Exercise 12.1 Let $\Omega \subset \mathbb{R}^n$ be a bounded regular domain, let $f \in L^2(\Omega)$ and let $u \in H_0^1(\Omega)$ be a weak solution of

$$-\Delta u = f \quad \text{in } \Omega,$$

Prove that then for every $\Omega' \subset \subset \Omega$, $\nabla u \in H^1(\Omega')$, and there holds

$$\|\nabla u\|_{H^{1}(\Omega')} \le C\Big(\|f\|_{L^{2}(\Omega)} + \|\nabla u\|_{L^{2}(\Omega)}\Big),\tag{(\star)}$$

for some constant $C = C(\Omega, \Omega') > 0$.

Solution. The fact that $\nabla u \in H^1(\Omega')$ follows at once from the elliptic regularity theory (Satz 9.2.1).

To obtain the estimate, it suffices to note that

$$\nabla u = \nabla (u - \lambda) \quad \forall \ \lambda \in \mathbb{R},$$

so that by the interior elliptic estimate we have

$$\begin{aligned} \|\nabla u\|_{H^{1}(\Omega')} &\leq \|\nabla (u-\lambda)\|_{H^{1}(\Omega')} \\ &\leq \|u-\lambda\|_{H^{2}(\Omega')} \\ &\leq C\Big(\|\Delta (u-\lambda)\|_{L^{2}(\Omega)} + \|u-\lambda\|_{L^{2}(\Omega)}\Big) \\ &= C\Big(\|f\|_{L^{2}(\Omega)} + \|u-\lambda\|_{L^{2}(\Omega)}\Big), \end{aligned}$$

and so choosing $\lambda = f_{\Omega} u \, dx$, Poincaré's inequality gives

$$\|u - \lambda\|_{L^2(\Omega)} \le C \|\nabla u\|_{L^2(\Omega)},$$

thus yielding (\star) .

Exercise 12.2 Let $B_R(x_0) \subset \mathbb{R}^n$ and let $u : B_R(x_0) \to \mathbb{R}$ be harmonic. Prove that the function

$$\varphi(r) = \frac{1}{r^n} \int_{B_r(x_0)} |u(x)|^2 dx, \quad r \in (0, R),$$

is increasing.

Remark. This yields that for harmonic functions Satz 10.2.1 (i) holds with C = 1.

Solution. Without loss of generality we may assume $x_0 = 0$. In polar coordinates φ reads

$$\varphi(r) = \frac{1}{r^n} \int_0^r \int_{S^{n-1}} |u(\rho\vartheta)|^2 \, d\vartheta \rho^{n-1} \, d\rho,$$

so differentiating φ in r yields

$$\varphi'(r) = -\frac{n}{r^{n+1}} \int_0^r \int_{S^{n-1}} |u(\rho\vartheta)|^2 \, d\vartheta\rho^{n-1} \, d\rho + \frac{1}{r} \int_{S^{n-1}} |u(r\vartheta)|^2 \, d\vartheta.$$

We then have to prove that the right-hand side is non negative.

Since u is harmonic we have

$$\Delta |u|^2 = 2|\nabla u|^2 \ge 0,$$

so integrating this inequality and using the Divergence Theorem gives

$$0 \leq \int_{B_r} \Delta |u(x)|^2 \, dx = r^{n-1} \int_{S^{n-1}} \partial_r |u(r\vartheta)|^2 \, d\vartheta = r^{n-1} \frac{d}{dr} \int_{S^{n-1}} |u(r\vartheta)|^2 \, d\vartheta,$$

so the function $r \mapsto \int_{S^{n-1}} |u(r\vartheta)|^2 d\vartheta$ is non decreasing. Consequently

$$\begin{aligned} &-\frac{n}{r^{n+1}}\int_0^r \int_{S^{n-1}} |u(\rho\vartheta)|^2 \,d\vartheta\rho^{n-1} \,d\rho\\ &\leq -\frac{n}{r^{n+1}}\int_0^r \rho^{n-1} \,d\rho \int_{S^{n-1}} |u(r\vartheta)|^2 \,d\vartheta\\ &= -\frac{1}{r}\int_{S^{n-1}} |u(r\vartheta)|^2 \,d\vartheta,\end{aligned}$$

and this information is precisely what is needed to conclude that $\varphi'(r) \ge 0$.

Exercise 12.3 Let $\Omega \subset \mathbb{R}^n$ be a bounded, regular domain, let $a^{ij} = a^{ji} \in C^1(\overline{\Omega})$ satisfy the uniform ellpticity condition

$$\sum_{i,j=1}^{n} a^{ij}(x)\xi_i\xi_j \ge \lambda |\xi|^2 \quad \forall x \in \Omega,$$

for some $\lambda > 0$. Let $\alpha \in (0,1)$ be fixed and suppose you know that, for every $f \in C^{0,\alpha}(\overline{\Omega})$, the weak solution $u \in H^1_0(\Omega)$ to the problem

$$\begin{cases} -\sum_{i,j=1}^{n} \partial_i \left(a^{ij}(x) \partial_j u \right) = f & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega. \end{cases}$$
 (\bigtriangleup)

2/8

 $||u||_{C^{2,\alpha}(\Omega)} \le C ||f||_{C^{0,\alpha}(\Omega)},$

for a constant C that does not depend on u and f.

Solution. Let

$$\mathcal{L}: L^2(\Omega) \to H^2(\Omega)$$

be the linear map that to f associates the unique (weak) solution to (Δ) which we know to be in $H^2(\Omega)$ by L^2 -elliptic estimates (Satz 9.5.1).

If we restrict \mathcal{L} to the subspace

$$X = C^{0,\alpha}(\overline{\Omega}) \subset L^2(\Omega),$$

then by assumption we get that \mathcal{L} maps X into

$$Y = C^{2,\alpha}(\overline{\Omega}) \subset H^2(\Omega).$$

If we endow these spaces with the norms

$$\| \cdot \|_{X} = \| \cdot \|_{C^{0,\alpha}(\Omega)}, \\ \| \cdot \|_{Y} = \| \cdot \|_{C^{2,\alpha}(\Omega)},$$

and we are able to prove that \mathcal{L} is continuous from X to Y, we are done.

The spaces in question are Banach and so by the Closed Graph Theorem it is enough to prove that, if $(f_k, \mathcal{L}(f_k))_k$ is a sequence in $X \times Y$ so that

$$(f_k, \mathcal{L}(f_k)) \xrightarrow{k \to \infty} (f, w) \text{ in } X \times Y,$$

then $w = \mathcal{L}(f)$. Now, by definition $u_k = \mathcal{L}(f_k)$ satisfies

$$\sum_{ij=1}^{n} \int_{\Omega} a^{ij}(x) \,\partial_{j} u_{k} \,\partial_{i} \varphi \,dx = \int_{\Omega} f_{k} \,\varphi \,dx, \quad \forall \,\varphi \in C_{c}^{\infty}(\Omega),$$

but since $f_k \to f$ in $C^0(\overline{\Omega})$ and $\nabla u_k \to \nabla w$ in $C^0(\overline{\Omega})$, we may pass to the limit in this expression and deduce that w is a weak solution of (Δ) , and hence that $\mathcal{L}(f) = w$. \Box

Exercise 12.4 Let $\Omega \subset \mathbb{R}^n$ be a bounded, regular domain.

(i) Prove that for every $\alpha \geq 1$, every $u \in C^1(\overline{\Omega})$ and every vector field $T \in C^1(\overline{\Omega}, \mathbb{R}^n)$, there holds

$$\int_{\Omega} |u|^{\alpha} \operatorname{div}(T) \, dx + \alpha \int_{\Omega} |u|^{\alpha - 1} \langle \nabla u, T \rangle \, dx = \int_{\partial \Omega} |u|^{\alpha} \langle T, \nu \rangle \, d\sigma,$$

where ν is the exerior unit normal field on $\partial\Omega$.

(ii) Argue suitably on T and α and u to deduce that, for every $1 \le p \le n$, the usual continuous embedding for the trace operator can be improved to be

$$\cdot|_{\partial\Omega}: W^{1,p}(\Omega) \to L^{p^{\sharp}}(\partial\Omega), \quad u \mapsto u|_{\partial\Omega},$$

where

$$p^{\sharp} = \frac{(n-1)p}{n-p}$$
 when $p < n$,

or any number in $[1, \infty)$ when p = n.

Solution. (i) Immediate integrating by parts.

(ii) Let us assume first that $u \in C^1(\overline{\Omega})$ and p < n. Let T any be fixed extension in $C^1(\overline{\Omega}, \mathbb{R}^n)$ of the unit normal field ν of Ω , letting by Hölder's inequality we may estimate

$$\left|\int_{\Omega} |u|^{\alpha-1} \langle \nabla u, T \rangle \, dx\right| \le C \|u\|_{L^{p'(\alpha-1)}(\Omega)}^{\alpha-1} \|\nabla u\|_{L^{p}(\Omega)},$$

and similarly

$$\left| \int_{\Omega} |u|^{\alpha} \operatorname{div}(T) \, dx \right| \leq C \|u\|_{L^{\alpha}(\Omega)}^{\alpha},$$

where p' is the conjugate of p. Now if $p^* = \frac{np}{n-p}$ denotes the Sobolev conjugate of p, we determine α so that

$$p'(\alpha - 1) \stackrel{!}{=} p^*$$

i.e. $\alpha = p^{\sharp}$ as above.

By (i) we deduce the estimate

$$\|u\|_{L^{p^{\sharp}}(\partial\Omega)}^{p^{\sharp}} \le C\Big(\|\nabla u\|_{L^{p}(\Omega)}\|u\|_{L^{p^{\ast}}(\Omega)}^{p^{\sharp}-1} + \|u\|_{L^{p^{\sharp}}(\Omega)}^{p^{\sharp}}\Big),$$

but since Ω is bounded and $p^{\sharp} < p^*$, we have $\|u\|_{L^{p^{\sharp}}(\Omega)} \leq \|u\|_{L^{p^*}(\Omega)}$, whence

$$\|u\|_{L^{p^{\sharp}}(\partial\Omega)} \le C\Big(\|\nabla u\|_{L^{p}(\Omega)}^{\frac{1}{p^{\sharp}}} \|u\|_{L^{p^{*}}(\Omega)}^{\frac{p^{\sharp}-1}{p^{\sharp}}} + \|u\|_{L^{p^{*}}(\Omega)}\Big);$$

using Young's inequality on the first term on the right hand side and then Sobolev inequality finally gives

$$||u||_{L^{p^{\sharp}}(\partial\Omega)} \le C\Big(||\nabla u||_{L^{p}(\Omega)} + ||u||_{L^{p^{*}}(\Omega)}\Big) \le C||u||_{W^{1,p}(\Omega)}.$$

where $C = C(n, \Omega, p)$.

Now for general $u \in W^{1,p}(\Omega)$ (p < n) we may argue, as usual, by approximation: if $(u_k)_k \in C^{\infty}(\overline{\Omega})$ converges to u, then the above inequality gives that $(u|_{\partial\Omega})_k$ is Cauchy in $L^{p^{\sharp}}(\partial\Omega)$, and thus by uniqueness of the limit that $u|_{\partial\Omega}$ has to be in $L^{p^{\sharp}}(\partial\Omega)$.

For p = n, since $W^{1,n}(\Omega) \hookrightarrow \bigcap_{1 \le p \le n} W^{1,p}(\Omega)$, the thesis follows at once. \Box

Exercise 12.5 Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be Banach spaces. Given $A_0, A_1 \in L(X, Y)$ we define $A_t = (1-t)A_0 + tA_1$ for every $t \in [0, 1]$ and assume that there exists C > 0 so that, for every $t \in [0, 1]$ and every $x \in X$ there holds

$$\|x\|_{X} \le C \|A_{t}x\|_{Y}.$$
(*)

Prove that the statements

(i) A_0 is surjective,

(ii) A_1^* (the dual of A_1) is injective with closed range,

are equivalent by using the following method: define

 $I = \{t \in [0, 1] \mid A_t \text{ is surjective}\}$

and prove

- (a) Either if (i) or (ii) hold, then $I \neq \emptyset$.
- (b) The set $I \subset [0, 1]$ is relatively open.
- (c) The set $I \subset [0, 1]$ is closed.

Combine (a), (b) and (c) to show I = [0, 1] and conclude.

Solution. We proceed following the outlined scheme.

- (a) Let $I := \{t \in [0, 1] \mid A_t \text{ is surjective}\}$. If we assume statement (i), then $0 \in I$. If we assume statement (ii), then $1 \in I$ by Satz 6.2.2. Therefore, $I \neq \emptyset$ in both cases.
- (b) Let $t_0 \in I := \{t \in [0,1] \mid A_t \text{ is surjective}\}$. Assumption (*) implies that A_{t_0} is also injective and that the inverse is continuous: $A_{t_0}^{-1} \in L(Y,X)$. For any $t \in [0,1]$, we have

$$A_t = A_{t_0} - (A_{t_0} - A_t) = \left(1 - (A_{t_0} - A_t)A_{t_0}^{-1}\right)A_{t_0},$$

$$A_{t_0} - A_t = (1 - t_0)A_0 + t_0A_1 - (1 - t)A_0 - tA_1 = (t - t_0)(A_0 - A_1).$$

Let $B := (A_{t_0} - A_t)A_{t_0}^{-1} \in L(Y,Y)$. By Satz 2.2.7 the operator (1 - B) is invertible with inverse $(1 - B)^{-1} \in L(Y,Y)$ and in particular surjective, if ||B|| < 1. Since

$$||B|| \le ||A_{t_0} - A_t|| ||A_{t_0}^{-1}|| = |t - t_0| ||A_0 - A_1|| ||A_{t_0}^{-1}||$$

we guarantee surjectivity of (1-B) if $t \in [0,1]$ satisfies $|t-t_0| < (||A_0 - A_1|| ||A_{t_0}^{-1}||)^{-1}$. In this case we obtain that A_t is surjective, since A_{t_0} is surjective by assumption. Therefore, the set $I \subset [0,1]$ is open.

(c) Let $(t_k)_{k\in\mathbb{N}}$ be a sequence in I such that $t_k \to t_\infty$ as $k \to \infty$ for some $t_\infty \in [0, 1]$. We claim that $A_{t_\infty} \in L(X, Y)$ is surjective. Let $y \in Y$ be arbitrary. Since $t_k \in I$, there exists $x_k \in X$ such that $A_{t_k} x_k = y$ for every $k \in \mathbb{N}$. Moreover, by assumption (*),

$$\begin{aligned} \|x_k - x_n\|_X &\leq C \|A_{t_k}(x_k - x_n)\|_Y \\ &= C \|A_{t_k}x_k - A_{t_n}x_n + (A_{t_n} - A_{t_k})x_n\|_Y \\ &= C \|(A_{t_n} - A_{t_k})x_n\|_Y \\ &\leq C \|A_{t_n} - A_{t_k}\| \|x_n\|_X \\ &\leq C^2 \|t_k - t_n\| \|A_0 - A_1\| \|A_{t_n}x_n\|_Y = C^2 \|t_k - t_n\| \|A_0 - A_1\| \|y\|_Y \end{aligned}$$

which implies that $(x_k)_{k\in\mathbb{N}}$ is a Cauchy-sequence in X. Since $(X, \|\cdot\|_X)$ is complete, $(x_k)_{k\in\mathbb{N}}$ has a limit $x_{\infty} \in X$. Moreover,

$$\begin{aligned} \|y - A_{t_{\infty}} x_{\infty}\|_{Y} &= \|A_{t_{k}} x_{k} - A_{t_{\infty}} x_{\infty}\|_{Y} \\ &= \|(A_{t_{k}} - A_{t_{\infty}}) x_{k} + A_{t_{\infty}} (x_{k} - x_{\infty})\|_{Y} \\ &\leq C \|A_{t_{k}} - A_{t_{\infty}}\| \|y\|_{Y} + \|A_{t_{\infty}}\| \|x_{k} - x_{\infty}\|_{X} \\ &\leq C \|t_{\infty} - t_{k}\| \|A_{0} - A_{1}\| \|y\|_{Y} + \|A_{t_{\infty}}\| \|x_{k} - x_{\infty}\|_{X} \xrightarrow{k \to \infty} 0. \end{aligned}$$

Hence, $A_{t_{\infty}}x_{\infty} = y$. Since $y \in Y$ is arbitrary, $t_{\infty} \in I$ follows. Therefore, the set $I \subset [0, 1]$ is closed.

Since [0, 1] is a connected topological space and $I \subset [0, 1]$ both open and closed by (b) and (c), we have either $I = \emptyset$ or I = [0, 1]. According to Satz 6.2.2, A_1 is surjective if and only if A_1^* is injective with closed image. Hence, equivalence of (i) and (ii) follows:

- (i) $\Leftrightarrow 0 \in I \Rightarrow I = [0, 1] \Rightarrow A_1$ surjective \Leftrightarrow (ii)
- (ii) $\Leftrightarrow 1 \in I \Rightarrow I = [0, 1] \Rightarrow A_0$ surjective \Leftrightarrow (i).

Hints to Exercises.

- **12.1** Use at your advantage that the desired estimate (\star) is invariant by additive constants.
- **12.2** Look at $\Delta |u|^2$: use the Divergence theorem to deduce a useful information from it.
- **12.3** Use suitably the Closed Graph Theorem.
- 12.5 Recall the basic fact about operator with closed image (§6.2).