Exercise Sheet 3

1. Bi-invariant Metrics

A Riemannian metric $\langle \cdot, \cdot \rangle$ on a Lie group G is called *bi-invariant* if for all $g \in G$ the left-translation $l_g \colon G \to G$, $l_g(x) \coloneqq gx$, and the right-translation $r_q: G \to G, r_q(x) \coloneqq xg$, are isometries.

a) Show that for $G = SO(n, \mathbb{R}), TG_g = \{(g, gA) : A \in \mathbb{R}^{n \times n}, A = -A^T\},\$

$$\langle (g, gA), (g, gB) \rangle \coloneqq \frac{1}{2} \operatorname{tr}(AB^{\mathrm{T}})$$

defines a bi-invariant metric on G.

b) Show that every compact Lie group admits a bi-invariant metric.

Hint: Define first a left-invariant metric on G, then use an appropriate integration over G.

c) Let G be a Lie group with a bi-invariant metric and let D be the corresponding Levi-Civita connection. Prove that for left-invariant vector fields $X, Y \in \Gamma(TG)$ we have

$$D_X Y = \frac{1}{2} \left[X, Y \right].$$

2. The Levi-Civita connection on a submanifold

Let (\bar{M}, \bar{g}) be a Riemannian manifold with Levi-Civita connection \bar{D} , and let M be a submanifold of \overline{M} , equipped with the induced metric $q := i^* \overline{q}$, where $i: M \to \overline{M}$ is the inclusion map.

Show that the Levi-Civita connection D of (M, g) satisfies $D_X Y = (\overline{D}_X Y)^T$ for all $X, Y \in \Gamma(TM)$, where the superscript T denotes the component tangential to M and $\overline{D}_X Y$ is defined(!) as $\overline{D}_X Y \coloneqq \overline{D}_{\overline{X}} \overline{Y}$ for any extensions $\bar{X}, \bar{Y} \in \Gamma(T\bar{M}) \text{ of } X, Y.$

D-MATH	Differential Geometry II	FS20
Prof. Dr. Urs Lang		

3. Gradient and Hessian form

Let (M, g) be a Riemannian manifold, D the Levi-Civita connection and $f: M \to \mathbb{R}$ a smooth function on M.

a) The gradient grad $f \in \Gamma(TM)$ is defined by

 $df(X) = g(\operatorname{grad} f, X), \quad \forall X \in \Gamma(TM).$

Compute $\operatorname{grad} f$ in local coordinates.

b) The Hessian form $\operatorname{Hess}(f) \in \Gamma(T_{0,2}M)$ is defined by

 $\operatorname{Hess}(f)(X,Y) = g(D_X \operatorname{grad} f, Y), \quad \forall X, Y \in \Gamma(TM).$

Prove that $\operatorname{Hess}(f)$ is symmetric and compute $\operatorname{Hess}(f)$ in local coordinates.

Submission: until 12:15, March 17th, in HG J68.