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Exercise 7.1 Let 1 ≤ p ≤ ∞. Consider the open set

Ω = (−1, 1)× (−1, 1) \
(
[0, 1)× {0}

)
⊂ R2.

Prove that there is no extension operator E : W 1,p(Ω)→ W 1,p(R2).

Solution. Let u : Ω→ R be given by

u(x1, x2) :=

x1 if x1 > 0 and x2 > 0,
0 otherwise.

be the function as in in Exercise 5.2. We showed there that u ∈ W 1,∞(Ω). Since
Ω is bounded, u ∈ W 1,p(Ω) for any 1 ≤ p ≤ ∞. Suppose, there exists an extension
operator E : W 1,p(Ω)→ W 1,p(R2) such that (Eu)|Ω = u almost everywhere in Ω. Let
Q := (−1, 1)× (−1, 1) and v := (Eu)|Q. Then Eu ∈ W 1,p(Rn) implies v ∈ W 1,p(Q).
Consequently (as shown in Exercise 6.2) (x2 7→ v(x1, x2)) ∈ W 1,p((−1, 1)) for almost
every x1 ∈ (−1, 1). Moreover, since [0, 1)×{0} has measure zero, v(x1, x2) = u(x1, x2)
for almost every (x1, x2) ∈ Q.

Hence, there exists some fixed x1 ∈ (1
2 , 1) such that (g : x2 7→ v(x1, x2)) ∈ W 1,p((−1, 1))

and such that g(x2) = u(x1, x2) for almost every x2 ∈ (−1, 1). By Sobolev’s embed-
ding in dimension one, g and hence x2 7→ u(x1, x2) has a representative in C0((−1, 1)).
However, since we chose x1 >

1
2 , this leads to a contradiction since

x2 7→ u(x1, x2) =

x1 for x2 > 0,
0 for x2 < 0.

is not continuous.

Exercise 7.2 In this exercise we want to prove that, for every bounded, C1 domain
Ω ⊂ Rn and every 1 ≤ p <∞, W 1,p

0 (Ω) consists exactly of those functions in W 1,p(Ω)
with vanishing trace, similarly to Remark 7.5.1 in the 1-dimensional case or Corollary
8.4.3 for the case p = 2.

Let u ∈ W 1,p(Ω).

(i) Prove that for every ϕ ∈ C∞c (Rn) and every i = 1, . . . , n there holds∫
Ω
∂iuϕdx = −

∫
Ω
u ∂iϕdx+

∫
∂Ω
u|∂Ω ϕν

i dσ,

where ν = (ν1, . . . , νn) denotes the outer unit normal of ∂Ω and u|∂Ω ∈ Lp(∂Ω)
denotes the trace of u.
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(ii) Consider the extension of U by zero to Rn:

U(x) =

u(x) for x ∈ Ω,
0 for x ∈ Rn \ Ω.

Prove that, if the weak derivative of U exist, they are necessarily given by

∂iU(x) =

∂iu(x) for x ∈ Ω,
0 for x ∈ Rn \ Ω

(∗)

for i = 1, . . . , n.

Prove then that u|∂Ω = 0 if and only if U is in W 1,p(Rn).

(iii) Prove that, for every v ∈ W 1,p(Rn) so that v|Rn\Ω = 0 then v|Ω ∈ W 1,p
0 (Ω) and

conclude.

Solution. (i) For u ∈ C∞(Rn) it is the classical integration by parts formula. For a
general u ∈ W 1,p(Ω), since Ω is a regular domain we can argue by approximation:
let (uj)j ⊂ C∞c (Rn) be a sequence of smooth functions so that uj → u inW 1,p(Ω)
as j →∞. Then we have∫

Ω
∂i ujϕdx = −

∫
Ω
∂iujϕdx+

∫
∂Ω
uj|∂Ω ϕν

i dσ.

We may now pass to the limit in this expression: this follows from definition of
W 1,p-convergence for the integrals over Ω, while for the boundary integral we
have that uj|∂Ω converges to u|∂Ω in Lp(Ω) since the trace operator is continuous
from W 1,p(Ω) to Lp(Ω).

(ii) If the weak derivatives of U exist, then they must be the functions given (∗)
above, since ∂Ω has zero measure.

Consequently, on the one hand if u has vanishing trace, then the formula in
(i) is telling us exactly that the weak derivatives of U exist, and thus also that
U ∈ W 1,p(Rn).

Vice versa, for every ϕ ∈ C∞c (Rn), by (i) we have∫
Rn
U ∂iϕdx =

∫
Ω
u ∂iϕdx

= −
∫

Ω
∂iuϕdx+

∫
∂Ω
u|∂Ω ϕν

idσ

= −
∫
Rn
∂iU ψ dx+

∫
∂Ω
u|∂Ω ϕν

idσ.
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Thus, for U to have weak derivatives it is necessariy that, for every ϕ ∈ C∞c (Rn),
i ∈ {1, . . . , n} there holds∫

∂Ω
u|∂Ω ϕν

idσ = 0,

and so u|∂Ω must vanish.

(iii) Step 1. The problem can be reduced to the following model case. Let

Q = {x = (x′, xn) ∈ Rn−1 × R | |x′| < 1 and |xn| < 1},
Q+ = {x = (x′, xn) ∈ Q | xn > 0},
Q0 = {x = (x′, xn) ∈ Q | xn = 0}.

Let u ∈ W 1,p(Q) satisfy u = 0 in Q \ Q+. Then we claim αu ∈ W 1,p
0 (Q+) for

any α ∈ C1
c (Q). Note that since α is compactly supported in Q, (αu) extends

to a function in W 1,p(Rn) which allows mollification. Let 0 ≤ ρ ∈ C∞c (B1(0))
satisfy

supp(ρ) ⊂ {(x′, xn) ∈ B1(0) | 1
2 < xn < 1},

∫
B1(0)

ρ dx = 1

and let ρm(x) := mnρ(mx) for m ∈ N. Then, ‖ρm ∗ (αu) − (αu)‖W 1,p → 0 as
m → ∞. Moreover, if x = (x′, xn) ∈ Q+ with xn <

1
4m

then (αu)(x − y) = 0
whenever yn >

1
2m

because u vanishes outside Q+. Hence, by choice of supp(ρm),
(
ρm ∗ (αu)

)
(x) =

∫
Rn
ρm(y) (αu)(x− y) dy = 0 if xn <

1
4m

which implies ρm ∗ (αu) ∈ C∞c (Q+) and therefore αu ∈ W 1,p
0 (Q+).

Step 2. Let Ω ⊂ Rn be open and bounded with boundary of class C1. Since
∂Ω is compact and regular, there exist finitely many open sets U1, . . . , UN ⊂ Rn

and diffeomorphisms Hk : Q→ Uk such that for every k ∈ {1, . . . , N}

Hk(Q+) = Uk ∩ Ω, Hk(Q0) = Uk ∩ ∂Ω, ∂Ω ⊂
N⋃

k=1
Uk.

Furthermore, there exists an open set U0 ⊂ Rn such that U0 ⊂ Ω and Ω ⊂⋃N
k=0 Uk. Let (ϕk)k∈{0,...,N} be a corresponding partition of unity, i. e. a collection

of smooth functions such that for every k ∈ {0, . . . , N}

0 ≤ ϕk ≤ 1, supp(ϕk) ⊂ Uk,
N∑

k=0
ϕk|Ω = 1.
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Let v ∈ W 1,p(Rn) satisfy v(x) = 0 for almost every x ∈ Rn \ Ω. By Satz 8.3.3,
v◦Hk ∈ W 1,p(Q) for k ∈ {1, . . . , N} and it satisfies v◦Hk = 0 in Q\Q+. By Step
1, choosing α = ϕk ◦Hk, we have (ϕkv) ◦Hk ∈ W 1,p

0 (Q+) Let w(m)
k ∈ C∞c (Q+)

be such that ‖w(m)
k − (ϕkv) ◦ Hk‖W 1,p(Q+) → 0 as m → ∞. Moreover, since

supp(ϕ0) ⊂ U0 ⊂ Ω, we can approximate ϕ0v by v(m)
0 ∈ C∞c (Ω) directly using

mollification. Then, we have

w(m) := v
(m)
0 +

N∑
k=1

(w(m)
k ◦H−1

k ) ∈ C∞c (Ω)

and since v = ∑N
k=0 ϕkv in Ω by partition of unity,

‖w(m) − v‖W 1,p(Ω)

≤ ‖v(m)
0 − ϕ0v‖W 1,p(Ω) +

N∑
k=1

∥∥∥w(m)
k ◦H−1

k − ϕkv
∥∥∥

W 1,p(Ω)

≤ ‖v(m)
0 − ϕ0v‖W 1,p(Ω) +

N∑
k=1

C
∥∥∥w(m)

k − (ϕkv) ◦Hk

∥∥∥
W 1,p(Q+)

m→∞−−−→ 0

which concludes the proof of v|Ω ∈ W 1,p
0 (Ω).

Exercise 7.3 Show that the assumption that Ω is of class C1 cannot be dropped
in the characterization of W 1,p

0 (Ω) given in Exercise 7.2: find a bounded, connected,
open set Ω ⊂ R2 and w ∈ H1(R2) satisfying w(x) = 0 for almost every x ∈ R2 \ Ω
such that w|Ω /∈ H1

0 (Ω).

Solution. Let Ω = (−1, 1)2 \ ([0, 1)× {0}) and let u ∈ C∞(Rn) satisfy u(x) = 1 if
|x| < 1

2 and u(x) = 0 if |x| > 3
4 . Then u ∈ H1(Ω) and u(x) = 0 for almost every

x ∈ Rn \ Ω. Suppose by contradiction that there exists a sequence of functions
um ∈ C∞c (Ω) such that ‖um − u‖H1(Ω) → 0 as m → ∞. Let Q := (0, 1)2 and
Q0 = (0, 1)× {0}. By Lemma 8.4.2 the trace operator T : H1(Q)→ L2(Q0) mapping
T : u 7→ u|Q0 is linear and continuous. In particular,

‖Tum − Tu‖L2(Q0) ≤ C‖um − u‖H1(Q)
m→∞−−−→ 0.

Since Q0 ⊂ ∂Ω implies Tum = um|Q0 = 0, we obtain u|Q0 = 0 in L2(Q0). This
however contradicts the fact that u(x) = 1 for |x| < 1

2 .
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Exercise 7.4 (Hardy’s inequalities)

(i) Let 1 < p <∞, let f ∈ Lp((0,∞)) and define

g(x) = 1
x

∫ x

0
f(y)dy, for x > 0.

Prove that g ∈ Lp((0,∞)) with

‖g‖Lp((0,∞)) ≤ C‖f‖Lp((0,∞)),

for some constant C > 0 depending only on p.

(ii) Let n ≥ 2, 1 < p < n, Ω ⊆ Rn be an open subset and let u ∈ W 1,p
0 (Ω). Then

the function x 7→ u(x)
|x| is in Lp(Ω) with

∥∥∥∥∥ u| · |
∥∥∥∥∥

Lp(Ω)
≤ C‖u‖W 1,p(Ω),

for a constant C > 0 depending only on n and p.

Solution. (i) With a change of variable y′ = y
x
we may write

g(x) =
∫ 1

0
f(xy)dy.

Consequently, using Minkowski’s inequality for integrals and the change of
variable z = xy, we have

‖g‖Lp((0,∞)) =
(∫ ∞

0
|g(x)|pdx

)1/p

=
(∫ ∞

0

∣∣∣∣∣
∫ 1

0
f(xy)dy

∣∣∣∣∣
p

dx

)1/p

≤
∫ 1

0

(∫ ∞
0
|f(xy)|pdx

)1/p

dy

=
∫ 1

0

1
y1/p

(∫ ∞
0
|f(z)|pdz

)1/p

dy = p

p− 1‖f‖Lp((0,∞)).

(ii) Let us first prove the inequality for u ∈ C∞c (Rn). Using polar coordinates, each
x ∈ Rn, x 6= 0 can be uniquely written as x = |x|θx, where θx = x

|x| ∈ S
n−1.
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By the fundamental theorem of calculus, since u vanishes at infinity we may
represent u as

u(x) = −
∫ ∞
|x|

∂u

∂r
(rθx)dr, x ∈ Rn \ {0},

where then ∂
∂r

is the radial derivative. Thus, with a change of variable ρ = r
|x| ,

Minkowski’s inequality for integrals and again a change of variables z = ρx, we
see that∥∥∥∥∥ u| · |

∥∥∥∥∥
Lp(Ω)

=
(∫

Rn

∣∣∣∣∣ 1
|x|

∫ ∞
|x|

∂u

∂r
(rθx)dr

∣∣∣∣∣
p

dx

)1/p

=
(∫

Rn

∣∣∣∣∣
∫ ∞

1

∂u

∂r
(ρx)dρ

∣∣∣∣∣
p

dx

)1/p

≤
∫ ∞

1

(∫
Rn

∣∣∣∣∣∂u∂r (ρx)
∣∣∣∣∣
p

dx

)1/p

dρ

=
∫ ∞

1

1
ρn/p

∥∥∥∥∥∂u∂r
∥∥∥∥∥

Lp(Rn)
dρ = p

n− p

∥∥∥∥∥∂u∂r
∥∥∥∥∥

Lp(Rn)
.

It now suffices to recall that gradient in polar coordinates is expressed as

|∇u| =
∣∣∣∣∣∂u∂r

∣∣∣∣∣+ 1
r

∣∣∣∣∣∂u∂θ
∣∣∣∣∣,

hence ‖∂ru‖Lp(Rn) ≤ ‖∇u‖Lp(Rn) and this implies in particular the desired
inequality in the case u ∈ C∞c (Rn).

Now if u ∈ W 1,p
0 (Ω), we may argue by approximation, noting that if (uj)j ⊂

C∞c (Rn) is a sequence approximating u in W 1,p(Ω), then x 7→ uj(x)
|x| converges

a.e. to x 7→ u(x)
|x| and thus, since the sequence is also convergent in Lp, so is its

pointwise limit.
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Hints to Exercises.

7.1 Recall Exercise 5.2.

7.2 For (iii), deal first with the basic case on cylinders.

7.3 Compare with Exercises 5.2 and 7.1.

7.4 Minkowski inequality for integrals: ‖
∫
f(x, ·)dx‖Lp ≤

∫
‖f(x, ·)‖Lpdx will be

useful.

For (ii), argue first for u ∈ C∞c (Rn) and write u as integral of its radial derivative
u(x) = −

∫∞
|x| ∂ru(rθx)dr.
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