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Exercise 11.1 What follows is often useful in regularity theory.

Let p ∈ [1,∞).

(i) Let Ω ⊂ Rn be a domain with finite and nonzero Lebesgue measure. Prove that
there exists a constant C = C(p,Ω) > 0 depending only on p so that for every
u ∈ Lp(Ω) there holds∫

Ω
|u− uΩ|p dx ≤ C inf

λ∈R

∫
Ω
|u− λ|p dx,

where uΩ = −
∫
Ω u dx is the average of u over Ω.

(ii) Let Ω ⊆ Rn be a domain, λ > 0 and u ∈ Lploc(Ω). an let Ω′,Ω′′ be bounded
domains with Ω′ of Type A and

Ω′ ⊂⊂ Ω′′ ⊂⊂ Ω.

Fix and R > 0 so that BR(x0) ⊂ Ω′′ for every x0 ∈ Ω′. Suppose you know that

{u}pLp,λ(Ω′) := sup
x0∈Ω′

ρ∈(0,r0)

1
ρλ

∫
Bρ(x0)

|u(x)− uBρ(x0)|p dx <∞.

Use (i) to prove that then u belongs to Lp,λ(Ω′) (the usual Campanato space)
and the estimate

‖u‖Lp,λ(Ω′) ≤ C
(
‖u‖Lp(Ω′) + {u}Lp,λ(Ω′)

)
holds for a constant C = C(p, λ,Ω′,Ω′′) > 0 that does not depend on u.

Solution. (i) One may notice that for p = 2 by taking derivatives the inequality
is an equality with C = 1. In general, using the inequalities

|a+ b|p ≤ Cp(|a|p + |b|p),

|vΩ|p ≤
1
|Ω|‖v‖

p
Lp(Ω),

we may estimate for every λ ∈ R:∫
Ω
|u− uΩ|p dx =

∫
Ω
|(u− λ)− (u− λ)Ω|p dx

≤ Cp

∫
Ω

(
|(u− λ)|p + |(u− λ)Ω|p

)
dx

≤ Cp

∫
Ω
|(u− λ)|p dx,

thus yielding the thesis by taking the infimum in λ.
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(ii) Thanks to (i), for every x0 ∈ Ω′ and ρ ∈ (0, R) we may estimate∫
Ω′(x0,ρ)

|u− uΩ′(x0,ρ)|p dx ≤ Cp

∫
Ω′(x0,ρ)

|u− uBρ(x0)|p dx

≤ Cp

∫
Bρ(x0)

|u− uBρ(x0)|p dx,

whence

sup
x0∈Ω′

ρ∈(0,R)

1
ρλ

∫
Ω′(x0,ρ)

|u− uΩ′(x0,ρ)|p dx ≤ Cp{u}Lp,λ(Ω′).

Thanks to Exercise 9.1 we may then conclude that

‖u‖Lp,λ(Ω′) ≤ C
(
‖u‖Lp(Ω′) + {u}Lp,λ(Ω′)

)
,

for a constant C = C(p, λ,R) = C(p, λ,Ω′,Ω′′) > 0.

Exercise 11.2 Let Ω ⊂ Rn be a bounded, regular domain and let ∆2ϕ = ∆(∆ϕ) be
the Bilaplacian. Let Ω ⊂ Rn be open and bounded with smooth boundary and

Ξ := {u ∈ H4(Ω) ∩H1
0 (Ω) | ∆u ∈ H1

0 (Ω)}.

(i) Prove that the Bilaplacian

∆2 : Ξ→ L2(Ω), u 7→ ∆(∆u),

is bijective from Ξ onto L2(Ω).

(ii) Given f ∈ L2(Ω), let u ∈ Ξ satisfy ∆2u = f . Prove that for every ϕ ∈ Ξ there
holds ∫

Ω
u∆2ϕdx =

∫
Ω
fϕ dx. (†)

(iii) Assume that u, f ∈ L2(Ω) satisfy (??). Prove that u ∈ Ξ.

Solution. Let Ω ⊂ Rn be open and bounded with smooth boundary and

Ξ := {u ∈ H4(Ω) ∩H1
0 (Ω) | ∆u ∈ H1

0 (Ω)}.

2/10



d-math
Prof. M. Struwe

Functional Analysis II
Exercise Sheet 11

ETH Zürich
Spring 2020

(i) Since the bilaplacian ∆2 : Ξ→ L2(Ω) is linear, it suffices to prove ker(∆2) = {0}
to conclude injectivity. Let u ∈ Ξ with ∆2u = 0. By definition of Ξ, we have

v := ∆u ∈ H2(Ω) ∩H1
0 (Ω).

Moreover, ∆v = 0 combined with the elliptic regularity estimate (Satz 9.1.2)
implies v = 0. Repeating the same argument for ∆u = 0 yields u = 0 and
proves ker(∆2) = 0.

To prove surjectivity, let f ∈ L2(Ω) be given arbitrarily. Let v ∈ H1
0 (Ω) be

the weak solution to ∆v = f in Ω. By elliptic regularity, v ∈ H2(Ω). Let
u ∈ H1

0 (Ω) be the weak solution to ∆u = v. Then, by elliptic regularity,
u ∈ H4(Ω). Consequently, u ∈ Ξ. Since ∆2u = f by construction, surjectivity
of ∆2 : Ξ→ L2(Ω) follows.

(ii) Let ϕ ∈ Ξ be arbitrary. Then, ∇∆ϕ ∈ L2(Ω). Since u ∈ H1
0 (Ω), the trace

theroem (Satz 8.4.3) implies that u|∂Ω ∈ L2(∂Ω) is well-defined and vanishes
according to Korollar 8.4.3. Analogously, since ∆ϕ ∈ H1

0 (Ω) by assumption,
(∆v)|∂Ω = 0. Hence, we may integrate by parts twice with vanishing boundary
terms to obtain∫

Ω
u∆2ϕdx = −

∫
Ω
∇u · ∇∆ϕdx =

∫
Ω

∆u∆ϕdx. (∗)

Since the right hand side of (∗) is symmetric in u and ϕ we may switch the
roles of u, ϕ ∈ Ξ to also obtain∫

Ω
ϕ∆2u dx =

∫
Ω

∆u∆ϕdx =
∫

Ω
u∆2ϕdx.

Since ϕ ∈ Ξ is arbitrary, the claim follows by substituting ∆2u = f .

(iii) According to part (i), there exists v ∈ Ξ such that ∆2v = f . Moreover, by (ii)
for every ϕ ∈ Ξ there holds∫

Ω
v∆2ϕdx =

∫
Ω
fϕ dx.

Therefore, using again bijectivity of ∆2 : Ξ→ L2(Ω) as shown in (i), we have∫
Ω

(u− v)∆2ϕdx = 0 ∀ϕ ∈ Ξ

if and only if∫
Ω

(u− v)ψ dx ∀ψ ∈ L2(Ω)

Hence u− v = 0 in L2(Ω). Therefore, u = v ∈ Ξ as claimed.
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Exercise 11.3 We revisit Exercise 10.5 with the notions ellpitic regularity theory we
have acquired.

Let Ω ⊂ Rn be open and bounded with smooth boundary.

(i) Prove that

〈u, v〉 :=
∫

Ω
∆u∆v dx

defines a scalar product on H2(Ω) ∩H1
0 (Ω) which is equivalent to the standard

scalar product (·, ·)H2(Ω).

(ii) Show that
(
H2(Ω) ∩H1

0 (Ω), 〈·, ·〉
)
is a Hilbert space.

(iii) Prove that given f ∈ L2(Ω) there is a unique u ∈ H2(Ω) ∩H1
0 (Ω) satisfying

∀v ∈ H2(Ω) ∩H1
0 (Ω) :

∫
Ω

∆u∆v dx =
∫

Ω
fv dx.

Show that in fact u ∈ Ξ := {u ∈ H4(Ω) ∩H1
0 (Ω) | ∆u ∈ H1

0 (Ω)} and ∆2u = f .

Solution. Let Ω ⊂ Rn be open and bounded with smooth boundary.

(i) The map 〈·, ·〉 is symmetric and bilinear by definition. Moreover, by the elliptic
regularity estimate (Satz 9.1.2), there exists a constant C <∞ such that for
every u ∈ H2(Ω) ∩H1

0 (Ω)

〈u, u〉 ≤ (u, u)H2(Ω) = ‖u‖2
H2(Ω) ≤ C‖∆u‖2

L2(Ω) = C〈u, u〉.

In particular, 〈u, u〉 ≥ 0 and 〈u, u〉 = 0 ⇔ u = 0; hence 〈·, ·〉 defines a scalar
product and 〈·, ·〉 is equivalent to (·, ·)H2(Ω).

(ii) Since Ω is bounded, convergence in H2(Ω) implies convergence in H1(Ω). Since
H1

0 (Ω) is closed in H1(Ω), we obtain that H2(Ω) ∩H1
0 (Ω) is closed in H2(Ω).

Hence, (H2(Ω) ∩H1
0 (Ω), 〈·, ·〉) is a Hilbert space.

(iii) Then the map H2(Ω) ∩ H1
0 (Ω) → R given by v 7→

∫
Ω fv dx is a continuous

linear functional. By part (ii) we may apply the Riesz representation theorem
to conclude that there exists a unique u ∈ H2(Ω) ∩H1

0 (Ω) satisfying

∀v ∈ H2(Ω) ∩H1
0 (Ω) : 〈u, v〉 =

∫
Ω
fv dx.

In particular, for any v ∈ Ξ := {u ∈ H4(Ω) ∩H1
0 (Ω) | ∆u ∈ H1

0 (Ω)},∫
Ω
u∆2v dx =

∫
Ω

∆u∆v =
∫
fv dx.
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Hence, u ∈ Ξ according to Exercise 11.2 and∫
Ω

(∆2u)v dx =
∫

Ω
u∆2v dx =

∫
fv dx

for any v ∈ C∞c (Ω) which implies ∆2u = f .

Exercise 11.4 Let Ω ⊆ Rn be a regular domain. Consider a function u ∈ H1
0 (Ω) so

that its weak Laplacian ∆u is in L2(Ω), namely, there exists f ∈ L2(Ω) so that for
every ϕ ∈ C∞c (Ω) there holds∫

Ω
u∆ϕdx =

∫
Ω
fϕ dx,

for which we then set f = ∆u. By definition, there exist a sequence u ∈ C∞c (Ω) so
that

lim
k→∞

uk = u in H1(Ω)

We ask whether the sequence can be chosen so that additionally it satisfies

lim
k→∞

∆uk = ∆u in L2(Ω).

(i) Prove that the answer is positive when Ω = Rn.

(ii) Prove that the answer is, in general, negative for u ∈ H1
0 (Ω) when Ω is bounded.

(iii) Can you characterize the subset of functions u ∈ H1
0 (Ω) for which such approxi-

mating sequence exists?

Solution. (i) We construct an approximating sequence with the required properties
explicitly, by first truncating and then mollifying u on progressively larger balls.
Let η ∈ C∞c (Rn) be a smooth cut-off function so that 0 ≤ η ≤ 1, η ≡ 1 in B1(0)
and supported in B2(0) and let φ ∈ C∞c (Rn) be a standard mollifier. Denoting,
for x ∈ Rn,

ηk(x) = η
(
x

k

)
,

φk(x) = k φ(k x),

we let

uk(x) = (uηk) ∗ φk (x).
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Then, every uk is smooth compactly supported; moreover

‖uk − u‖L2(Rn) ≤ ‖u ∗ φk − u‖L2(Rn) + ‖(u− uηk) ∗ φk‖L2(Rn),

and as k → ∞ both terms on the right-hand side vanish: the first one by
standard properties of the convolution, the second since

‖(u− uηk) ∗ φk‖L2(Rn) ≤ C‖(u− uηk)‖L2(Rn)
k→∞−−−→ 0.

As for first derivatives, using the fact that weak derivatives and convolution
commute and the product rule for weak derivatives we have

∂iuk = (∂iu ηk + u ∂iηk) ∗ φk.

As before, we have

∂iu ηk ∗ φk
k→∞−−−→ ∂iu in L2(Rn),

and by the properties of ηk, we see that

‖u ∂iηk ∗ φk‖L2(Rn) ≤
C

k
‖u‖L2(Rn)

k→∞−−−→ 0.

A similar computation holds for the Laplacian, being

∆uk = (∆u ηk + 2〈∇u,∇ηk〉+ u∆ηk) ∗ φk

and

(∆u ηk) ∗ φk k→∞−−−→ ∆u,

‖〈∇u,∇ηk〉 ∗ φk‖L2(Rn) ≤
C

k
‖∇u‖L2(Rn)

k→∞−−−→ 0,

‖(u∆ηk) ∗ φk‖L2(Rn) ≤
C

k2‖u‖L2(Rn)
k→∞−−−→ 0.

This proves that (uk)k∈N has the required properties.

(ii) First of all note that if ∆u ∈ L2(Ω) then L2–elliptic regularity implies that
u ∈ H2(Ω). If the sequence (uk)k exists, then L2-elliptic estimate implies

lim
k→∞
‖(u− uk)‖H2(Ω) ≤ C lim

k→∞
‖∆(u− uk)‖L2(Ω) = 0,

which means that (uk)k approximates u in H2(Ω), and since the sequence is
compactly supported, this would imply u ∈ H2

0 (Ω). But since Ω is bounded we
have

H2
0 (Ω) ( (H1

0 ∩H2)(Ω),

so the sequence cannot exist for a general u.
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(iii) We have seen in (ii) that if the required approximating sequence exists, then it
must be u ∈ H2

0 (Ω); vice versa by definition for every element v ∈ H2
0 (Ω) there

exits a sequence in (vk)k∈N ⊂ C∞c (Ω) so that vk → v in H2(Ω), and so a fortiori
so that vk → v in H1(Ω) and ∆vk → ∆v in L2(Ω).

So the set with the required property is precisely H2
0 (Ω).

Exercise 11.5 Let Ω ⊂ Rn be open. Let aij : Ω → R be measurable functions for
every i, j ∈ {1, . . . , n}. A differential operator L in non-divergence form

Lu =
n∑

i,j=1
aij(x)∂2

iju,

is called uniformly elliptic in Ω, if there exists λ > 0 such that for almost every x ∈ Ω
and every ξ = (ξ1, . . . , ξn) ∈ Rn

n∑
i,j=1

aij(x)ξiξj ≥ λ|ξ|2. (1)

For aij ∈ C2(Ω) and c ∈ C0(Ω), we say that u ∈ H1
0 (Ω) is a weak solution of

−Lu+ cu = f in Ω, (2)

if for every ϕ ∈ H1
0 (Ω) there holds

n∑
i,j=1

∫
Ω
aij∂ju ∂iϕ+ ∂ia

ij ∂juϕdx+
∫

Ω
cuϕ dx =

∫
Ω
fϕ dx. (3)

(i) Prove that a classical solution u ∈ C2(Ω) ∩H1
0 (Ω) of −Lu + cu = f is also a

weak solution.

(ii) Let Ω ⊂ Rn be open and bounded. Let f ∈ L2(Ω). Let aij ∈ C2(Ω) satisfy
(1). Find a condition on c ∈ C0(Ω) so that (2) admits a unique weak solution
u ∈ H1

0 (Ω).

Solution. (i) Follows immediately with integration by parts.

(ii) We seek to apply the Lax-Milgram theorem.

Given u, ϕ ∈ H1
0 (Ω), define the (not necessarily symmetric) bilinear form

B : H1
0 (Ω)×H1

0 (Ω)→ R
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by

B(u, ϕ) =
n∑

i,j=1

∫
Ω
aij∂ju ∂iϕ+ ∂ia

ij ∂juϕdx+
∫

Ω
cuϕ dx.

Then, for a constant C = C(aij, c,Ω) > 0, there holds

|B(u, ϕ)|

≤
n∑

i,j=1

∫
Ω
|aij||∇u||∇ϕ|+ |∇aij||∇u||ϕ|+ |c||u||ϕ| dx

≤
n∑

i,j=1

(
‖aij‖C0‖∇u‖L2‖∇ϕ‖L2 + ‖∇aij‖C0‖∇u‖L2‖ϕ‖L2 + ‖c‖C0‖u‖L2‖ϕ‖L2

)

≤ C‖∇u‖L2‖∇ϕ‖L2 ,

where we applied Poincaré inequality to u and ϕ.

Now ellipticity implies∫
Ω

n∑
i,j=1

aij∂ju ∂iu dx ≥
∫

Ω
λ|∇u|2 dx = λ‖∇u‖2

L2(Ω);

on the other hand, integrating by parts yields
n∑

i,j=1

∫
Ω
∂ia

ij ∂juu dx = 1
2

n∑
i,j=1

∫
Ω
∂ia

ij ∂j(u2) dx = −1
2

n∑
i,j=1

∫
Ω
∂2
ija

ij u2 dx;

consequently, we have

B(u, u) ≥ λ‖∇u‖2
L2(Ω) +

∫
Ω

(
c− 1

2

n∑
i,j=1

∂2
ija

ij
)
u2 dx.

Hence if (for instance) there holds

c(x)− 1
2

n∑
i,j=1

∂2
ija

ij(x) ≥ 0 in Ω,

we conclude

B(u, u) ≥ λ‖∇u‖2
L2(Ω).

and the Lax-Milgram Lemma (Satz 4.3.3) applies and (by Korollar 4.3.1) we
obtain a unique u ∈ H1

0 (Ω) such that

∀ϕ ∈ H1
0 (Ω) : B(u, ϕ) =

∫
Ω
fϕ dx.
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Exercise 11.6 Given u ∈ H2(Rn
+) ∩H1

0 (Rn
+) prove that

∂u

∂xi
∈ H1

0 (Rn
+)

for every i ∈ {1, . . . , n− 1}.

Solution. Given u ∈ H2(Rn
+) ∩ H1

0 (Rn
+) and h ∈ R \ {0}, let Dh,iu : Rn

+ → R be
given by

Dh,iu(x) = u(x+ hei)− u(x)
h

,

where ei = (0, . . . , 0, 1, 0 . . . , 0, 0) ∈ Rn has the entry 1 at position i ∈ {1, . . . , n− 1}.

The translation by hei is an isometry of H1(Rn
+) and maps C∞c (Rn

+) into itself, so it
maps its closure H1

0 (Rn
+) into itself. Therefore, u ∈ H1

0 (Ω) implies Dh,iu ∈ H1
0 (Rn

+).

According to Satz 8.3.1.iii) the assumption u ∈ H2(Rn
+) implies

∃C <∞ ∀h ∈ Rn \ {0} : ‖Dh,iu‖H1 ≤ C.

Hence, there exists a sequence hk k→∞−−−→ 0 such that Dhk,iu converges weakly in H1(Rn
+)

to some v ∈ H1(Rn
+) as k →∞. Since H1

0 (Rn
+) is a closed subspace of H1(Rn

+), it is
weakly closed. Therefore, v ∈ H1

0 (Rn
+). Moreover, for any ϕ ∈ C∞c (Rn

+) there holds∫
Rn+
vϕ dx = lim

k→∞

∫
Rn+

u(x+ hkei)− u(x)
hk

ϕ(x) dx

= lim
k→∞

1
hk

(∫
Rn+
u(x+ hkei)ϕ(x) dx−

∫
Rn+
u(x)ϕ(x) dx

)

= lim
k→∞

1
hk

(∫
Rn+
u(y)ϕ(y − hkei) dy −

∫
Rn+
u(x)ϕ(x) dx

)

= − lim
k→∞

∫
Rn+
u(x)ϕ(x)− ϕ(x− hkei)

hk
dx

= −
∫
Rn+
u
∂ϕ

∂xi
dx.

By definition of weak derivative,

∂u

∂xi
= v ∈ H1

0 (Rn
+)

and the claim follows.
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Hints to Exercises.

11.1 For (i), use the p–triangle inequality |a+ b|p ≤ Cp(|a|p + |b|p)

For (ii) recall also Exercise 9.1.

11.2 For (i), construct the sequence explicitly;

For (ii), use the elliptic estimates.

11.5 Seek to apply the Lax-Milgram theorem.

11.6 Argue with the difference quotients.
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