D-MATH				
Prof.	Dr.	Urs	Lang	

Exercise Sheet 5

1. Constant sectional curvature

Let (M, g) be a Riemannian manifold with constant sectional curvature $sec(E) = \kappa \in \mathbb{R}$ for all $E \in G_2(TM)$. Show that

$$R(X,Y)W = \kappa \left(g(Y,W)X - g(X,W)Y\right).$$

2. Ricci curvature

Let (M, g) be a 3-dimensional Riemannian manifold. Show the following:

- a) The Ricci curvature ric uniquely determines the Riemannian curvature tensor R.
- b) If M is an Einstein manifold, that is, a Riemannian manifold (M, g) with ric = kg for some $k \in \mathbb{R}$, then the sectional curvature sec is constant.

3. Divergence and Laplacian

Let (M, g) be a Riemannian manifold with Levi-Civita connection D. The divergence div(Y) of a vector field $Y \in \Gamma(TM)$ is the contraction of the (1, 1)-tensor field $DY: X \mapsto D_X Y$ and the Laplacian $\Delta: C^{\infty}(M) \to C^{\infty}(M)$ is defined by $\Delta f := \operatorname{div}(\operatorname{grad} f)$. Show that:

- a) $\operatorname{div}(fY) = Y(f) + f \operatorname{div} Y$,
- b) $\Delta(fg) = f\Delta g + g\Delta f + 2\langle \operatorname{grad} f, \operatorname{grad} g \rangle$,
- c) Compute Δf in local coordinates.

Submission: until 12:15, March 31st, by email at the following address: tommaso.goldhirsch@math.ethz.ch