Exercise Sheet 8

1. Locally symmetric spaces

Let M be a connected *m*-dimensional Riemannian manifold. Then M is called *locally symmetric* if for all $p \in M$ there is a normal neighborhood B(p, r) such that the *local geodesic reflection* $\sigma_p \coloneqq \exp_p \circ (-\operatorname{id}) \circ \exp_p^{-1} \colon B(p, r) \to B(p, r)$ is an isometry.

(a) Show that if M is locally symmetric, then $DR \equiv 0$. [Use that $d(\sigma_p)_p = -id$ on TM_p .]

(b) Suppose that $DR \equiv 0$. Show that if $c: [-1,1] \to M$ is a geodesic and $\{E_i\}_{i=1}^m$ is a parallel orthonormal frame along c, then $R(E_i, c')c' = \sum_{k=1}^m r_i^k E_k$ for constants r_i^k .

(c) Show that if $DR \equiv 0$, then M is locally symmetric.

[Let $q \in B(p, r), q \neq p$, and $v \in TM_q$. To show that $|d(\sigma_p)_q(v)| = |v|$, consider the geodesic $c: [-1, 1] \to B(p, r)$ with c(0) = p, c(1) = q, and a Jacobi field Y along c with Y(0) = 0 and Y(1) = v. Use (b).]

2. Conjugate points in manifolds with curvature bounded from above

- (a) Prove directly, without using the Rauch Comparison Theorem, that there are no conjugate points in manifolds with non-positive sectional curvature.
- (b) Show that in manifolds with sectional curvature at most κ , where $\kappa > 0$, there are no conjugate points along geodesics of length $< \pi/\sqrt{\kappa}$.
- (c) Show that if $c: [0, \pi/\sqrt{\kappa}] \to M$ is a unit speed geodesic in a manifold with sec $\geq \kappa > 0$, then some c(t) is conjugate to c(0) along $c|_{[0,t]}$.

3. Volume comparison

Let M be an m-dimensional Riemannian manifold with sectional curvature sec $\leq \kappa$, $p \in M$ and r > 0 such that $\exp_p|_{B_r(0)}$ is a diffeomorphism. Furthermore, let $V_{\kappa}^m(r)$ denote the volume of a ball with radius r in the mdimensional model space M_{κ}^m of constant sectional curvature $\kappa \in \mathbb{R}$. Prove that $V(B_r(p)) \geq V_{\kappa}^m$.

Submission: until 12:15, April 28th, by email at the following address: tommaso.goldhirsch@math.ethz.ch