D-MATH Differential Geometry II FS20
Prof. Dr. Urs Lang

Solutions 11

1. Projection in Hadamard manifolds

Let C be a closed convex subset of the Hadamard manifold M. Prove the
following:

(a) For every point p € M there is a unique point m(p) € C such that
d(p,7(p)) = d(p, C'). Moreover, if g € pr(p) then 7(q) = 7(p).

(b) For pe M\ C and y € C with y # 7(p), we have £, (p,y) > 5.

(¢) The projection map w: M — C'is 1-Lipschitz.

Solutions. (a) Let (pn)n C C be a sequence such that d(p, p,) < d(p,C) —i—%
For n,n' € N, let my,,» € C be the midpoint of p,p, . By exercise 2.c) of
Serie 10, we get that

d(p, pn)* + d(p, pns)?
rd(pn,pm)* < (p.pn) 5 )

L [10.0)+3)" + (d0.0) + ) _ ap.0y?

=dp.C) (5 + ) +3 (G2 +7m)

n n

- d(pa mn,n’)2

Hence (py,), is Cauchy and converges to some z € C.
If there is another y € C with d(p,y) = d(p,C), we get for the midpoint
m € C of zy

d(p, z)* + d(p,y)>

d(p,m)* < :

1
- Zd(‘r,y)Q < d(pv 0)25

a contradiction. Hence uniqueness follows.
If ¢ € pr(p), we have

d(p,m(q)) < d(p,q) +d(q,m(q)) < d(p,q) + d(g,7(p)) = d(p, 7(p))

and therefore 7(q) = 7(p) by uniqueness of 7(p).

(b) If £rpy(p,y) < 5, there are ¥ € n(p)y and p’ € 7(p)p such that
47 (P, ¥') < § in the comparison triangle (7(p),p’,¥’) of (7(p),p’,y’). But
then there is some T € 7(p)y with |zp'| < [7(p)P/|. Let = € w(p)y’ with
|7(p)z| = |7(p)Z|. Then, by the distance comparison (D°), we get

lzp'| < [7P] < [7(P)P| = |7 (p)p|

)

but 7(p') = 7(p).
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(c) Consider p # q ¢ C with u := 7(p), v = 7(q), u # v.

We construct a quadrilateral p, g, v/, v’ in R? such that (p’, v, ¢') is a com-
parison triangle for (p,u,q), (v/,v’,q’) is a comparison triangle for (u,v,q)
and the two triangles are joined along u'q’, which separates p’ and v’ in the
plane. Note that by (b) and the angle comparison property (A°) we know
that

Lo(u',q) 2 £o(u,q) > 3. (1)

We subdivide the proof in two cases.
Case 1: Ly (p',q') + £w(q',v') < 7, then

Ly (p'v') =LV, q) + Lu(d V)
u(p,q) + £Lu(g,v)

where the first inequality follows by (A°), the second is the triangle inequality
for Alexandrov angles and the third follows from (b). Thus together with
we have £,/ (p/,v") > 7/2 and £,/ (¢',u') > 7/2 and therefore

luwv| = [u'V'] < |p'd'| = |pal.

Case 2: £ (p',¢') + £w(q',v") > 7. In this case, consider the triangle (U, D, q)
in R?, with [vq| = |v'¢/|, |pg| = |p'¢'| and [vp| = |v'v/|+|u'p'|. By Alexandrov’s
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Lemma and (1), £5(p,7) > £v(v/,q') > 7/2, thus [7p| < |pgl, so
'] < [o'u| + [u'p'| = 9P| < [pa| = [p'd],
which implies |uv| < |pq|.

2. Asymptotic expansion of the circumference

Let M be a manifold, £ C T'M,, a linear 2-plane and v, C E a circle with
center 0 and radius r > 0 sufficiently small. Show that

L(exp(vyy)) = 27 <r - SecéE)r?’ + O(r4)>

for r — 0.

Solutions. Let v,w € TM, be an orthonormal basis of . Then the circle
can be parametrized by 7, (¢) = r(vcosg + wsing). For some fixed ¢ €
[0, 27], consider the Jacobi field Y, (r) associated to the geodesic variation
V(p,r) = exp(7,(p)) of the geodesic ¢y (1) = exp(7,(¢0)). Then it holds

21
L{exp(y)) = / Yo (1) dep.

We will now compute the Taylor expansion for |Yy(r)| (compare with Serie
7, Exercise 3), all other cases are similar. We have Y;(0) = 0 and Y{j(0) = w.
From the Jacobi equation we also get

=0.

Y(0) = ~R (Yo.ch) |

Now taking the derivative of the Jacobi equation, we get

D
¥"(0) = = =R (Yo, c9) co

=R (YOIv 66) 06

= —R(w,v)v.

r=0 r=0

It follows that

R(w,v,w,v) 4

[Yo(r)| =r — 5 4+ O>rh).

Therefore, we finally get

L(exp(y)) = /027r <r — SeCéE)r?’ + 0(7«4)) dp = 2m (r — S“éE)r?’ + O(r4)) :

as it was to show.
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3. Alexandrov curvature and sectional curvature

(a) Determine the circumference of a circle in the model space M2 and
compute its Taylor expansion.

(b) Prove that if a connected Riemannian manifold M has curvature > &
in the sense of Alexandrov, then it has bounded sectional curvature
sec > K.

Solutions. (a) We start with the case k < 0. First, consider a horizontal
circle C,. of radius r in H?, seen as a subspace of the Minkowski space R*!,
Recall that a geodesic starting at e3 and going into the direction e; which
is parametrized by arclength is given by ¢(t) = egcosht + e; sinh¢. Hence,
the Euclidean radius of C, is sinhr and thus L(C,) = 27sinhr. Now, as

M? = \/%7]}}12 (as a length spaceﬂ), we get

L(Cy) =27

1
sinh(y/—kr).
e sinh ()
Of course we have L(C;) = 2nr for k = 0.
For x > 0, observe again that a circle in S? of radius r has Euclidean
radius sinr. From the scaling M? = ﬁéﬂ it follows that

I
L(Cy) = Zﬂﬁ sin(v/kr).

In all three cases, we therefore get that

L(C,) =2msn,(r) = 2w (r - %7’3 + O(r5)> .

(b) We prove the statement in the case curvature > k. For < k, the same
argument works with reversed inequalities.

As for a curve ¢: I — M we have L(c) =inf > | d(c(ti—1), c(t;)) where
t; € I with tg < ... < t, it follows directly from the hinge comparison (Hy)
that L(exp,(v,)) < L(C;). Combining this with Exercise 2 gives

0 < L(Cy) — L(exp,(v)) = 27 <é(sec(E) — K)r® 4 O(r4)>

for r > 0 small, and therefore sec(F) > k.

'That is, the length L, (c) of a curve ¢ in M? is satisfies L.(c) = —— Lu(c).




