D-MATH Differential Geometry II FS20
Prof. Dr. Urs Lang

Solutions 3

1. Bi-invariant Metrics

A Riemannian metric (-,-) on a Lie group G is called bi-invariant if for all
g € G the left-translation [,: G — G, [,(z) = gz, and the right-translation
re: G — G, ry(r) = xg, are isometries.

a) Show that for G = SO(n,R), TG, = {(g,gA) : A€ R™" A= —AT},

1
{(9:94),(9,9B)) = ;tr(AB")
defines a bi-invariant metric on G.

b) Show that every compact Lie group admits a bi-invariant metric.

Hint: Define first a left-invariant metric on GG, then use an appropriate
integration over G.

c) Let G be a Lie group with a bi-invariant metric and let D be the cor-

responding Levi-Civita connection. Prove that for left-invariant vector
fields X,Y € I'(T'G) we have

1
DxY = 3 [X.Y].

Solution. a) It was shown in class that l,.(g, gA) = (hg, hgA) and similarly
one can show that 7,.(g, gA) = (gh, gAh). (-,-) is left-invariant:

(5 0)g((9,9A), (9, 9B)) = (lns(9, gA), lni(g, 9B))
= ((hg, hgA), (hg, hgB))
1

= 5tr(hgA(hgB)")

= S tr(hgAB™(hg)")
= %tr(ABT)

= ((9,94). (g, 9B)).
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(-, ) is right-invariant:

(rns(9,9A), Ths(g, 9B)) = ((gh, gAh), (gh, gBh))
= %tr(gAhhTBTgT)

%tr(AB)
= ((9,94). (9,9B)).

We have to show that (-, ) defines an inner product. Multilinearity and sym-

metry are immediate, so it remains to show positive definitness, that is,
tr(AAT) > 0 if A # 0. We have

trAAT = Z AAYY; Z Z Ay (AT Z A2
=1 i=1 j=1 i,j=1
whith equality if and only if A = 0.
b)Let (-,-). be a scalar product on T'G.. We define a metric (-,-) on G
as follows. For X,Y € T'G, we set

(X, V) = {d(Lg1)g X, d(Lg1)gY ).

Note that (-,-)" is left-invariant.

Now, assume that G has dimension n. Choose a non-zero alternating
multilinear form wy € A"(T'G}) and extend it to the whole G via left-
multiplication: for g € G and vy,...,v, € TG, set

wy(v1, ..., 0,) = wo(d(Lg-1)g(v1), ..., d(Lg-1)4(vy)).

One can check that w € Q"(G) and that it’s left-invariant, that is, Liw =
w for all ¢ € G. We endow G with an orientation by declaring a basis
e1,...,e, of TG, positive if wy(ey,...,e,) > 0. With this orientation left-
multiplications are orientation preserving isometries.

We define an operator 1: C*°(G) — R by setting

10 = [ go= [ ave [ raave

Observe that for g € G, I(f o Ly) = I(f).
We define (-, -) on G by integrating (-, -)" with I as follows. For p € G and
X,Y € TG, we set

(X,Y), = /G (R} (), (dRw)p (Y ) = I(f)

2
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for f(h) = (d(Rp)p(X), d(Rp)p(Y)),,- Left-invariance follows by left-invariance
of (-,-) and the fact that Ry, o L, = L, o R;,. We now show right-invariance:
let p,h € G and X,Y € TG), then

(R;(-, '>)p(X7 Y) = <(ng)p<X)a (ng>p(Y>>pg
= | (AR (@B X0, s

= /G(d(Rh 0 Ry)p(X), .. ) pgn

_ / (AR (), Yy

-~

=f(gh)=foLg(h)

=1(folL,) =1I(f)
:/G<d(Rh>p(X)7d(Rh>p(Y)>;hw
= (X,Y),.

Symmetry and positive-definitness are immediate.

c¢) Before solving the exercise we need some additional machinery.

For every g € G consider the conjugation map Cy = Rj-10L,: G — G,
Cy(x) = gxg™'. It is a Lie group isomorphism hence it’s differential at the
identity is a Lie algebra isomorphism: for ¢ € G we define the adjoint map
Ad(g): g — g, Ad(g) = d(C,).. Note that this defines a map Ad: G — GL(g)
and hence (dAd).: g — T(GL(g)). = gl(g), which can be also written

d
(dAd)c(Xe)(Ye) = i exp(tX.)(Ye),
=0
for X., Y. € g.
Claim (A). Given left-invariant vector fields X,Y € I'(T'G) we have
d
dAd.(X.)(Y,) = y Ad(exp(tX,))(Ye) = [X¢, Ye] = [X,Y],.
t=0

Claim (B). If (-, -) is bi-invariant, then for all X.,Y,, Z. € g
<[Xe> Yve] 7Ze> + <Y;a [Xe> Ze]> = 0.

Let’s assume Claim (A) and (B) for the moment.
Let X,Y, Z be left-invariant vector fields.
Note that by left-invariance of the vector fields and of the metric we have

<Xp7Y;J>p = <(de)eXea (de)eYe>p = <Xev Ye>e

3
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In particular the function p — (X,,,Y,), is constant and the same holds for
all pair of left-invariance vector fields. This means that the Koszul formula
in this case gives

2(DxY, Z) = (X, [V, Z]) = (Y, [X, Z2]) + {2, [X, Y]).

It follows by Claim (B) that —(X,, [V, ZJ).— (Y., [Xe, Z.)). = 0,50 —(X, [V, Z])—
(Y,[X,Z]) = 0 and therefore 2(DxY, Z) = (Z,[X,Y]). As this holds for all
left-invariant Z this proves the desired result.

Proof of Claim (A). As a preliminary step note that for X € I'(T'G) left-
invariant, f € C*°(G) and g € G

X(F)9) = 5| flgespix,).

Now, using this formula twice we compute

(X, Y](f)(9)
— % t:od% s:of<g exp(tX,) exp(sY,)) — % 8:0% 1tzof(g exp(sY,) exp(tX.,)).

By reversing the order of differentiation in the first term and composing with
t — —t in the second term, this expression becomes

d d

ds | s—odt f(gexp(tX.)exp(sYe)) — f(gexp(sYe) exp(—tX.))

t=0

_dy 4
 dsls=odt

Where we have used that

4
dt

f(gexp(tX.)exp(sY.) exp(—tX.)).

t=0

d d
F(tt) = <| F(t.0)+—| F(0.1)

t=0

t=0 t=0
applied to the map F(x,y) := f(gexp(xX.)exp(sY.) exp(—yX,)).
Thus using the above formula again we see that

d d

%L:OE
d

_%d
- (i

where we have used that the map Z — Z(f)(g) is linear. O

tzof(g exp(tX.) exp(sY:) exp(—tXe))
(g (sadlesptx))v.)

d
Ad(exp(EX.))Y. ) ()(9)

t=0ds

t=0

4
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Proof of Claim (B). Note that since (-,-) is bi-invariant we have for g €
G and X.,Y. € g (Ad(9)X.,Ad(g9)Ye)e = (X.,Y.). Applying this to g =
exp(tX,) we see that

t — (Ad(exp(tXe))Ye, Ad(exp(tXe)) Ze)e

is constant and therefore by Claim (A)

0= % (Ad(exp(tXe))Ye, Ad(exp(tX.))Ze)e
=0
d d
- (a tZOAd(exp(tXe))Ye, Zeo)e + (Yo, pr tZOAd(exp(tXe))Ze)e

= ([X., Y], Zo) + (Yo, [Xe, Z]).

2. The Levi-Civita connection on a submanifold

Let (M,g) be a Riemannian manifold with Levi-Civita connection D, and
let M be a submanifold of M, equipped with the induced metric g := i*g,
where i: M — M is the inclusion map.

Show that the Levi-Civita connection D of (M, g) satisfies DyxY = (DxY)T
for all X,Y € I'(T' M), where the superscript T denotes the component tan-
gential to M and DxY is defined(!) as DyY = DgY for any extensions
X, Y eT(TM) of X,Y.

Solution. As we have seen in the lecture (Remark 1.7), that (DY), only
depends on X, and Y o ¢, where c: (—¢,€) — M is a curve with ¢(0) = X,
Hence DY is independent of the choice of the extensions X and Y.
Clearly, (DxY)T defines a linear connection. It remains to prove that this
connection is compatible with g and torsion-free. For X,Y, Z € T'M, we have

and
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3. Gradient and Hessian form

Let (M,g) be a Riemannian manifold, D the Levi-Civita connection and
f: M — R a smooth function on M.

a) The gradient gradf € T'(T'M) is defined by
df (X) = g(gradf, X), VX eIl (TM).
Compute gradf in local coordinates.
b) The Hessian form Hess(f) € I'(Tp2M) is defined by
Hess(f)(X,Y) = g(Dxgradf,Y), VXY e I'(T'M).

Prove that Hess(f) is symmetric and compute Hess(f) in local coordi-
nates.

Solution. a) For a chart (¢, U), let A; := 6%1-, and gradf = >, Y'A;. Then we
have

fi = g5 () = df (4;) = g (grad f, 4;)
—g <Z YiAi,Aj> = Yig(Ai, Aj) =) Vg
Hence we get Y = > f;9°" and thus gradf = D i G fA;
b) First, we use that D is compatible with g. We get

Hess(f)(X,Y) = g(Dxgradf,Y) = Xg(gradf,Y) — g(gradf, DxY)
= X(Y(f) = (DxY)(f)

Since the Levi-Civita connection D is torsion free, it follows

Hess(f)(X,Y) = X(Y(f)) — (DxY)(f) + T(X.Y)(/)
= Y(X(f) — (DyX)(f) = Hess(/)(Y, X),

i.e. Hess(f) is symmetric. Furthermore, we get in local coordinates

Hess(f)i; = Hess(f)(Ai, 4;) = Ai(4;(f)) = (Da A)(f) = fi = YT



