Exercise Sheet 12

1. Characterization of the cut value

Prove Lemma 6.4 from the lecture:

Suppose that M is complete. Let $c_u \colon \mathbb{R} \to M$, $c_u(t) \coloneqq \exp_p(tu)$, be a unit speed geodesic. If the cut value t_u is finite then (at least) one of the following holds for $t = t_u$:

- (i) $c_u(t)$ is the first conjugate point of p along $c_u|_{[0,t]}$,
- (ii) there exists $v \in TM_p$, |v| = 1, $v \neq u$ with $c_u(t) = c_v(t)$.

Conversely, if (i) or (ii) is satisfied for some $t \in (0, \infty)$, then $t_u \leq t$.

2. The cut locus

Let M be a complete manifold and let $p \in M$.

- (i) Prove that the function $u \mapsto t_u$, defined on $S^{m-1} \subset TM_p$, is continuous.
- (ii) Show that $M = \exp_p(U_p) \cup \operatorname{Cut}(p)$, where the union is disjoint. Moreover, we have a diffeomorphism $\exp_p|_{U_p} \colon U_p \to M \setminus \operatorname{Cut}(p)$.

3. The injectivity radius of compact manifolds

Let M be a complete manifold and let $p \in M$.

- (i) If $q \in \operatorname{Cut}(p)$ realizes the minimum distance from p to $\operatorname{Cut}(p)$, then either there is a minimal geodesic c_u from p to q along which q is conjugate to p, or there are precisely two minimal geodesics c_u, c_v from p to q such that $c'_v(t_v) = -c'_u(t_u)$.
- (ii) If M is a compact Riemannian manifold and $\kappa > 0$ is such that $\kappa \ge \sec$, then either $\operatorname{inj}(M) \ge D_{\kappa}$, or there exists a shortest closed geodesic cin M with $L(c) = 2 \operatorname{inj}(M)$.

Submission: until 12:15, May 26th, by email at the following address: tommaso.goldhirsch@math.ethz.ch