Exercise 11.1 What follows is often useful in regularity theory.

Let $p \in [1, \infty)$.

(i) Let $\Omega \subset \mathbb{R}^n$ be a domain with finite and nonzero Lebesgue measure. Prove that there exists a constant $C = C(p, \Omega) > 0$ depending only on p so that for every $u \in L^p(\Omega)$ there holds

$$\int_{\Omega} |u - u_{\Omega}|^p \, dx \le C \inf_{\lambda \in \mathbb{R}} \int_{\Omega} |u - \lambda|^p \, dx,$$

where $u_{\Omega} = f_{\Omega} u \, dx$ is the average of u over Ω .

(ii) Let $\Omega \subseteq \mathbb{R}^n$ be a domain, $\lambda > 0$ and $u \in L^p_{loc}(\Omega)$. an let Ω', Ω'' be bounded domains with Ω' of Type A and

$$\Omega' \subset \subset \Omega'' \subset \subset \Omega.$$

Fix and R > 0 so that $B_R(x_0) \subset \Omega''$ for every $x_0 \in \Omega'$. Suppose you know that

$$\{u\}_{\mathcal{L}^{p,\lambda}(\Omega')}^{p} := \sup_{\substack{x_0 \in \Omega'\\\rho \in (0,r_0)}} \frac{1}{\rho^{\lambda}} \int_{B_{\rho}(x_0)} |u(x) - u_{B_{\rho}(x_0)}|^p \, dx < \infty.$$

Use (i) to prove that then u belongs to $\mathcal{L}^{p,\lambda}(\Omega')$ (the usual Campanato space) and the estimate

$$\|u\|_{\mathcal{L}^{p,\lambda}(\Omega')} \le C\Big(\|u\|_{L^p(\Omega')} + \{u\}_{\mathcal{L}^{p,\lambda}(\Omega')}\Big)$$

holds for a constant $C = C(p, \lambda, \Omega', \Omega'') > 0$ that does not depend on u.

Solution. (i) One may notice that for p = 2 by taking derivatives the inequality is an equality with C = 1. In general, using the inequalities

$$|a+b|^{p} \leq C_{p}(|a|^{p}+|b|^{p}),$$

 $|v_{\Omega}|^{p} \leq \frac{1}{|\Omega|} ||v||_{L^{p}(\Omega)}^{p},$

we may estimate for every $\lambda \in \mathbb{R}$:

$$\int_{\Omega} |u - u_{\Omega}|^{p} dx = \int_{\Omega} |(u - \lambda) - (u - \lambda)_{\Omega}|^{p} dx$$
$$\leq C_{p} \int_{\Omega} \left(|(u - \lambda)|^{p} + |(u - \lambda)_{\Omega}|^{p} \right) dx$$
$$\leq C_{p} \int_{\Omega} |(u - \lambda)|^{p} dx,$$

thus yielding the thesis by taking the infimum in λ .

(ii) Thanks to (i), for every $x_0 \in \Omega'$ and $\rho \in (0, R)$ we may estimate

$$\int_{\Omega'(x_0,\rho)} |u - u_{\Omega'(x_0,\rho)}|^p dx \le C_p \int_{\Omega'(x_0,\rho)} |u - u_{B_\rho(x_0)}|^p dx$$
$$\le C_p \int_{B_\rho(x_0)} |u - u_{B_\rho(x_0)}|^p dx,$$

whence

for

$$\sup_{\substack{x_0\in\Omega'\\\rho\in(0,R)}}\frac{1}{\rho^{\lambda}}\int_{\Omega'(x_0,\rho)}|u-u_{\Omega'(x_0,\rho)}|^p\,dx\leq C_p\{u\}_{\mathcal{L}^{p,\lambda}(\Omega')}.$$

Thanks to Exercise 9.1 we may then conclude that

,

$$\|u\|_{\mathcal{L}^{p,\lambda}(\Omega')} \le C\Big(\|u\|_{L^{p}(\Omega')} + \{u\}_{\mathcal{L}^{p,\lambda}(\Omega')}\Big),$$

a constant $C = C(p,\lambda,R) = C(p,\lambda,\Omega',\Omega'') > 0.$

Exercise 11.2 Let $\Omega \subset \mathbb{R}^n$ be a bounded, regular domain and let $\Delta^2 \varphi = \Delta(\Delta \varphi)$ be the Bilaplacian. Let $\Omega \subset \mathbb{R}^n$ be open and bounded with smooth boundary and

$$\Xi := \{ u \in H^4(\Omega) \cap H^1_0(\Omega) \mid \Delta u \in H^1_0(\Omega) \}.$$

(i) Prove that the Bilaplacian

$$\Delta^2 \colon \Xi \to L^2(\Omega), \quad u \mapsto \Delta(\Delta u),$$

is bijective from Ξ onto $L^2(\Omega)$.

(ii) Given $f \in L^2(\Omega)$, let $u \in \Xi$ satisfy $\Delta^2 u = f$. Prove that for every $\varphi \in \Xi$ there holds

$$\int_{\Omega} u\Delta^2 \varphi \, dx = \int_{\Omega} f\varphi \, dx. \tag{\dagger}$$

(iii) Assume that $u, f \in L^2(\Omega)$ satisfy (??). Prove that $u \in \Xi$.

Solution. Let $\Omega \subset \mathbb{R}^n$ be open and bounded with smooth boundary and

$$\Xi := \{ u \in H^4(\Omega) \cap H^1_0(\Omega) \mid \Delta u \in H^1_0(\Omega) \}.$$

2/10

(i) Since the bilaplacian $\Delta^2 \colon \Xi \to L^2(\Omega)$ is linear, it suffices to prove ker $(\Delta^2) = \{0\}$ to conclude injectivity. Let $u \in \Xi$ with $\Delta^2 u = 0$. By definition of Ξ , we have

 $v := \Delta u \in H^2(\Omega) \cap H^1_0(\Omega).$

Moreover, $\Delta v = 0$ combined with the elliptic regularity estimate (Satz 9.1.2) implies v = 0. Repeating the same argument for $\Delta u = 0$ yields u = 0 and proves ker $(\Delta^2) = 0$.

To prove surjectivity, let $f \in L^2(\Omega)$ be given arbitrarily. Let $v \in H^1_0(\Omega)$ be the weak solution to $\Delta v = f$ in Ω . By elliptic regularity, $v \in H^2(\Omega)$. Let $u \in H^1_0(\Omega)$ be the weak solution to $\Delta u = v$. Then, by elliptic regularity, $u \in H^4(\Omega)$. Consequently, $u \in \Xi$. Since $\Delta^2 u = f$ by construction, surjectivity of $\Delta^2 \colon \Xi \to L^2(\Omega)$ follows.

(ii) Let $\varphi \in \Xi$ be arbitrary. Then, $\nabla \Delta \varphi \in L^2(\Omega)$. Since $u \in H^1_0(\Omega)$, the trace theroem (Satz 8.4.3) implies that $u|_{\partial\Omega} \in L^2(\partial\Omega)$ is well-defined and vanishes according to Korollar 8.4.3. Analogously, since $\Delta \varphi \in H^1_0(\Omega)$ by assumption, $(\Delta v)|_{\partial\Omega} = 0$. Hence, we may integrate by parts twice with vanishing boundary terms to obtain

$$\int_{\Omega} u\Delta^2 \varphi \, dx = -\int_{\Omega} \nabla u \cdot \nabla \Delta \varphi \, dx = \int_{\Omega} \Delta u \Delta \varphi \, dx. \tag{(*)}$$

Since the right hand side of (*) is symmetric in u and φ we may switch the roles of $u, \varphi \in \Xi$ to also obtain

$$\int_{\Omega} \varphi \Delta^2 u \, dx = \int_{\Omega} \Delta u \Delta \varphi \, dx = \int_{\Omega} u \Delta^2 \varphi \, dx.$$

Since $\varphi \in \Xi$ is arbitrary, the claim follows by substituting $\Delta^2 u = f$.

(iii) According to part (i), there exists $v \in \Xi$ such that $\Delta^2 v = f$. Moreover, by (ii) for every $\varphi \in \Xi$ there holds

$$\int_{\Omega} v \Delta^2 \varphi \, dx = \int_{\Omega} f \varphi \, dx.$$

Therefore, using again bijectivity of $\Delta^2 \colon \Xi \to L^2(\Omega)$ as shown in (i), we have

$$\int_{\Omega} (u-v) \Delta^2 \varphi \, dx = 0 \quad \forall \, \varphi \in \Xi$$

if and only if

$$\int_{\Omega} (u - v) \psi \, dx \quad \forall \, \psi \in L^2(\Omega)$$

Hence u - v = 0 in $L^2(\Omega)$. Therefore, $u = v \in \Xi$ as claimed.

3/10

Exercise 11.3 We revisit Exercise 10.5 with the notions ellpitic regularity theory we have acquired.

Let $\Omega \subset \mathbb{R}^n$ be open and bounded with smooth boundary.

(i) Prove that

$$\langle u, v \rangle := \int_{\Omega} \Delta u \Delta v \, dx$$

defines a scalar product on $H^2(\Omega) \cap H^1_0(\Omega)$ which is equivalent to the standard scalar product $(\cdot, \cdot)_{H^2(\Omega)}$.

- (ii) Show that $(H^2(\Omega) \cap H^1_0(\Omega), \langle \cdot, \cdot \rangle)$ is a Hilbert space.
- (iii) Prove that given $f \in L^2(\Omega)$ there is a unique $u \in H^2(\Omega) \cap H^1_0(\Omega)$ satisfying

$$\forall v \in H^2(\Omega) \cap H^1_0(\Omega) : \quad \int_{\Omega} \Delta u \Delta v \, dx = \int_{\Omega} f v \, dx.$$

Show that in fact $u \in \Xi := \{ u \in H^4(\Omega) \cap H^1_0(\Omega) \mid \Delta u \in H^1_0(\Omega) \}$ and $\Delta^2 u = f$.

Solution. Let $\Omega \subset \mathbb{R}^n$ be open and bounded with smooth boundary.

(i) The map $\langle \cdot, \cdot \rangle$ is symmetric and bilinear by definition. Moreover, by the elliptic regularity estimate (Satz 9.1.2), there exists a constant $C < \infty$ such that for every $u \in H^2(\Omega) \cap H^1_0(\Omega)$

$$\langle u, u \rangle \le (u, u)_{H^2(\Omega)} = ||u||^2_{H^2(\Omega)} \le C ||\Delta u||^2_{L^2(\Omega)} = C \langle u, u \rangle.$$

In particular, $\langle u, u \rangle \geq 0$ and $\langle u, u \rangle = 0 \Leftrightarrow u = 0$; hence $\langle \cdot, \cdot \rangle$ defines a scalar product and $\langle \cdot, \cdot \rangle$ is equivalent to $(\cdot, \cdot)_{H^2(\Omega)}$.

- (ii) Since Ω is bounded, convergence in $H^2(\Omega)$ implies convergence in $H^1(\Omega)$. Since $H_0^1(\Omega)$ is closed in $H^1(\Omega)$, we obtain that $H^2(\Omega) \cap H_0^1(\Omega)$ is closed in $H^2(\Omega)$. Hence, $(H^2(\Omega) \cap H_0^1(\Omega), \langle \cdot, \cdot \rangle)$ is a Hilbert space.
- (iii) Then the map $H^2(\Omega) \cap H^1_0(\Omega) \to \mathbb{R}$ given by $v \mapsto \int_{\Omega} f v \, dx$ is a continuous linear functional. By part (ii) we may apply the Riesz representation theorem to conclude that there exists a unique $u \in H^2(\Omega) \cap H^1_0(\Omega)$ satisfying

$$\forall v \in H^2(\Omega) \cap H^1_0(\Omega) : \quad \langle u, v \rangle = \int_{\Omega} f v \, dx.$$

In particular, for any $v \in \Xi := \{ u \in H^4(\Omega) \cap H^1_0(\Omega) \mid \Delta u \in H^1_0(\Omega) \},\$

$$\int_{\Omega} u\Delta^2 v \, dx = \int_{\Omega} \Delta u \Delta v = \int f v \, dx.$$

Hence, $u \in \Xi$ according to Exercise 11.2 and

$$\int_{\Omega} (\Delta^2 u) v \, dx = \int_{\Omega} u \Delta^2 v \, dx = \int f v \, dx$$

for any $v \in C_c^{\infty}(\Omega)$ which implies $\Delta^2 u = f$.

Exercise 11.4 Let $\Omega \subseteq \mathbb{R}^n$ be a regular domain. Consider a function $u \in H^1_0(\Omega)$ so that its weak Laplacian Δu is in $L^2(\Omega)$, namely, there exists $f \in L^2(\Omega)$ so that for every $\varphi \in C_c^{\infty}(\Omega)$ there holds

$$\int_{\Omega} u \Delta \varphi \, dx = \int_{\Omega} f \varphi \, dx,$$

for which we then set $f = \Delta u$. By definition, there exist a sequence $u \in C_c^{\infty}(\Omega)$ so that

$$\lim_{k \to \infty} u_k = u \quad \text{in } H^1(\Omega)$$

We ask whether the sequence can be chosen so that *additionally* it satisfies

 $\lim_{k \to \infty} \Delta u_k = \Delta u \quad \text{in } L^2(\Omega).$

- (i) Prove that the answer is positive when $\Omega = \mathbb{R}^n$.
- (ii) Prove that the answer is, in general, negative for $u \in H_0^1(\Omega)$ when Ω is bounded.
- (iii) Can you characterize the subset of functions $u \in H_0^1(\Omega)$ for which such approximating sequence exists?
- **Solution.** (i) We construct an approximating sequence with the required properties explicitly, by first truncating and then mollifying u on progressively larger balls. Let $\eta \in C_c^{\infty}(\mathbb{R}^n)$ be a smooth cut-off function so that $0 \leq \eta \leq 1, \eta \equiv 1$ in $B_1(0)$ and supported in $B_2(0)$ and let $\phi \in C_c^{\infty}(\mathbb{R}^n)$ be a standard mollifier. Denoting, for $x \in \mathbb{R}^n$,

$$\eta_k(x) = \eta\left(\frac{x}{k}\right),$$

$$\phi_k(x) = k \phi(k x)$$

we let

$$u_k(x) = (u\eta_k) * \phi_k(x).$$

Then, every u_k is smooth compactly supported; moreover

$$||u_k - u||_{L^2(\mathbb{R}^n)} \le ||u * \phi_k - u||_{L^2(\mathbb{R}^n)} + ||(u - u\eta_k) * \phi_k||_{L^2(\mathbb{R}^n)},$$

and as $k \to \infty$ both terms on the right-hand side vanish: the first one by standard properties of the convolution, the second since

$$\|(u - u\eta_k) * \phi_k\|_{L^2(\mathbb{R}^n)} \le C \|(u - u\eta_k)\|_{L^2(\mathbb{R}^n)} \xrightarrow{k \to \infty} 0.$$

As for first derivatives, using the fact that weak derivatives and convolution commute and the product rule for weak derivatives we have

$$\partial_i u_k = (\partial_i u \eta_k + u \partial_i \eta_k) * \phi_k.$$

As before, we have

$$\partial_i u \eta_k * \phi_k \xrightarrow{k \to \infty} \partial_i u \quad \text{in } L^2(\mathbb{R}^n),$$

and by the properties of η_k , we see that

$$\|u\,\partial_i\eta_k*\phi_k\|_{L^2(\mathbb{R}^n)}\leq \frac{C}{k}\|u\|_{L^2(\mathbb{R}^n)}\xrightarrow{k\to\infty} 0.$$

A similar computation holds for the Laplacian, being

$$\Delta u_k = (\Delta u \,\eta_k + 2\langle \nabla u, \nabla \eta_k \rangle + u \Delta \eta_k) * \phi_k$$

and

$$(\Delta u \eta_k) * \phi_k \xrightarrow{k \to \infty} \Delta u,$$
$$\|\langle \nabla u, \nabla \eta_k \rangle * \phi_k \|_{L^2(\mathbb{R}^n)} \leq \frac{C}{k} \|\nabla u\|_{L^2(\mathbb{R}^n)} \xrightarrow{k \to \infty} 0,$$
$$\|(u\Delta \eta_k) * \phi_k\|_{L^2(\mathbb{R}^n)} \leq \frac{C}{k^2} \|u\|_{L^2(\mathbb{R}^n)} \xrightarrow{k \to \infty} 0.$$

This proves that $(u_k)_{k\in\mathbb{N}}$ has the required properties.

(ii) First of all note that if $\Delta u \in L^2(\Omega)$ then L^2 -elliptic regularity implies that $u \in H^2(\Omega)$. If the sequence $(u_k)_k$ exists, then L^2 -elliptic estimate implies

$$\lim_{k \to \infty} \|(u - u_k)\|_{H^2(\Omega)} \le C \lim_{k \to \infty} \|\Delta(u - u_k)\|_{L^2(\Omega)} = 0,$$

which means that $(u_k)_k$ approximates u in $H^2(\Omega)$, and since the sequence is compactly supported, this would imply $u \in H^2_0(\Omega)$. But since Ω is bounded we have

$$H_0^2(\Omega) \subsetneq (H_0^1 \cap H^2)(\Omega)$$

so the sequence cannot exist for a general u.

D-MATH	Functional Analysis II	ETH Zürich
Prof. M. Struwe	Exercise Sheet 11	Spring 2020

(iii) We have seen in (ii) that if the required approximating sequence exists, then it must be $u \in H_0^2(\Omega)$; vice versa by definition for every element $v \in H_0^2(\Omega)$ there exits a sequence in $(v_k)_{k\in\mathbb{N}} \subset C_c^{\infty}(\Omega)$ so that $v_k \to v$ in $H^2(\Omega)$, and so a fortiori so that $v_k \to v$ in $H^1(\Omega)$ and $\Delta v_k \to \Delta v$ in $L^2(\Omega)$.

So the set with the required property is precisely $H_0^2(\Omega)$.

Exercise 11.5 Let $\Omega \subset \mathbb{R}^n$ be open. Let $a^{ij} \colon \Omega \to \mathbb{R}$ be measurable functions for every $i, j \in \{1, \ldots, n\}$. A differential operator L in non-divergence form

$$Lu = \sum_{i,j=1}^{n} a^{ij}(x)\partial_{ij}^2 u,$$

is called *uniformly elliptic* in Ω , if there exists $\lambda > 0$ such that for almost every $x \in \Omega$ and every $\xi = (\xi_1, \ldots, \xi_n) \in \mathbb{R}^n$

$$\sum_{i,j=1}^{n} a^{ij}(x)\xi_i\xi_j \ge \lambda |\xi|^2.$$
(1)

For $a^{ij} \in C^2(\overline{\Omega})$ and $c \in C^0(\overline{\Omega})$, we say that $u \in H^1_0(\Omega)$ is a *weak solution* of

$$-Lu + cu = f \quad \text{in } \Omega, \tag{2}$$

if for every $\varphi \in H_0^1(\Omega)$ there holds

$$\sum_{i,j=1}^{n} \int_{\Omega} a^{ij} \partial_{j} u \,\partial_{i} \varphi + \partial_{i} a^{ij} \,\partial_{j} u \,\varphi \,dx + \int_{\Omega} c u \varphi \,dx = \int_{\Omega} f \varphi \,dx. \tag{3}$$

- (i) Prove that a classical solution $u \in C^2(\Omega) \cap H^1_0(\Omega)$ of -Lu + cu = f is also a weak solution.
- (ii) Let $\Omega \subset \mathbb{R}^n$ be open and bounded. Let $f \in L^2(\Omega)$. Let $a^{ij} \in C^2(\overline{\Omega})$ satisfy (1). Find a condition on $c \in C^0(\overline{\Omega})$ so that (2) admits a unique weak solution $u \in H_0^1(\Omega)$.

Solution. (i) Follows immediately with integration by parts.

(ii) We seek to apply the Lax-Milgram theorem.

Given $u, \varphi \in H_0^1(\Omega)$, define the (not necessarily symmetric) bilinear form

$$B: H^1_0(\Omega) \times H^1_0(\Omega) \to \mathbb{R}$$

by

$$B(u,\varphi) = \sum_{i,j=1}^{n} \int_{\Omega} a^{ij} \partial_{j} u \,\partial_{i} \varphi + \partial_{i} a^{ij} \,\partial_{j} u \,\varphi \,dx + \int_{\Omega} c u \varphi \,dx.$$

Then, for a constant $C = C(a^{ij}, c, \Omega) > 0$, there holds

$$\begin{aligned} |B(u,\varphi)| \\ &\leq \sum_{i,j=1}^{n} \int_{\Omega} |a^{ij}| |\nabla u| |\nabla \varphi| + |\nabla a^{ij}| |\nabla u| |\varphi| + |c||u| |\varphi| \, dx \\ &\leq \sum_{i,j=1}^{n} \left(\|a^{ij}\|_{C^{0}} \|\nabla u\|_{L^{2}} \|\nabla \varphi\|_{L^{2}} + \|\nabla a^{ij}\|_{C^{0}} \|\nabla u\|_{L^{2}} \|\varphi\|_{L^{2}} + \|c\|_{C^{0}} \|u\|_{L^{2}} \|\varphi\|_{L^{2}} \right) \\ &\leq C \|\nabla u\|_{L^{2}} \|\nabla \varphi\|_{L^{2}}, \end{aligned}$$

where we applied Poincaré inequality to u and φ .

Now ellipticity implies

$$\int_{\Omega} \sum_{i,j=1}^{n} a^{ij} \partial_{j} u \, \partial_{i} u \, dx \ge \int_{\Omega} \lambda |\nabla u|^{2} \, dx = \lambda \|\nabla u\|_{L^{2}(\Omega)}^{2};$$

on the other hand, integrating by parts yields

$$\sum_{i,j=1}^n \int_\Omega \partial_i a^{ij} \,\partial_j u \,u \,dx = \frac{1}{2} \sum_{i,j=1}^n \int_\Omega \partial_i a^{ij} \,\partial_j (u^2) \,dx = -\frac{1}{2} \sum_{i,j=1}^n \int_\Omega \partial_{ij}^2 a^{ij} \,u^2 \,dx;$$

consequently, we have

$$B(u,u) \ge \lambda \|\nabla u\|_{L^2(\Omega)}^2 + \int_{\Omega} \left(c - \frac{1}{2}\sum_{i,j=1}^n \partial_{ij}^2 a^{ij}\right) u^2 dx.$$

Hence if (for instance) there holds

$$c(x) - \frac{1}{2} \sum_{i,j=1}^{n} \partial_{ij}^2 a^{ij}(x) \ge 0 \quad \text{in } \Omega,$$

we conclude

$$B(u, u) \ge \lambda \|\nabla u\|_{L^2(\Omega)}^2$$

and the Lax-Milgram Lemma (Satz 4.3.3) applies and (by Korollar 4.3.1) we obtain a unique $u\in H^1_0(\Omega)$ such that

$$\forall \varphi \in H_0^1(\Omega) : \quad B(u,\varphi) = \int_\Omega f\varphi \, dx.$$

Exercise 11.6 Given $u \in H^2(\mathbb{R}^n_+) \cap H^1_0(\mathbb{R}^n_+)$ prove that

$$\frac{\partial u}{\partial x_i} \in H^1_0(\mathbb{R}^n_+)$$

for every $i \in \{1, ..., n-1\}$.

Solution. Given $u \in H^2(\mathbb{R}^n_+) \cap H^1_0(\mathbb{R}^n_+)$ and $h \in \mathbb{R} \setminus \{0\}$, let $D_{h,i}u \colon \mathbb{R}^n_+ \to \mathbb{R}$ be given by

$$D_{h,i}u(x) = \frac{u(x+he_i) - u(x)}{h},$$

where $e_i = (0, ..., 0, 1, 0, ..., 0, 0) \in \mathbb{R}^n$ has the entry 1 at position $i \in \{1, ..., n-1\}$.

The translation by he_i is an isometry of $H^1(\mathbb{R}^n_+)$ and maps $C_c^{\infty}(\mathbb{R}^n_+)$ into itself, so it maps its closure $H_0^1(\mathbb{R}^n_+)$ into itself. Therefore, $u \in H_0^1(\Omega)$ implies $D_{h,i}u \in H_0^1(\mathbb{R}^n_+)$.

According to Satz 8.3.1.iii) the assumption $u \in H^2(\mathbb{R}^n_+)$ implies

 $\exists C < \infty \quad \forall h \in \mathbb{R}^n \setminus \{0\} : \quad \|D_{h,i}u\|_{H^1} \le C.$

Hence, there exists a sequence $h_k \xrightarrow{k \to \infty} 0$ such that $D_{h_k,i}u$ converges weakly in $H^1(\mathbb{R}^n_+)$ to some $v \in H^1(\mathbb{R}^n_+)$ as $k \to \infty$. Since $H^1_0(\mathbb{R}^n_+)$ is a closed subspace of $H^1(\mathbb{R}^n_+)$, it is weakly closed. Therefore, $v \in H^1_0(\mathbb{R}^n_+)$. Moreover, for any $\varphi \in C^\infty_c(\mathbb{R}^n_+)$ there holds

$$\begin{split} \int_{\mathbb{R}^n_+} v\varphi \, dx &= \lim_{k \to \infty} \int_{\mathbb{R}^n_+} \frac{u(x+h_k e_i) - u(x)}{h_k} \varphi(x) \, dx \\ &= \lim_{k \to \infty} \frac{1}{h_k} \Big(\int_{\mathbb{R}^n_+} u(x+h_k e_i) \varphi(x) \, dx - \int_{\mathbb{R}^n_+} u(x) \varphi(x) \, dx \Big) \\ &= \lim_{k \to \infty} \frac{1}{h_k} \Big(\int_{\mathbb{R}^n_+} u(y) \varphi(y-h_k e_i) \, dy - \int_{\mathbb{R}^n_+} u(x) \varphi(x) \, dx \Big) \\ &= -\lim_{k \to \infty} \int_{\mathbb{R}^n_+} u(x) \frac{\varphi(x) - \varphi(x-h_k e_i)}{h_k} \, dx \\ &= -\int_{\mathbb{R}^n_+} u \frac{\partial \varphi}{\partial x_i} \, dx. \end{split}$$

By definition of weak derivative,

$$\frac{\partial u}{\partial x_i} = v \in H^1_0(\mathbb{R}^n_+)$$

and the claim follows.

Hints to Exercises.

11.1 For (i), use the *p*–triangle inequality $|a + b|^p \le C_p(|a|^p + |b|^p)$

For (ii) recall also Exercise 9.1.

- 11.2 For (i), construct the sequence explicitly;For (ii), use the elliptic estimates.
- 11.5 Seek to apply the Lax-Milgram theorem.
- **11.6** Argue with the difference quotients.