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Exercise 12.1 Let Ω ⊂ Rn be a bounded regular domain, let f ∈ L2(Ω) and let
u ∈ H1

0 (Ω) be a weak solution of

−∆u = f in Ω,

Prove that then for every Ω′ ⊂⊂ Ω, ∇u ∈ H1(Ω′), and there holds

‖∇u‖H1(Ω′) ≤ C
(
‖f‖L2(Ω) + ‖∇u‖L2(Ω)

)
, (?)

for some constant C = C(Ω,Ω′) > 0.

Solution. The fact that ∇u ∈ H1(Ω′) follows at once from the elliptic regularity
theory (Satz 9.2.1).

To obtain the estimate, it suffices to note that

∇u = ∇(u− λ) ∀ λ ∈ R,

so that by the interior elliptic estimate we have

‖∇u‖H1(Ω′) ≤ ‖∇(u− λ)‖H1(Ω′)

≤ ‖u− λ‖H2(Ω′)

≤ C
(
‖∆(u− λ)‖L2(Ω) + ‖u− λ‖L2(Ω)

)
= C

(
‖f‖L2(Ω) + ‖u− λ‖L2(Ω)

)
,

and so choosing λ = −
∫

Ω u dx, Poincaré’s inequality gives

‖u− λ‖L2(Ω) ≤ C‖∇u‖L2(Ω),

thus yielding (?).

Exercise 12.2 Let BR(x0) ⊂ Rn and let u : BR(x0) → R be harmonic. Prove that
the function

ϕ(r) = 1
rn

∫
Br(x0)

|u(x)|2 dx, r ∈ (0, R),

is increasing.
Remark. This yields that for harmonic functions Satz 10.2.1 (i) holds with C = 1.
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Solution. Without loss of generality we may assume x0 = 0. In polar coordinates ϕ
reads

ϕ(r) = 1
rn

∫ r

0

∫
Sn−1
|u(ρϑ)|2 dϑρn−1 dρ,

so differentiating ϕ in r yields

ϕ′(r) = − n

rn+1

∫ r

0

∫
Sn−1
|u(ρϑ)|2 dϑρn−1 dρ+ 1

r

∫
Sn−1
|u(rϑ)|2 dϑ.

We then have to prove that the right-hand side is non negative.

Since u is harmonic we have

∆|u|2 = 2|∇u|2 ≥ 0,

so integrating this inequality and using the Divergence Theorem gives

0 ≤
∫
Br

∆|u(x)|2 dx = rn−1
∫
Sn−1

∂r|u(rϑ)|2 dϑ = rn−1 d

dr

∫
Sn−1
|u(rϑ)|2 dϑ,

so the function r 7→
∫
Sn−1 |u(rϑ)|2 dϑ is non decreasing. Consequently

− n

rn+1

∫ r

0

∫
Sn−1
|u(ρϑ)|2 dϑρn−1 dρ

≤ − n

rn+1

∫ r

0
ρn−1 dρ

∫
Sn−1
|u(rϑ)|2 dϑ

= −1
r

∫
Sn−1
|u(rϑ)|2 dϑ,

and this information is precisely what is needed to conclude that ϕ′(r) ≥ 0.

Exercise 12.3 Let Ω ⊂⊂ Rn be a bounded, regular domain, let aij = aji ∈ C1(Ω)
satisfy the uniform ellpticity condition

n∑
i,j=1

aij(x)ξiξj ≥ λ|ξ|2 ∀x ∈ Ω,

for some λ > 0. Let α ∈ (0, 1) be fixed and suppose you know that, for every
f ∈ C0,α(Ω), the weak solution u ∈ H1

0 (Ω) to the problem
−

n∑
i,j=1

∂i
(
aij(x)∂ju

)
= f in Ω,

u = 0 on ∂Ω.
(4)
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belongs to C2,α(Ω). Prove that then the L2–elliptic estimate (Satz 9.5.1) is enough to
deduce that there holds

‖u‖C2,α(Ω) ≤ C‖f‖C0,α(Ω),

for a constant C that does not depend on u and f .

Solution. Let

L : L2(Ω)→ H2(Ω)

be the linear map that to f associates the unique (weak) solution to (4) which we
know to be in H2(Ω) by L2–elliptic estimates (Satz 9.5.1).

If we restrict L to the subspace

X = C0,α(Ω) ⊂ L2(Ω),

then by assumption we get that L maps X into

Y = C2,α(Ω) ⊂ H2(Ω).

If we endow these spaces with the norms

‖ · ‖X = ‖ · ‖C0,α(Ω),

‖ · ‖Y = ‖ · ‖C2,α(Ω),

and we are able to prove that L is continuous from X to Y , we are done.

The spaces in question are Banach and so by the Closed Graph Theorem it is enough
to prove that, if (fk,L(fk))k is a sequence in X × Y so that

(fk,L(fk)) k→∞−−−→ (f, w) in X × Y,

then w = L(f). Now, by definition uk = L(fk) satisfies
n∑

ij=1

∫
Ω
aij(x) ∂juk ∂iϕdx =

∫
Ω
fk ϕdx, ∀ϕ ∈ C∞c (Ω),

but since fk → f in C0(Ω) and ∇uk → ∇w in C0(Ω), we may pass to the limit in this
expression and deduce that w is a weak solution of (4), and hence that L(f) = w.

Exercise 12.4 Let Ω ⊂ Rn be a bounded, regular domain.
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(i) Prove that for every α ≥ 1, every u ∈ C1(Ω) and every vector field T ∈
C1(Ω,Rn), there holds∫

Ω
|u|α div(T ) dx+ α

∫
Ω
|u|α−1〈∇u, T 〉 dx =

∫
∂Ω
|u|α〈T, ν〉 dσ,

where ν is the exerior unit normal field on ∂Ω.

(ii) Argue suitably on T and α and u to deduce that, for every 1 ≤ p ≤ n, the usual
continuous embedding for the trace operator can be improved to be

·|∂Ω : W 1,p(Ω)→ Lp
](∂Ω), u 7→ u|∂Ω,

where

p] = (n− 1)p
n− p

when p < n,

or any number in [1,∞) when p = n.

Solution. (i) Immediate integrating by parts.

(ii) Let us assume first that u ∈ C1(Ω) and p < n. Let T any be fixed extension in
C1(Ω,Rn) of the unit normal field ν of Ω, letting by Hölder’s inequality we may
estimate∣∣∣∣∣

∫
Ω
|u|α−1〈∇u, T 〉 dx

∣∣∣∣∣ ≤ C‖u‖α−1
Lp
′(α−1)(Ω)‖∇u‖Lp(Ω),

and similarly∣∣∣∣∣
∫

Ω
|u|α div(T ) dx

∣∣∣∣∣ ≤ C‖u‖αLα(Ω),

where p′ is the conjugate of p. Now if p∗ = np
n−p denotes the Sobolev conjugate

of p, we determine α so that

p′(α− 1) != p∗

i.e. α = p] as above.

By (i) we deduce the estimate

‖u‖p
]

Lp
] (∂Ω)

≤ C
(
‖∇u‖Lp(Ω)‖u‖p

]−1
Lp∗ (Ω) + ‖u‖p

]

Lp
] (Ω)

)
,

4/8



d-math
Prof. M. Struwe

Functional Analysis II
Exercise Sheet 12

ETH Zürich
Spring 2020

but since Ω is bounded and p] < p∗, we have ‖u‖
Lp
] (Ω) ≤ ‖u‖Lp∗ (Ω), whence

‖u‖
Lp
] (∂Ω) ≤ C

(
‖∇u‖

1
p]

Lp(Ω)‖u‖
p]−1
p]

Lp∗ (Ω) + ‖u‖Lp∗ (Ω)

)
;

using Young’s inequality on the first term on the right hand side and then
Sobolev inequality finally gives

‖u‖
Lp
] (∂Ω) ≤ C

(
‖∇u‖Lp(Ω) + ‖u‖Lp∗ (Ω)

)
≤ C‖u‖W 1,p(Ω).

where C = C(n,Ω, p).

Now for general u ∈ W 1,p(Ω) (p < n) we may argue, as usual, by approximation:
if (uk)k ∈ C∞(Ω) converges to u, then the above inequality gives that (u|∂Ω)k is
Cauchy in Lp](∂Ω), and thus by uniqueness of the limit that u|∂Ω has to be in
Lp

](∂Ω).

For p = n, since W 1,n(Ω) ↪→ ⋂
1≤p<nW

1,p(Ω), the thesis follows at once.

Exercise 12.5 Let (X, ‖·‖X) and (Y, ‖·‖Y ) be Banach spaces. Given A0, A1 ∈ L(X, Y )
we define At = (1− t)A0 + tA1 for every t ∈ [0, 1] and assume that there exists C > 0
so that, for every t ∈ [0, 1] and every x ∈ X there holds

‖x‖X ≤ C‖Atx‖Y . (∗)

Prove that the statements

(i) A0 is surjective,

(ii) A∗1 (the dual of A1) is injective with closed range,

are equivalent by using the following method: define

I = {t ∈ [0, 1] | At is surjective}

and prove

(a) Either if (i) or (ii) hold, then I 6= ∅.

(b) The set I ⊂ [0, 1] is relatively open.

(c) The set I ⊂ [0, 1] is closed.

Combine (a), (b) and (c) to show I = [0, 1] and conclude.

Solution. We proceed following the outlined scheme.

5/8



ETH Zürich
Spring 2020

Functional Analysis II
Exercise Sheet 12

d-math
Prof. M. Struwe

(a) Let I := {t ∈ [0, 1] | At is surjective}. If we assume statement (i), then 0 ∈ I.
If we assume statement (ii), then 1 ∈ I by Satz 6.2.2. Therefore, I 6= ∅ in both
cases.

(b) Let t0 ∈ I := {t ∈ [0, 1] | At is surjective}. Assumption (∗) implies that At0
is also injective and that the inverse is continuous: A−1

t0 ∈ L(Y,X). For any
t ∈ [0, 1], we have

At = At0 − (At0 − At) =
(
1− (At0 − At)A−1

t0

)
At0 ,

At0 − At = (1− t0)A0 + t0A1 − (1− t)A0 − tA1 = (t− t0)(A0 − A1).

Let B := (At0 − At)A−1
t0 ∈ L(Y, Y ). By Satz 2.2.7 the operator (1 − B) is

invertible with inverse (1 − B)−1 ∈ L(Y, Y ) and in particular surjective, if
‖B‖ < 1. Since

‖B‖ ≤ ‖At0 − At‖‖A−1
t0 ‖ = |t− t0|‖A0 − A1‖‖A−1

t0 ‖

we guarantee surjectivity of (1−B) if t ∈ [0, 1] satisfies |t−t0| < (‖A0 − A1‖‖A−1
t0 ‖)

−1.
In this case we obtain that At is surjective, since At0 is surjective by assumption.
Therefore, the set I ⊂ [0, 1] is open.

(c) Let (tk)k∈N be a sequence in I such that tk → t∞ as k →∞ for some t∞ ∈ [0, 1].
We claim that At∞ ∈ L(X, Y ) is surjective. Let y ∈ Y be arbitrary. Since
tk ∈ I, there exists xk ∈ X such that Atkxk = y for every k ∈ N. Moreover, by
assumption (∗),

‖xk − xn‖X ≤ C‖Atk(xk − xn)‖Y
= C‖Atkxk − Atnxn + (Atn − Atk)xn‖Y
= C‖(Atn − Atk)xn‖Y
≤ C‖Atn − Atk‖‖xn‖X

≤ C2|tk − tn|‖A0 − A1‖‖Atnxn‖Y = C2|tk − tn|‖A0 − A1‖‖y‖Y

which implies that (xk)k∈N is a Cauchy-sequence in X. Since (X, ‖·‖X) is
complete, (xk)k∈N has a limit x∞ ∈ X. Moreover,

‖y − At∞x∞‖Y = ‖Atkxk − At∞x∞‖Y
= ‖(Atk − At∞)xk + At∞(xk − x∞)‖Y
≤ C‖Atk − At∞‖‖y‖Y + ‖At∞‖‖xk − x∞‖X
≤ C|t∞ − tk|‖A0 − A1‖‖y‖Y + ‖At∞‖‖xk − x∞‖X

k→∞−−−→ 0.
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Hence, At∞x∞ = y. Since y ∈ Y is arbitrary, t∞ ∈ I follows. Therefore, the set
I ⊂ [0, 1] is closed.

Since [0, 1] is a connected topological space and I ⊂ [0, 1] both open and closed by (b)
and (c), we have either I = ∅ or I = [0, 1]. According to Satz 6.2.2, A1 is surjective if
and only if A∗1 is injective with closed image. Hence, equivalence of (i) and (ii) follows:

(i) ⇔ 0 ∈ I ⇒ I = [0, 1] ⇒ A1 surjective ⇔ (ii)
(ii) ⇔ 1 ∈ I ⇒ I = [0, 1] ⇒ A0 surjective ⇔ (i).
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Hints to Exercises.

12.1 Use at your advantage that the desired estimate (?) is invariant by additive
constants.

12.2 Look at ∆|u|2: use the Divergence theorem to deduce a useful information from
it.

12.3 Use suitably the Closed Graph Theorem.

12.5 Recall the basic fact about operator with closed image (§6.2).
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