Solutions 7

1. Jacobi fields in space forms

Let M be a space form with curvature $\kappa \in \mathbb{R}$. Furthermore, let $c : \mathbb{R} \to M$ be a geodesic which is parametrized by arc length and $N_0 \in TM_{c(0)}$ with $|N_0| = 1$, $\langle N_0, \dot{c}(0) \rangle = 0$. Determine the Jacobi field Y along c with starting conditions $Y(0) = aN_0$ and $\dot{Y}(0) = bN_0$ for $a, b \in \mathbb{R}$.

Solution. From Exercise 1 in Sheet 5, we know that

$$R(X,Y)W = \kappa \left(g(Y,W)X - g(X,W)Y \right)$$

and thus the Jacobi equation is

$$\ddot{Y} + \kappa \left(g(\dot{c}, \dot{c})Y - g(Y, \dot{c})\dot{c} \right) = 0.$$

Consider now an orthonormal basis $\dot{c}(0), N_0, X_0^3, \ldots, X_0^n$ of $TM_{c(0)}$ and the corresponding parallel vector fields $\dot{c}, N, X^3, \ldots, X^n \in \Gamma(c^*TM)$. We make the Ansatz $Y = f\dot{c} + gN + \sum_{i=3}^n h_i X^i$ and get

$$\dot{Y} = \dot{f}\dot{c} + \dot{g}N + \sum_{i=3}^{n} \dot{h}_{i}X^{i},$$

$$\ddot{Y} = \ddot{f}\dot{c} + \ddot{g}N + \sum_{i=3}^{n} \ddot{h}_{i}X^{i}.$$

If we insert it into the Jacobi equation, this yields

$$\ddot{f}\dot{c} + \ddot{g}N + \sum_{i=3}^{n} \ddot{h}_i X^i + \kappa \left(f\dot{c} + gN + \sum_{i=3}^{n} h_i X^i - f\dot{c} \right) = 0,$$

which is

$$\ddot{f} = 0,$$
 $f(0) = 0,$ $\dot{f}(0) = 0,$ $\ddot{g} + \kappa g = 0,$ $g(0) = a,$ $\dot{g}(0) = b,$ $\ddot{h}_i + \kappa h_i = 0,$ $h_i(0) = 0,$ $\dot{h}_i(0) = 0.$

First, we note that this implies $f \equiv 0$ and $h_i \equiv 0$. Hence, we have Y(t) = g(t)N(t). Finally, we distinguish three cases to determine g:

- If $\kappa < 0$, we get $g(t) = a \cosh(\sqrt{-\kappa}t) + b \sinh(\sqrt{-\kappa}t)$,
- if $\kappa = 0$, we get g(t) = a + bt, and
- if $\kappa > 0$, we get $g(t) = a\cos(\sqrt{\kappa}t) + b\sin(\sqrt{\kappa}t)$.

2. Trace of a symmetric bilinear form

Let $(V, \langle \cdot, \cdot \rangle)$ be a m-dimensional Euclidean space and let $r \colon V \times V \to \mathbb{R}$ be a symmetric bilinear form. Furthermore, let $S^{m-1} = \{v \in V : |v| = 1\}$ be the unit sphere. Prove that

$$\int_{S^{m-1}} r(v,v) \operatorname{dvol}^{S^{m-1}} = \frac{\operatorname{vol}(S^{m-1})}{m} \operatorname{tr}(r) = \omega_m \operatorname{tr}(r),$$

where $\operatorname{dvol}^{S^{m-1}}$ denotes the induced volume on S^{m-1} and ω_m is the volume of the m-dimensional unit ball.

Solution. Let e_1, \ldots, e_m be a $(\langle \cdot, \cdot \rangle$ -)orthonormal basis of V such that r is diagonal, that is, $r(v,v) = \sum_{j=1}^m \lambda_j v_j^2$. Moreover, let $\tau_0, \ldots, \tau_{m-1} \in \mathrm{SO}(m,\mathbb{R})$ be the isometries defined by $\tau_i e_j \coloneqq e_{i+j \mod m}$. Then we have

$$\int_{S^{m-1}} r(v, v) \, dvol^{S^{m-1}} = \frac{1}{m} \sum_{i=0}^{m-1} \int_{S^{m-1}} r(\tau_i v, \tau_i v) \, dvol^{S^{m-1}}$$
$$= \frac{1}{m} \int_{S^{m-1}} tr(r) \, dvol^{S^{m-1}} = \frac{vol(S^{m-1})}{m} \, tr(r),$$

since

$$\sum_{i=0}^{m-1} r(\tau_i v, \tau_i v) = \sum_{i=0}^{m-1} r \left(\sum_{j=1}^m v_j e_{i+j}, \sum_{j=1}^m v_j e_{i+j} \right)$$

$$= \sum_{j=1}^m \left(\sum_{i=0}^{m-1} \lambda_{i+j} \right) v_j^2$$

$$= \operatorname{tr}(r) \sum_{j=1}^m v_j^2 = \operatorname{tr}(r).$$

Finally, recall that $\omega_m = \int_0^1 r^{m-1} \operatorname{vol}(S^{m-1}) dr = \frac{\operatorname{vol}(S^{m-1})}{m}$.

3. Small balls and scalar curvature

Let p be a point in the m-dimensional Riemannian manifold (M, g). The goal is to prove the following Taylor expansion of the volume of the ball $B_r(p)$ as a function of r:

$$\operatorname{vol}(B_r(p)) = \omega_m r^m \left(1 - \frac{1}{6(m+2)} \operatorname{scal}(p) r^2 + \mathcal{O}(r^3) \right).$$

a) Let $v \in TM_p$ with |v| = 1, define the geodesic $c(t) := \exp_p(tv)$ and let $e_1 = v, e_2, \ldots, e_m \in TM_p$ be an orthonormal basis. Consider the Jacobi fields Y_i along c with $Y_i(0) = 0$ and $\dot{Y}_i(0) = e_i$ for $i = 2, \ldots m$. Show that the volume distortion factor of \exp_p at tv is given by

$$J(v,t) := \sqrt{\det\left(\langle T_{tv}e_i, T_{tv}e_j\rangle\right)} = t^{-(m-1)}\sqrt{\det\left(\langle Y_i, Y_j\rangle\right)},$$

where $T_{tv} := (d \exp_p)_{tv}$.

b) Let E_2, \ldots, E_m be parallel vector fields along c with $E_i(0) = e_i$. Then the Taylor expansion of Y_i is

$$Y_i(t) = tE_i - \sum_{k=2}^{m} \left(\frac{t^3}{6} R(e_i, v, e_k, v) + \mathcal{O}(t^4) \right) E_k.$$

- c) Conclude that $J(v,t) = 1 \frac{t^2}{6} \operatorname{ric}(v,v) + \mathcal{O}(t^4)$. Hint: Use $\det(I_m + \epsilon A) = 1 + \epsilon \operatorname{tr}(A) + \mathcal{O}(\epsilon^2)$.
- d) Prove the above formula for $vol(B_r(p))$.

Solution. a) As we have seen in the proof of Proposition 3.6, the Jacobi fields Y_i are given as variation vector fields along c of $\alpha_i(s,t) := \exp_p(t(v+se_i))$, i.e.

$$Y_i(t) = \frac{d}{ds} \bigg|_{s=0} \alpha_i(s,t) = T_{tv}(te_i)$$

and therefore $T_{tv}e_i = \frac{1}{t}Y_i(t)$.

Furthermore, we have $\langle T_{tv}v, T_{tv}e_i \rangle = \langle v, e_i \rangle = 0$ by the Gauss Lemma. Then the volume distortion is given by

$$J(v,t) = \sqrt{\det\left(\langle T_{tv}e_i, T_{tv}e_j\rangle\right)} = t^{-(m-1)}\sqrt{\det\left(\langle Y_i, Y_j\rangle\right)}.$$

b) We check that the derivatives coincide. Clearly, we have $Y_i(0) = 0$, $\dot{Y}_i(0) = e_i$ and $\ddot{Y}_i(0) = -R(Y_i(0), \dot{c}(0))\dot{c}(0) = 0$. Furthermore,

$$\begin{split} \ddot{Y}_i(0) &= -(D_{\dot{c}}R)(Y_i(0),\dot{c}(0))\dot{c}(0) - R(\dot{Y}_i(0),\dot{c}(0))\dot{c}(0) \\ &= -R(e_i,v)v = -\sum_{k=2}^m \langle R(e_i,v)v,e_k\rangle e_k = -\sum_{k=2}^m R(e_k,v,e_i,v)e_k. \end{split}$$

c) With the above, we get

$$\langle Y_i, Y_j \rangle = t^2 \langle E_i, E_j \rangle - \frac{t^4}{6} \sum_{k=2}^m R(e_i, v, e_k, v) \langle E_k, E_j \rangle$$
$$- \frac{t^4}{6} \sum_{k=2}^m R(e_j, v, e_k, v) \langle E_i, E_k \rangle + \mathcal{O}(t^5)$$
$$= t^2 \delta_{ij} - \frac{t^4}{3} R(e_i, v, e_j, v) + \mathcal{O}(t^5)$$

and thus

$$J(v,t) = \sqrt{\det\left(\delta_{ij} - \frac{t^2}{3}R(e_i, v, e_j, v) + \mathcal{O}(t^3)\right)}$$

= $\sqrt{1 - \frac{t^2}{3}\operatorname{tr}(R(e_i, v, e_j, v)) + \mathcal{O}(t^3)}$
= $1 - \frac{t^2}{6}\operatorname{ric}(v, v) + \mathcal{O}(t^3)$.

d)First, we use polar coordinates:

$$vol(B_r(p)) = \int_{B_r(0)} J(v,t) \, dx^1 \dots dx^m = \int_0^r \int_{S^{m-1}} t^{m-1} J(v,t) \, dvol^{S^{m-1}} \, dt.$$

Then, using exercise 2 and the above, we get

$$\operatorname{vol}(B_{r}(p)) = \int_{0}^{r} \int_{S^{m-1}} t^{m-1} (1 - \frac{t^{2}}{6} \operatorname{ric}(v, v) + \mathcal{O}(()t^{3})) \operatorname{dvol}^{S^{m-1}} dt$$

$$= \int_{0}^{r} t^{m-1} \left(\operatorname{vol}(S^{m-1}) - \frac{t^{2}}{6} \int_{S^{m-1}} \operatorname{ric}(v, v) \operatorname{dvol}^{S^{m-1}} + \mathcal{O}(t^{3}) \right) dt$$

$$= \frac{r^{m}}{m} m \omega_{m} - \frac{r^{m+2}}{6(m+2)} \operatorname{scal}(p) \omega_{m} + \mathcal{O}(r^{m+3})$$

$$= \omega_{m} r^{m} \left(1 - \frac{r^{2}}{6(m+2)} \operatorname{scal}(p) + \mathcal{O}(r^{3}) \right).$$