D-MATH Prof. Dr. Urs Lang

Exercise Sheet 4

1. Existence of closed geodesics

Let (M, g) be a compact Riemannian manifold and $c_0: S^1 \to M$ a continuous closed curve. The purpose of this exercise is to show that in the family of all continuous and piece-wise C^1 curves $c: S^1 \to M$ which are homotopic to c_0 , there is a shortest one and it is a geodesic.

- a) Show that c_0 is homotopic to a piece-wise C^1 -curve c_1 with finite length.
- b) Let $L := \inf_c L(c)$ be the infimum over all piece-wise C^1 curves $c \colon S^1 \to M$ homotopic to c_0 and consider a minimizing sequence $(c_n \colon S^1 \to M)_n$ with $\lim_n L(c_n) = L$. Use compactness of M to construct a piece-wise C^1 -curve $c \colon S^1 \to M$ with length L.

Hint. Cover M with simply connected balls with the property that every two points in a ball are joined by a unique distance minimizing geodesic.

c) Conclude by showing that c is homotopic to c_0 and a geodesic.

2. Metric and Riemannian isometries

Let (M, g) and (M, \bar{g}) be two connected Riemannian manifolds with induced distance functions d and \bar{d} , respectively. Further, let $f: (M, d) \to (\bar{M}, \bar{d})$ be an isometry of metric spaces, i.e. f is surjective and for all $p, p' \in M$ we have $\bar{d}(f(p), f(p')) = d(p, p')$.

- a) Prove that for every geodesic γ in M, $\bar{\gamma} := f \circ \gamma$ is a geodesic in N.
- b) Let $p \in M$. Define $F: TM_p \to T\overline{M}_{f(p)}$ with

$$F(X) := \left. \frac{d}{dt} \right|_{t=0} f \circ \gamma_X(t),$$

where γ_X is the geodesic with $\gamma_X(0) = p$ and $\dot{\gamma}(0) = X$. Show that F is surjective and satisfies F(cX) = cF(X) for all $X \in TM_p$ and $c \in \mathbb{R}$.

- c) Conclude that F is an isometry by proving ||F(X)|| = ||X||.
- d) Prove that F is linear and conclude that f is smooth in a neighborhood of p.
- e) Prove that f is a diffeomorphism for which $f^*\bar{g} = g$ holds.

D-MATH	Differential Geometry II
Prof. Dr. Urs Lang	

FS20

3. Homogeneous Riemannian manifolds

Let (M, g) be a homogeneous Riemannian manifold, i.e. the isometry group of M acts transitively on M. Prove that M is geodesically complete.

Submission: until 12:15, March 24th, by email at the following address: tommaso.goldhirsch@math.ethz.ch