D-MATH Differential Geometry II FS20
Prof. Dr. Urs Lang

Solutions 2

1. Left-invariant Vector Fields

Let G be a Lie group. Show that

(a) Left-invariant vector fields on G are smooth.
(b) If X,Y are left-invariant vector fields on G, then so is [X,Y].

(c) If F: H — G is a Lie group homomorphism or isomorphism, then
the differential dF.: TH, — TG, is a Lie algebra homomorphism or
isomorphism, respectively.

Solution. (a) First of all note that for a smooth manifold M, a vector
field X: M — TM is smooth if (and only if) for every open set U and every
function f € C*(U), the function X f: U — R is smooth.

Now, let X be a left-invariant vector field on G, let U C G be open and
f € C>®(U). Choose a smooth curve v: (—¢,¢) — G with v(0) = e and
7' (0) = X. = X (e), then

X f(p) = Xp(f) = Lpe(Xe)(f) = d(Lyp)e(Xe) (f) = dfpd(Ly)e(Xe)
=d(foLy).(X,) = %Itzof oL,on(t)= %Itzof o u(p, (1)),

where p1: G X G — G denotes the smooth multiplication map on G. The last
expression is smooth in p and therefore X f is smooth.

(b) A vector field X on G is left-invariant if and only if it is L,-related
to itself for all ¢ € G. Thus (b) follows from Exercise 1 (b) in Exercise Sheet
13 of Differential Geometry I (HS19).

(c) Suppose that F': H — G is a Lie group homomorphism. Let X,,Y, €
b, denote by X,Y € I'(TH) the unique left-invariant vector fields associa-
ted with X, and Y., respectively. Denote by X' )Y’ € T'(T'G) the unique
left-invariant vector fields with X! = dF,.(X,.) € g and Y/ = dF.(Y.) € g,
respectively.

We claim that X’ is F-related to X, and similarly Y’ is F-related to Y.
Indeed, first notice that for g,h € H

Fo Ly(g) = F(hg) = F(h)F(g) = Lr@y © F(g),

ie. FoLy = Lpy ok (note that the two left-multiplication maps appearing
in this identity are defined on different Lie groups). Then for h € H

X;?(h) = d(LF(h))e(Xé) = d<LF(h))edFe(Xe) = d<LF(h) o F)(Xe)
= d(F o Lh)e(Xe) = thd(Lh)e(Xe) = thXh.
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Therefore by Exercise 1 (b) in Exercise Sheet 13 of Differential Geometry I
(HS19) it follows that

(dF.(X.), dF.(Y,)] = [X.. Y]] = [X', Y], = dF.([X.Y],) = dE.([X.. Y.]).

e) e

This shows that dF.: h — g is a Lie algebra homomorphism.
If F is an isomorphism then d(F '), is a Lie algebra homomorphism and
d(F~1). o dF is the identity.

2. Unit Quaternions

(a) Show that the Lie group S* C H of unit quaternions is isomorphic to
SU(2).
Hint: Consider the map

a+m+q+dkH+<“+m C+dg.

—c+di a—bi

(b) Show that S3 SU(2) and SO(3) have isomorphic Lie algebras.

Solution. (a). Consider the map ¢: S* C H — SU(2) defined by

a+ bi c+di>

a+bi+cj+dk— (—c—i—di 0 — bi

It is well defined since

a+bi cH+di\
det(—c+di a—bz’>_1

and

L
ola+bi+ cj + dk) - p(a+ bi + cj + dk)

_(a+tb c+di\ fa=bi —c—di\ (1 0

\—c+di a—W c—di a+bi ) \0 1)’
because a® + b? + ¢ + d*> = 1. We check that ¢ is a homomorphism. Let
a+bi+cj+dk,a +Vi+dj+dkeH, then

(a+bi+cj+dk)-(a+bi+j+dk)
= (aa' — b — cd — dd") + (ab + ba’ + cd' — dc')i

+ (acd +ca +db' —bd')j + (ad + da’ + b’ — cd')k
= A+ Bi+Cj+ Dk
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and one can show that
a+bi c+di ad+bvi Jd+di\ ([ A+DBi C+Di
—c+di a—b —+di o —-Vi)] \-C+Di A—DBi)’

We now check surjectivity. Let A € SU(2). From the conditions AA =
A A =1 and det A = 1 we see that

(a8
A‘(—ﬁ a)

with a@+ 38 = 1, for some o, 5 € C. Writing o = a+bi and = c+di we see
that p(a+bi+cj+dk) = A. Injectivity follows because p(a+bi+cj+dk) = 1
if and only if @ = 1, b = ¢ = d = 0 and therefore ¢ is a smooth group
homomorphism with smooth inverse (which is also a homomorphism).

(b) Tt follows from part (a) and Exercise 1 (b) that S* and SU(2) have
isomorphic Lie algebras. We now show that SO(3) and SU(2)have isomorphic
Lie algebras. Recall from the lecture that

50(3) = {A ERYP . A= —Al},
su(2) = {A eC¥»? . A= A tr(A) = o},

where both have (real) dimension 3. Every matrix in so(3) have the form

0 a b
—a 0 ¢
-b —c 0

and therefore a basis of s0(3) is given by the three (linearly independent)
maftrices

00 O
ap=10 0 -1 g =
01 0 -1
satisfying the commutator relations

[0617042] = O3 [0427043] =0 [0437041} = Q.

Every matrix in su(2) has the form

ai b+ c
—b4+ca  —ai

3
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for a,b € R. Hence a basis is given by the three matrices

0 i 0 —1 i 0
61:(2' 0) /32:(1 0) 53:(0 —i)

satisfying the commutator relations

(81, Ba] = B3 [B2, B3] = 1 [B3, B1] = P

Therefore ®: s0(3) — su(2) defined by ®(ay) = §;, i = 1, 2,3 (and extended
linearly) defines a Lie algebra isomorphism.

Alternative Solution. We show that S and SO(3) have isomorphic Lie al-
gebras; the strategy is to construct a smooth group homomorphism S% —
SO(3) with kernel {(1,0,0,0),(—1,0,0,0)}. In the following we will inden-
tify R? in H by considering the subspace of pure quaternions given by R3 &
{(0,2,y,2) = xi +yj + zk|z,y, 2 € R}. Consider the group action of S? on
R3 by linear maps given by

V(aped)(T,y, 2) = (a+ bi+ cj + dk)(xi + yj + zk)(a — bi — cj — dk).

One can show that this is indeed a homomorphism v: S% — R3*3 and that
Y, € GL(3,R) for all ¢ € S3. Moreover, for ¢ € S* and w € R3, ||¢),(w)] =
lqwg™|| = |l¢|| and therefore ¥, € O(s) for all ¢ € S*. In fact, since S*
is connected and the indentity is contained in the image of ¥: S® — O(3),
q — ¥, = 1¥(q), it follows that 1, € SO(3) for all ¢ € S®. Thus 1 is a smooth
group homomorphism and a computation shows that ker¢y = {1y, —1g},
where 1y = (1,0,0,0) (this follows from the condition v,(e;) = e; for i =
1,2,3). Assume for the moment that ¢ is surjective. Thus ¢ induces an
isomorphism from S3/{1g, —1g} to SO(3) and an argument similar to (a)
show that every point in S is regular. In particular 1y is regular and with the
Inverse Function Theorem we find neighborhoods of 1y and 1go3) on which
1 is a diffeomorphism preserving the group structure, and thus inducing an
isomorphism of the corresponding Lie algebras.

We now show that 1 is surjective. Every matrix in SO(3) can be seen as
a rotation in R?® around an axis trough the origin. We show that for every
such rotation, there exists (a, b, ¢,d) € S* such that (4 q) realizes it.

Let Ru € R® C H be the rotation axis, where u € S® and let ¢ =
cos(a/2) + usin(a/2) (we are identifying u with (0, u1, ug, u3) and scalars ¢
with (c¢,0,0,0)). We show that

a !

'~ a9 — @ in & S _usin=
v = quq —(COSQ+US1H2)’U(COS2 USIDQ)
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is the vector obtained by rotating v around Ru by an angle a. Using the
relation uv = u X v —wu-v (where u-v is the dot product of u and v as vectors
in R3, seen in R C H, and similarly for u x v) we see that

e .o« e
v = vcos §+(uv—vu)sm§cos§—uvusm 5

= v cos” % + 2(u X v) sin % cos %(U(U, -v) — 2u(u - v))sin® %

= v(cos® % — sin? %) + (u x v)(2sin % cos %) + u(u - v)(2sin” %)

=wvcosa+ (ux v)sina+ u(u-v)(1 — cosa)
= (v —u(u-v))cosa+ (uxv)sina + u(u - v)

=wvicosa+ (v xv)sina+ vy,

where v andv| are the components of v perpendicular and parallel to wu,
respectively.

3. Exponential Map
Let 0 < o # 1. Show that there doesn’t exist A € R?*? with

—a 0
“=( %)

and conclude that the exponential map of a connected Lie group is not ne-
cessarily surjective (for example, consider the Lie group GL™(n,R)).

Solution. Suppose there exists A with

at = (_Oa _Ol) = B.

From the lecture, we know that 1 = det B = det(e?) = e"™*(4) and therefore
trace(A) = 0, so A has the form

()

In order to compute e? we have to compute powers of A:

a’+bc 0
A2:( 0 a2+bc):(a2+bc)-l.

We consider three cases.
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If a® + bc = 0, then e = 1 + A, which cannot be B since at least one of
the terms 1 + a or 1 — a on the diagonal is positive.

If a®> + be > 0 let w > 0 with w? = a? + be, so that A? = W21, A% = w2 A,
A* = w1, A’ = w*A, and so on. Thus

= cosh(w)1 +

Since both cosh(w) and sinh(w) are positive, by the same argument as before
we conclude that e can’t be B.

If a2+ bc < 0let w > 0 with w? = —a? + be so that A2 = —w?1,
A3 = —w?A, A* = W', A5 = w*A and so on. hence
o ] 2]+1 .
Z — Z A= cos(w)1 + sm_(w)A
P 2] +1)! w

This implies that either b = ¢ = 0 or sin(w) = 0. b = ¢ = 0 is not possible
for otherwise a? < 0. Hence sin(w) = 0 so e = cos(w)1 and o = , which is
not possible beacuse o # 1.



