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1. Projection in Hadamard manifolds

Let C be a closed convex subset of the Hadamard manifold M . Prove the
following:

(a) For every point p ∈ M there is a unique point π(p) ∈ C such that
d(p, π(p)) = d(p, C). Moreover, if q ∈ pπ(p) then π(q) = π(p).

(b) For p ∈M \ C and y ∈ C with y 6= π(p), we have ]π(p)(p, y) ≥ π
2 .

(c) The projection map π : M → C is 1-Lipschitz.

Solutions. (a) Let (pn)n ⊂ C be a sequence such that d(p, pn) ≤ d(p, C)+ 1
n .

For n, n′ ∈ N, let mn,n′ ∈ C be the midpoint of pnpn′ . By exercise 2.c) of
Serie 10, we get that
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2
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2
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)2
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2

(
1
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.

Hence (pn)n is Cauchy and converges to some x ∈ C.
If there is another y ∈ C with d(p, y) = d(p, C), we get for the midpoint

m ∈ C of xy

d(p,m)2 ≤ d(p, x)2 + d(p, y)2

2
− 1

4
d(x, y)2 < d(p, C)2,

a contradiction. Hence uniqueness follows.
If q ∈ pπ(p), we have

d(p, π(q)) ≤ d(p, q) + d(q, π(q)) ≤ d(p, q) + d(q, π(p)) = d(p, π(p))

and therefore π(q) = π(p) by uniqueness of π(p).

(b) If ]π(p)(p, y) < π
2 , there are y′ ∈ π(p)y and p′ ∈ π(p)p such that

]π(p)(p
′, y′) < π

2 in the comparison triangle (π(p), p′, y′) of (π(p), p′, y′). But
then there is some x ∈ π(p)y′ with |xp′| < |π(p)p′|. Let x ∈ π(p)y′ with
|π(p)x| = |π(p)x|. Then, by the distance comparison (D0), we get

|xp′| ≤ |xp′| < |π(p)p′| = |π(p)p′|,

but π(p′) = π(p).
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(c) Consider p 6= q 6∈ C with u := π(p), v := π(q), u 6= v.
We construct a quadrilateral p, q, u′, v′ in R2 such that (p′, u′, q′) is a com-

parison triangle for (p, u, q), (u′, v′, q′) is a comparison triangle for (u, v, q)
and the two triangles are joined along u′q′, which separates p′ and v′ in the
plane. Note that by (b) and the angle comparison property (A0) we know
that

]v′(u
′, q′) ≥ ]v(u, q) ≥

π

2
. (1)

We subdivide the proof in two cases.
Case 1: ]u′(p′, q′) + ]u′(q′, v′) ≤ π, then

]u′(p
′, v′) = ]u′(p

′, q′) + ]u′(q
′, v′)

≥ ]u(p, q) + ]u(q, v)

≥ ]u(p, v)

≥ π

2
,

where the first inequality follows by (A0), the second is the triangle inequality
for Alexandrov angles and the third follows from (b). Thus together with (1)
we have ]u′(p′, v′) ≥ π/2 and ]v′(q′, u′) ≥ π/2 and therefore

|uv| = |u′v′| ≤ |p′q′| = |pq|.

Case 2: ]u′(p′, q′)+]u′(q′, v′) ≥ π. In this case, consider the triangle (v, p, q)
in R2, with |vq| = |v′q′|, |pq| = |p′q′| and |vp| = |v′u′|+|u′p′|. By Alexandrov’s
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Lemma and (1), ]v(p, q) ≥ ]v′(u′, q′) ≥ π/2, thus |vp| ≤ |pq|, so

|v′u′| ≤ |v′u′|+ |u′p′| = |vp| ≤ |pq| = |p′q′|,

which implies |uv| ≤ |pq|.

2. Asymptotic expansion of the circumference

Let M be a manifold, E ⊂ TMp a linear 2-plane and γr ⊂ E a circle with
center 0 and radius r > 0 sufficiently small. Show that

L(exp(γr)) = 2π

(
r − sec(E)

6
r3 +O(r4)

)
for r → 0.

Solutions. Let v, w ∈ TMp be an orthonormal basis of E. Then the circle
can be parametrized by γr(ϕ) = r(v cosϕ + w sinϕ). For some fixed ϕ0 ∈
[0, 2π], consider the Jacobi field Yϕ0(r) associated to the geodesic variation
V (ϕ, r) := exp(γr(ϕ)) of the geodesic cϕ0(r) := exp(γr(ϕ0)). Then it holds

L(exp(γr)) =

∫ 2π

0
|Yϕ(r)| dϕ.

We will now compute the Taylor expansion for |Y0(r)| (compare with Serie
7, Exercise 3), all other cases are similar. We have Y0(0) = 0 and Y ′0(0) = w.
From the Jacobi equation we also get

Y ′′0 (0) = −R
(
Y0, c

′
0

)
c′0

∣∣∣
r=0

= 0.

Now taking the derivative of the Jacobi equation, we get

Y ′′′0 (0) = −D
dr
R
(
Y0, c

′
0

)
c′0

∣∣∣
r=0

= −R
(
Y ′0 , c

′
0

)
c′0

∣∣∣
r=0

= −R(w, v)v.

It follows that
|Y0(r)| = r − R(w, v, w, v)

6
r3 +O(r4).

Therefore, we finally get

L(exp(γr)) =

∫ 2π

0

(
r − sec(E)

6
r3 +O(r4)

)
dϕ = 2π

(
r − sec(E)

6
r3 +O(r4)

)
,

as it was to show.
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3. Alexandrov curvature and sectional curvature

(a) Determine the circumference of a circle in the model space M2
κ and

compute its Taylor expansion.

(b) Prove that if a connected Riemannian manifold M has curvature ≥ κ
in the sense of Alexandrov, then it has bounded sectional curvature
sec ≥ κ.

Solutions. (a) We start with the case κ < 0. First, consider a horizontal
circle Cr of radius r in H2, seen as a subspace of the Minkowski space R2,1.
Recall that a geodesic starting at e3 and going into the direction e1 which
is parametrized by arclength is given by c(t) = e3 cosh t + e1 sinh t. Hence,
the Euclidean radius of Cr is sinh r and thus L(Cr) = 2π sinh r. Now, as
M2
κ = 1√

−κH
2 (as a length space1), we get

L(Cr) = 2π
1√
−κ

sinh(
√
−κr).

Of course we have L(Cr) = 2πr for κ = 0.
For κ > 0, observe again that a circle in S2 of radius r has Euclidean

radius sin r. From the scaling M2
κ = 1√

κ
S2 it follows that

L(Cr) = 2π
1√
κ
sin(
√
κr).

In all three cases, we therefore get that

L(Cr) = 2π snκ(r) = 2π
(
r − κ

6
r3 +O(r5)

)
.

(b) We prove the statement in the case curvature ≥ κ. For ≤ κ, the same
argument works with reversed inequalities.

As for a curve c : I →M we have L(c) = inf
∑n

i=1 d(c(ti−1), c(ti)) where
ti ∈ I with t0 < . . . < tm, it follows directly from the hinge comparison (Hκ)
that L(expp(γr)) ≤ L(Cr). Combining this with Exercise 2 gives

0 ≤ L(Cr)− L(expp(γr)) = 2π

(
1

6
(sec(E)− κ)r3 +O(r4)

)
for r > 0 small, and therefore sec(E) ≥ κ.

1That is, the length Lκ(c) of a curve c in M2
κ is satisfies Lκ(c) =

1√
−κ

LH(c).
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