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Exercise 12.1 Let Q C R" be a bounded regular domain, let f € L*(Q2) and let
u € H}(Q) be a weak solution of

—Au=f in Q,
Prove that then for every Q' CcC Q, Vu € H'({'), and there holds

IVl ey < C(I1F 2w + 1 Vull2@) (%)
for some constant C' = C'(£2,9) > 0.
Solution. The fact that Vu € H'() follows at once from the elliptic regularity

theory (Satz 9.2.1).

To obtain the estimate, it suffices to note that
Vu=V(u—\) VAeER,
so that by the interior elliptic estimate we have

[Vull gy < IV (u— N[ a1 @)
< C(1A =Nz + llu = Allz2(o)

= C(IIfllz2@ + llu = M2y )

and so choosing A\ = f, udz, Poincaré’s inequality gives
[u = Alr20) < C[|Vullr2(),

thus yielding (). O

Exercise 12.2 Let Bg(x¢) C R™ and let u : Bg(z9) — R be harmonic. Prove that
the function

o) = [, lu@fde. re(O.R)

T?’l
is increasing.

Remark. This yields that for harmonic functions Satz 10.2.1 (i) holds with C' = 1.
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Solution. Without loss of generality we may assume zy = 0. In polar coordinates ¢
reads

Loy 2 19 n-1
o(r) = — [ [ luloo)? dop" dp,

so differentiating ¢ in r yields

_ Wl/[snl lu(p9)[2 ddp™ " dp + - / lu(r9) 2 9.

We then have to prove that the right-hand side is non negative.

Since u is harmonic we have
Alul* = 2|Vul* > 0,
so integrating this inequality and using the Divergence Theorem gives
d
O</A 24 :"—1/ O, [u(rd)|? di) = "—L/ 92 do,
< [ Au@Pde = [ ofuGo)Ras = [ )

so the function 7 — [gn-1 |u(rd)|?

n r _
—Wl [ uleo) g dp
< +1/ - ldp/ w(rd)|? 49
TTL

== 9)|? dv,
R

dy is non decreasing. Consequently

and this information is precisely what is needed to conclude that ¢'(r) > 0. O

Exercise 12.3 Let Q CC R" be a bounded, regular domain, let a” = " € C*(Q)
satisfy the uniform ellpticity condition

n

3 di()6E > MNEP Yo e,

1,7=1

for some A > 0. Let a € (0,1) be fixed and suppose you know that, for every
[ € C%(Q), the weak solution u € H} () to the problem

n

— di(a”(z)0u) = f in Q,
P (a(@)05u) = f )

u=0 on 0f).
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belongs to C%%(Q). Prove that then the L?-elliptic estimate (Satz 9.5.1) is enough to
deduce that there holds

||U||C2!a(9) < C||f||00va(9)

for a constant C' that does not depend on u and f.

Solution. Let
L:L*Q) — H*(Q)

be the linear map that to f associates the unique (weak) solution to (A) which we
know to be in H?(Q) by L* elliptic estimates (Satz 9.5.1).

If we restrict £ to the subspace
X =0 (Q) c L*(9),

then by assumption we get that £ maps X into
Y = C**(Q) C H*(Q).

If we endow these spaces with the norms

I llx = [ lleoe,
-y =1 lleze),
and we are able to prove that £ is continuous from X to Y, we are done.

The spaces in question are Banach and so by the Closed Graph Theorem it is enough
to prove that, if (fx, £(fx))x is a sequence in X x Y so that

(fi: L(fx)) — Lt (f,w) in X xY,

then w = L(f). Now, by definition u, = L(fx) satisfies

Z/ x) Ojuy, zgodx—/fkgpdx Ve Cr(Q),

ij=1

but since fi, — f in C°(Q) and Vu, — Vw in C°(Q), we may pass to the limit in this
expression and deduce that w is a weak solution of (A), and hence that £(f) = w. O

Exercise 12.4 Let 2 C R" be a bounded, regular domain.
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(i) Prove that for every a > 1, every u € C*(Q) and every vector field T €
C1(Q,R"), there holds

“ Qiv(T) d / “‘1V,Td:/ T 1) do,
/Q\u| (7)o +a [ " (Vu, Ty de = [ u*(T,v)do

where v is the exerior unit normal field on 0f).

(ii) Argue suitably on 7" and « and u to deduce that, for every 1 < p < n, the usual
continuous embedding for the trace operator can be improved to be

Joa s WHP(Q) = L (09),  u— uloq,
where

-1
pti = 7(71 )p when p < n,

n—p

or any number in [1,00) when p = n.

Solution. (i) Immediate integrating by parts.

(i) Let us assume first that v € C*(Q) and p < n. Let T any be fixed extension in
C1(Q,R") of the unit normal field v of €, letting by Holder’s inequality we may

estimate
‘/ [l (Y, T) der| < Cllull5irty oo [V o)
and similarly
[ i) o] < o,
where p’ is the conjugate of p. Now if p* ”p denotes the Sobolev conjugate

of p, we determine « so that

!

pla—1)=p"
ie. a = p* as above.

By (i) we deduce the estimate

HUHL,,u(89 < C(IVull ooy [l g +HUHLPu )
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but since 2 is bounded and p* < p*, we have |[ul|,,: @ < || 1o+ (), Whence

pul

1
i
[l ot oy < C IVl Foey 1l

ot ||u||LP*(Q))§

ph
P (

using Young’s inequality on the first term on the right hand side and then
Sobolev inequality finally gives

el oy < C(I9ullzm@) + lllzor @) < Cllullwro.

where C' = C(n, Q, p).

Now for general u € W'P(Q) (p < n) we may argue, as usual, by approximation:

if (ug)r € C*°(Q2) converges to u, then the above inequality gives that (u|sq)x is
Cauchy in L¥* (092), and thus by uniqueness of the limit that u|sq has to be in

L (892).

For p = n, since Wi (Q) — Mi<p<n W1P(Q), the thesis follows at once. 0

Exercise 12.5 Let (X, ||-||x) and (Y ||-||y’) be Banach spaces. Given Ay, A; € L(X,Y)
we define A; = (1 —t)Ao +tA; for every t € [0, 1] and assume that there exists C' > 0

so that, for every t € [0, 1] and every x € X there holds
2]l x < Cll Ay

Prove that the statements
(i) Ap is surjective,
(ii) Af (the dual of A;) is injective with closed range,

are equivalent by using the following method: define
I ={te]0,1] | A; is surjective}
and prove
(a) Either if (i) or (ii) hold, then I # 0.
(b) The set I C [0,1] is relatively open.
(¢) The set I C [0,1] is closed.

Combine (a), (b) and (c) to show I = [0, 1] and conclude.

Solution. We proceed following the outlined scheme.

(*)
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(a) Let I := {t € [0,1] | A; is surjective}. If we assume statement (i), then 0 € I.
If we assume statement (ii), then 1 € I by Satz 6.2.2. Therefore, I # () in both
cases.

(b) Let tg € I := {t € [0,1] | A; is surjective}. Assumption (x) implies that Ay,
is also injective and that the inverse is continuous: A;' € L(Y, X). For any
t € [0,1], we have

A=Ay — (A = A) = (1= (A — A)AL) Ay,
Ato — At = (1 — to)AO —|— toAl — (]_ — t)AO — tAl = (t — to)(A[) — Al)

Let B := (A, — A)A;' € L(Y,Y). By Satz 2.2.7 the operator (1 — B) is
invertible with inverse (1 — B)™! € L(Y,Y) and in particular surjective, if
| B|| < 1. Since

IBII < 1A — Adllll Az | = [t = tolll Ao — Aulll| A7

we guarantee surjectivity of (1—B) if t € [0, 1] satisfies [t—to| < (|40 — A1]| ||At_01||)71.
In this case we obtain that A; is surjective, since A;, is surjective by assumption.
Therefore, the set I C [0, 1] is open.

(¢) Let (tx)ren be a sequence in [ such that ¢, — ¢, as k — oo for some ¢, € [0, 1].
We claim that A; € L(X,Y) is surjective. Let y € Y be arbitrary. Since
tr € I, there exists x; € X such that A, x, =y for every k € N. Moreover, by
assumption (),

[k = znllx < Cll Ay (21 — 20y
= C|| A,z — Ar,xn + (Ap, — Ar )2l
= Cl[(Ar, — Ay )zally
< CllAr, = Ay |[llznllx
< Oty — talll Ao — Aull| Ar, zally = C*[tr — tal| Ao — Asllllylly

which implies that (zj)ren is a Cauchy-sequence in X. Since (X, ||-||x) is
complete, (z)ren has a limit z,, € X. Moreover,

ly — Atoo%oHY = ||Atk$k - Atoo%oHY
= ||(Atk - Atoo)mk + Atoo (:Ek - xoo)HY

< Ol Ay, = A llllylly + A lllze — vl x
k—o0
< Cltoo =t Ao — Arllllylly + [[Ars[l2x — zoollx = 0.
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Hence, A;_x., =y. Since y € Y is arbitrary, t,, € I follows. Therefore, the set
I C [0,1] is closed.

Since [0, 1] is a connected topological space and I C [0, 1] both open and closed by (b)
and (c), we have either I = () or I = [0, 1]. According to Satz 6.2.2, A; is surjective if
and only if A} is injective with closed image. Hence, equivalence of (i) and (ii) follows:
i) & 0el = [1=10,1] = A surjective <& (i)
i) & 1€l = 1=10,1] = Apsurjective & (i).
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Hints to Exercises.

12.1 Use at your advantage that the desired estimate (x) is invariant by additive
constants.

12.2 Look at Alu|?: use the Divergence theorem to deduce a useful information from
it.

12.3 Use suitably the Closed Graph Theorem.
12.5 Recall the basic fact about operator with closed image (§6.2).



