Suppose that $v \in L^p(\Omega)$ is so that, at almost every $x \in \Omega$ the partial derivatives $\frac{\partial v}{\partial x_1}, \frac{\partial v}{\partial x_2}$ exist classically and $\frac{\partial v}{\partial x_1}(x) = \frac{\partial v}{\partial x_2}(x) = 0$. Is it still true that v is constant?
- **Solution.** (i) In the case $1 \le p < \infty$ we have $|u|^p \in L^1(\Omega)$ by assumption and Fubini's theorem implies that the map $x_1 \mapsto |u(x_1, x_2)|^p$ is in $L^1(]0, 1[)$ for almost every $x_2 \in]0, 1[$. Hence, $g := u(\cdot, x_2) \in L^p(]0, 1[)$ and analogously, $f := \frac{\partial u}{\partial x_1}(\cdot, x_2) \in L^p(]0, 1[)$ for almost every $x_2 \in]0, 1[$.

In the case $p = \infty$ we know that $u \in W^{1,\infty}(\Omega)$ has a (globally) Lipschitz continuous representative because Ω is convex. In particular, $g = u(\cdot, x_2)$ has a Lipschitz continuous representative for almost every $x_2 \in [0, 1[$. Hence, $g \in W^{1,\infty}([0,1[)$ for almost every $x_2 \in [0,1[$. It remains to prove that f is actually the weak derivative of g for almost all $x_2 \in [0, 1[$. Let $\phi, \psi \in C_c^{\infty}([0, 1[)$ and let $\varphi(x_1, x_2) = \phi(x_1)\psi(x_2)$. Then, since $\varphi \in C_c^{\infty}(\Omega)$,

$$0 = \int_{\Omega} \frac{\partial u}{\partial x_1} \varphi + u \frac{\partial \varphi}{\partial x_1} \, dx = \int_0^1 \left(\int_0^1 \frac{\partial u}{\partial x_1} \phi + u \phi' \, dx_1 \right) \psi \, dx_2.$$

Since $\psi \in C_c^{\infty}(]0,1[)$ is arbitrary, Satz 3.4.3 (variational Lemma) applies and yields

$$\forall \phi \in C_c^{\infty}(]0,1[) \quad \exists G_{\phi} \subseteq]0,1[\quad \forall x_2 \in G_{\phi}: \quad 0 = \int_0^1 \frac{\partial u}{\partial x_1} \phi + u\phi' \, dx_1$$

and such that the Lebesgue measure of $]0,1[\setminus G_{\phi}$ vanishes for any ϕ . Let $\mathcal{P} \subset C_c^{\infty}(]0,1[)$ be a countable subset, which is dense in the C^1 -Topology and $G = \bigcap_{\phi \in \mathcal{P}} G_{\phi}$. Then, since \mathcal{P} is countable, the Lebesgue measure of $]0,1[\setminus G$ still vanishes and we obtain

$$\exists G \subseteq]0,1[\quad \forall \phi \in \mathcal{P} \quad \forall x_2 \in G: \quad 0 = \int_0^1 \frac{\partial u}{\partial x_1} \phi + u\phi' \, dx_1. \tag{(*)}$$

Let $\eta \in C_c^{\infty}(]0,1[)$ be arbitrary. By density of \mathcal{P} we can choose a sequence of functions $\phi_k \in \mathcal{P}$ such that $\|\phi_k - \eta\|_{C^1} \to 0$ as $k \to \infty$ which suffices to pass to the limit in (*). Hence, for all $x_2 \in G$, i.e. for almost all $x_2 \in [0,1[$, there holds

$$\forall \eta \in C_c^{\infty}(]0,1[): \quad 0 = \int_0^1 \frac{\partial u}{\partial x_1} \eta + u\eta' \, dx_1 \quad \Rightarrow \quad -\int_0^1 g\eta' \, dx_1 = \int_0^1 f\eta \, dx_1$$

which implies that f is the weak derivative of g for almost all $x_2 \in [0, 1[$ as claimed.

- (ii) If u as weak derivatives $\frac{\partial u}{\partial x_1} = \frac{\partial u}{\partial x_2} = 0$, by (i) and Theorem 7.3.1 for almost every x_2 there holds $u(\cdot, x_2) = C(x_2)$ almost everywhere on]0, 1[with $C' = 0 \in L^p(]0, 1[)$ The same is true for the other variable: $u(x_1, \cdot) = \tilde{C}(x_1)$ for almost all $x_1 \in]0, 1[$. Since $C(x_2) = \int_0^1 u(x_1, x_2) dx_1$ and $\tilde{C}(x_1) = \int_0^1 u(x_1, x_2) dx_2$ are measurable, by Fubini's theorem we have $C(x_2) = u(x_1, x_2) = \tilde{C}(x_1)$ for almost every point (x_1, x_2) . Hence, for almost every fixed x_1 , we have $C(x_2) = \tilde{C}(x_1)$ for almost every x_2 . So C is constant almost everywhere and thus u has a constant representative.
- (iii) No, consider for instance a piecewise constant function:

$$v(x_1, x_2) = \begin{cases} 1 & \text{if } x_1 > 0, \\ -1 & \text{if } x_1 \le 0. \end{cases}$$

Then v is classically differentiable away from the line $\{x_1 = 0\}$ with $dv \equiv 0$, but it is not constant.

Exercise 6.3 Let

D-MATH

$$B_1(0) = \left\{ z : |z| < 1 \right\} = \left\{ r e^{i\theta} : r \in (0, 1), \theta \in [0, 2\pi) \right\} \subset \mathbb{R}^2 = \mathbb{C}$$

be the unit disk in the complex plane and let

$$S^{1} = \left\{ z : |z| = 1 \right\} = \left\{ e^{i\theta} : \theta \in [0, 2\pi) \right\}$$

be its boundary. We may identify real or complex-valued functions $\varphi: S^1 \to \mathbb{C}$ and 2π -periodic functions simply by identifying $\varphi(\theta) \simeq \varphi(e^{i\theta})$ for $\theta \in \mathbb{R}$.

Here are three reminiscences from basic complex analysis:

Fact 1. A holomorphic function $f: B_1(0) \to \mathbb{C}$ can be written as a complex power series

$$f(z) = \sum_{n=0}^{\infty} c_n z^n, \quad z \in B_1(0),$$

uniformly convergent over compact subset over $B_1(0)$. Viceversa, any power series with the above property defines uniquely a holomorphic function over $B_1(0).$

- Fact 2. The real and complex part of f are harmonic functions.
- Fact 3. Any harmonic function $u: B_1(0) \to \mathbb{R}$ possesses a harmonic conjugate, i.e. a harmonic function $v: B_1(0) \to \mathbb{R}$ so that f = u + iv is holomorphic. Such v is unique up to an additive constant.

Prove the following.

(i) Let $u_0: S^1 \to \mathbb{R}$ be a smooth function. Extend u as a harmonic function to the disc $B_1(0)$ by solving

$$\begin{cases} \Delta u = 0 & \text{in } B_1(0), \\ u = u_0 & \text{on } S^1. \end{cases}$$

Express u in terms of the coefficients of the Fourier series of u_0 (see Exercise 5.1), wiriting it in a form of a series, using polar polar coordinates (r, θ) . Then, express this in a series in complex coordinates z, \bar{z} . (recall: $(x^1, x^2) \simeq x^1 + ix^2 = z = re^{i\theta}$, $\bar{z} = x^1 - x^2).$

(ii) Recall that using Green's function for $B_1(0)$, we also have the integral representation of u as

$$u(re^{i\theta}) = \int_0^{2\pi} P(r,\theta-\alpha)u_0(\alpha)d\alpha,$$

where

$$P(r,\theta) = \frac{1}{2\pi} \frac{1 - r^2}{1 + r^2 - 2r\cos\theta}$$

is *Poisson's kernel*. Verify that this is consistent with the formula found in (i) deducing one from another.

- (iii) With the help of (i) find an expression in complex coordinates for the unique harmonic conjugate of u vanishing at 0 in terms of the Fourier coefficients of u_0 .
- (iv) Now let v be the harmonic conjugate of u found in (iv). Argue as in (ii) to obtain an integral representation for v in terms of an integral over S^1 involving u_0 :

$$v(re^{i\theta}) = \int_0^{2\pi} Q(r,\alpha) u_0(\alpha) d\alpha,$$

finding explicitly the function Q, known as the *conjugate Poisson kernel*. What happens to this integral when you consider, for any fixed $\theta_0 \in [0, 2\pi)$,

$$\lim_{\substack{r \to 1^-\\ \theta \to \theta_0}} v(r e^{i\theta}) \dots ?$$

Solution. (i) Writing u_0 as Fourier series

$$u_0(e^{i\theta}) = u_0(\theta) = \sum_{n \in \mathbb{Z}} \widehat{u_0}(n) e^{in\theta},$$

since for every $n \ge 0$ the functions

$$r^n e^{in\theta} = z^n, \quad r^n e^{-in\theta} = \bar{z}^n,$$

are, respectively, holomorphic and antiholomorphic, and thus harmonic, and harmonic extension of u_0 is unique, we necessarily have

$$u(re^{i\theta}) = \sum_{n \in \mathbb{Z}} \widehat{u_0}(n) r^{|n|} e^{in\theta},$$

and from this we see that the complex representation in term of z and \bar{z} is

$$u(z) = \sum_{n=0}^{\infty} \widehat{u_0}(n) z^n + \sum_{n=1}^{\infty} \widehat{u_0}(-n) \overline{z}^n$$

All the series are uniformly convergent for $r \leq 1$ since so the Fourier series of u_0 .

(ii) Recall that we have

$$\widehat{u_0}(n) = \frac{1}{2\pi} \int_0^{2\pi} u_0(\alpha) \mathrm{e}^{-in\alpha} d\alpha,$$

we may rewrite, for any r < 1, with a change of variables,

$$u(re^{i\theta}) = \sum_{n \in \mathbb{Z}} \frac{1}{2\pi} \int_0^{2\pi} u_0(\alpha) e^{in(\theta - \alpha)} r^{|n|} d\alpha$$
$$= \sum_{n \in \mathbb{Z}} \frac{1}{2\pi} \int_0^{2\pi} u_0(\theta - \alpha) e^{in\alpha} r^{|n|} d\alpha$$
$$= \frac{1}{2\pi} \int_0^{2\pi} u_0(\theta - \alpha) \sum_{n \in \mathbb{Z}} e^{in\alpha} r^{|n|} d\alpha$$

where we could interchange the summation and the integration operation because of uniform convergence. We can easily work out explicitly the series by working in complex notation:

$$\sum_{n \in \mathbb{Z}} e^{in\alpha} r^{|n|} = \sum_{n=0}^{\infty} z^n + \sum_{n=1}^{\infty} \bar{z}^n = \frac{1}{1-z} + \frac{\bar{z}}{1-\bar{z}} = \frac{1-|z|^2}{|1-z|^2},$$

and since $z = re^{i\theta} = r(\cos\theta + i\sin\theta)$, we have

$$\frac{1-|z|^2}{|1-z|^2} = \frac{1-r^2}{1+r^2-2r\cos\alpha}.$$

We deduce the validity of the integral formula

$$u(re^{i\theta}) = \frac{1-r^2}{2\pi} \int_0^{2\pi} \frac{u_0(\theta-\alpha)}{1+r^2 - 2r\cos\theta} d\alpha$$

= $\frac{1-r^2}{2\pi} \int_0^{2\pi} \frac{u_0(\alpha)}{1+r^2 - 2r\cos(\theta-\alpha)} d\alpha.$

One verifies that this is exactly the representation of u using the Green function.

(iii) We need to find v so that u + iv is a complex power series. Since v has to be harmonic, it will have, similarly as for u, the form

$$v(z) = \sum_{n=0}^{\infty} c_n z^n + \sum_{n=1}^{\infty} c_{-n} \bar{z}^n,$$

for appropriate coefficients c_n 's. Since u+iv must have vanishing antiholomorphic part, we deduce

$$ic_{-n} = -\widehat{u_0}(-n) \quad \text{for } n \ge 1.$$

On the other hand, v must be real valued, hence $\overline{v} = v$ and this implies

$$c_n = \overline{c_{-n}} = \overline{i\widehat{u_0}(-n)} = -i\overline{\widehat{u_0}(-n)} = -i\widehat{u_0}(n) \text{ for } n \ge 1.$$

Finally the requirement that v(0) = 0 is equivalent to $c_0 = 0$. We conclude that

$$v(z) = -i \left(\sum_{n=1}^{\infty} \widehat{u_0}(n) z^n - \sum_{n=1}^{\infty} \widehat{u_0}(-n) \overline{z}^n \right).$$

(iv) We argue similarly as in (ii). For any fixed r < 1 we have, in polar coordinates (below it is, by convention, sign(0) = 0):

$$\begin{split} v(r\mathrm{e}^{i\theta}) &= -i \left(\sum_{n=1}^{\infty} \widehat{u_0}(n) r^n e^{in\theta} - \sum_{n=1}^{\infty} \widehat{u_0}(-n) r^n e^{-in\theta} \right) \\ &= -i \left(\sum_{n \in \mathbb{Z}} \widehat{u_0}(n) \operatorname{sign}(n) r^{|n|} e^{in\theta} \right) \\ &= -i \left(\sum_{n \in \mathbb{Z}} \frac{1}{2\pi} \int_0^{2\pi} u_0(\alpha) \mathrm{e}^{in(\theta-\alpha)} \operatorname{sign}(n) r^{|n|} d\alpha \right) \\ &= -i \left(\sum_{n \in \mathbb{Z}} \frac{1}{2\pi} \int_0^{2\pi} u_0(\theta-\alpha) \mathrm{e}^{in\alpha} \operatorname{sign}(n) r^{|n|} d\alpha \right) \\ &= -i \left(\frac{1}{2\pi} \int_0^{2\pi} u_0(\theta-\alpha) \sum_{n \in \mathbb{Z}} \mathrm{e}^{in\alpha} \operatorname{sign}(n) r^{|n|} d\alpha \right); \end{split}$$

now it is

$$\sum_{n \in \mathbb{Z}} e^{in\alpha} \operatorname{sign}(n) r^{|n|} = \sum_{n=1}^{\infty} z^n - \sum_{n=1}^{\infty} \bar{z}^n = \frac{z}{1-z} - \frac{\bar{z}}{1-\bar{z}} = \frac{z-\bar{z}}{1-z-\bar{z}+|z|^2},$$

which reads in polar coordinates as

$$\frac{z - \bar{z}}{1 - z - \bar{z} + |z|^2} = \frac{2ir\sin\alpha}{1 - 2r\cos\alpha + r^2}.$$

Thus, it is

$$v(re^{i\theta}) = \frac{r}{\pi} \int_0^{2\pi} \frac{\sin\alpha}{1 - 2r\cos\alpha + r^2} u_0(\theta - \alpha) d\alpha$$
$$= \frac{r}{\pi} \int_0^{2\pi} \frac{\sin(\theta - \alpha)}{1 - 2r\cos(\theta - \alpha) + r^2} u_0(\alpha) d\alpha,$$

and the cojugate Poisson kernel is then

$$Q(r,\theta) = \frac{r}{\pi} \frac{r \sin \alpha}{1 - 2r \cos \alpha + r^2}$$

As we let $r \to 1^-$, then

$$Q(r,\theta) \to \frac{1}{\pi} \frac{\sin \theta}{2(1-\cos \theta)},$$

and this expression is singular as $\theta \to 0$, since

$$\frac{\sin\theta}{2(1-\cos\theta)} \underset{\theta\to 0}{\sim} \frac{1}{\theta},$$

and $\frac{1}{\theta}$ is not even locally integrable around zero. Thus, the integral defining the boundary value of v is "singular", i.e. not absolutely convergent even for smooth u_0 .

Hints to Exercises.

- **6.1** Find a sequence of functions $u_k \in C^0(\overline{\Omega})$ satisfying $u_k|_{\partial\Omega} \equiv 1$ and $||u_k||_{L^p(\Omega)} \xrightarrow{k \to \infty} 0$.
- **6.2** For (i): when $1 \le p < \infty$ apply Fubini's theorem and for $p = \infty$, argue with Lipschitz continuity (Korollar 8.3.1).

For (ii): Apply part (i) and use Lemma 7.3.1.

6.3 For (i): note that $r^n e^{in\theta} = z^n$ and $r^n e^{-in\theta} = \overline{z}^n$ are (complex) harmonic functions, thus since the harmonic extension is unique...

For (ii): recall the usual formulas for (real or complex) geometric series: if |z| < 1, $\sum_{n=0}^{\infty} z^n = \frac{1}{1-z}$, $\sum_{n=1}^{\infty} z^n = \frac{z}{1-z}$, ecc.

For (iii): Find v in the form $v(z) = \sum c_n z^n + \sum c_{-n} \overline{z}^n$ so that the sum u + iv has no \overline{z} -terms.