D-MATH		Differ
Prof. Dr.	Urs Lang	

FS20

Exercise Sheet 9

1. Almost complex structure

An almost complex structure J on a manifold M^m is a (1, 1)-tensor field with the following property: if for every $p \in M$ we denote by $J_p: TM_p \to TM_p$ the linear map associated with J (recall Theorem T.3), then

$$J_p \circ J_p = -\operatorname{id}_{TM_p}.$$

Prove that every complex manifold admist an almost complex structure. Hint: Composed with the differential of a complex chart $\varphi \colon U \to \varphi(U) \subset \mathbb{C}^n$, J_p amounts to the multiplication by *i*.

2. Kähler manifolds

Let M be a complex manifold with an almost complex structure $J \in \Gamma(T_{1,1}M)$ (as in Exercise 1). Suppose that M is endowed with an hermitian metric, that is, $g_p(J_pv, J_pw) = g_p(v, w)$ for all $p \in M$ and $v, w \in TM_p$. Show that

$$\omega(X,Y) \coloneqq g(X,JY) \quad (X,Y \in \Gamma(TM))$$

defines a 2-form $\omega \in \Omega^2(M)$, which is closed if and only if J is parallel (i.e. $DJ = D^{1,1}J \equiv 0$).

3. Translations

Suppose that Γ is a group of translations of \mathbb{R}^m that acts freely and properly discontinuously on \mathbb{R}^m .

a) Show that there exist linearly independent vectors $v_1, \ldots, v_k \in \mathbb{R}^m$ such that

$$\Gamma = \left\{ x \mapsto x + \sum_{i=1}^{k} z_i v_i : (z_1, \dots, z_k) \in \mathbb{Z}^k \right\} \simeq \mathbb{Z}^k.$$

b) Let l denote the infimum of the lengths of all closed curves in \mathbb{R}^m/Γ that are not null-homotopic. Show that l equals the length of the shortest non-zero vector of the form $\sum_{i=1}^{k} z_i v_i$ with $z_i \in \mathbb{Z}$ as above.

Submission: until 12:15, May 5th, by email at the following address: tommaso.goldhirsch@math.ethz.ch