Solutions 8

1. Locally symmetric spaces

Let M be a connected *m*-dimensional Riemannian manifold. Then M is called *locally symmetric* if for all $p \in M$ there is a normal neighborhood B(p, r) such that the *local geodesic reflection* $\sigma_p \coloneqq \exp_p \circ (-\operatorname{id}) \circ \exp_p^{-1} \colon B(p, r) \to B(p, r)$ is an isometry.

- (a) Show that if M is locally symmetric, then $DR \equiv 0$. [Use that $d(\sigma_p)_p = -id$ on TM_p .]
- (b) Suppose that $DR \equiv 0$. Show that if $c: [-1,1] \to M$ is a geodesic and $\{E_i\}_{i=1}^m$ is a parallel orthonormal frame along c, then $R(E_i, c')c' = \sum_{k=1}^m r_i^k E_k$ for constants r_i^k .
- (c) Show that if $DR \equiv 0$, then M is locally symmetric.

[Let $q \in B(p,r), q \neq p$, and $v \in TM_q$. To show that $|d(\sigma_p)_q(v)| = |v|$, consider the geodesic $c: [-1,1] \to B(p,r)$ with c(0) = p, c(1) = q, and a Jacobi field Y along c with Y(0) = 0 and Y(1) = v. Use (b).]

Solution. (a) Suppose that M is locally symmetric, let $p \in M$ and $w, x, y, z \in TM_p$. Then, since σ_p is an isometry and $d(\sigma_p)_p = -id$ on TM_p we have

$$-(D_w R)(x, y)z = d(\sigma_p)_p (D_w R)(x, y)z$$

= $(D_{d(\sigma_p)_p w})(d(\sigma_p)_p x, d(\sigma_p)_p y)d(\sigma_p)_p z$
= $(D_{-w} R)(-x, -y) - z$
= $(D_w R)(x, y)z$,

so $(D_w R)(x, y)z = 0.$

b) Recall that for $X, Y, Z, W \in \Gamma(TM)$

$$D_W(R(X,Y)Z) = R(X,Y)D_W(Z) + R(D_WX,Y) + R(X,D_WY)Z + (D_WR)(X,Y)Z$$

Now, write $R(E_i, c')c' = \sum_{k=1}^m f_i^k E_k$ for some functions $f_i^k \colon [-1, 1] \to \mathbb{R}$.

D-MATH Prof. Dr. Urs Lang FS20

Since E_i and c' are parallel vector fields, the above relation implies that

$$0 = (D_{\partial/\partial t}R)(E_i, c')c'$$

= $D_{\partial/\partial t}(R(E_i, c')c')$
= $\sum_{k=1}^{m} D_{\partial/\partial t}(f_i^k E_k)$
= $\sum_{k=1}^{m} (\dot{f}_i^k E_k + f_i^k D_{\partial/\partial t} E_k)$
= $\sum_{k=1}^{m} \dot{f}_i^k E_k,$

hence the f_i^k are constant.

c) Let $q \in B(p,r), q \neq p$ and $v \in TM_q$. We must show that $|d(\sigma_p)_q(v)| = |v|$. Let $c: [-1,1] \to M$ be the geodesic with c(0) = p and c(1) = q. Let Y be the Jacobi field along c with Y(0) = 0 and Y(1) = v. Since σ_p reverts geodesics it follows that $d(\sigma_p)_q Y(1) = Y(-1)$, so it remains to show that |Y(1)| = |Y(-1)|. Write $Y = \sum_{i=1}^m h^i E_i$ for some functions $h^i: [-1,1] \to \mathbb{R}$ then the Jacobi equation implies that

$$\ddot{h}^k + \sum_{i=1}^m h^i r_i^k = 0,$$

with $h^{i}(0) = 0$, for k = 1, ..., m. It follows that $h^{i}(-t) = -h^{i}(t)$ for all $t \in [-1, 1]$. In particular |Y(-1)| = |Y(1)|.

2. Conjugate points in manifolds with curvature bounded from above

- (a) Prove directly, without using the Rauch Comparison Theorem, that there are no conjugate points in manifolds with non-positive sectional curvature.
- (b) Show that in manifolds with sectional curvature at most κ , where $\kappa > 0$, there are no conjugate points along geodesics of length $< \pi/\sqrt{\kappa}$.
- (c) Show that if $c: [0, \pi/\sqrt{\kappa}] \to M$ is a unit speed geodesic in a manifold with sec $\geq \kappa > 0$, then some c(t) is conjugate to c(0) along $c|_{[0,t]}$.

Solution. (a) Let Y be a Jacobi field along some geodesic $c: [0, l] \to M$ with Y(0) = 0 and define $f: [0, l] \to \mathbb{R}$, $f(t) := |Y(t)|^2 \ge 0$. By our assumption, we have $R(Y, c', Y, c') \le 0$ and therefore

$$\begin{aligned} f'(t) &= 2\langle Y(t), Y'(t) \rangle \\ f''(t) &= 2\langle Y'(t), Y'(t) \rangle + 2\langle Y(t), Y''(t) \rangle \\ &= 2|Y'(t)|^2 - 2R(Y(t), c'(t), Y(t), c'(t)) \ge 2|Y'(t)|^2 \ge 0. \end{aligned}$$

This implies that f is convex and hence, if Y(t) = 0 for some t > 0, we get $f|_{[0,t]} \equiv 0$, i.e. $Y \equiv 0$.

(b) First, consider the model space M_{κ} with constant sectional curvature κ . Let $\overline{c}: [0, l] \to M_{\kappa}$ be a geodesic with $|\overline{c}'(t)| = 1$ and \overline{Y} a Jacobi field along \overline{c} with $\overline{Y}(0) = 0$. Such a Jacobi field is given by

$$\overline{Y}(t) = at\overline{c}'(t) + b\sin(\sqrt{\kappa}t)N(t),$$

where N is a normal and parallel vector field along \overline{c} , compare 1 in Serie 7. In particular, we have $|\overline{Y}(t)| > 0$ for $0 < t < \pi/\sqrt{\kappa}$, $(a, b) \neq (0, 0)$ and therefore, $\overline{c}(t)$ is not conjugate to $\overline{c}(0)$ along \overline{c} .

For a manifold M with $\sec \leq \kappa$, we can now apply the Rauch Comparison Theorem for M and M_{κ} . We conclude that if Y is a Jacobi field with Y(0) = 0and $Y'(0) \neq 0$ along some geodesic $c \colon [0, l] \to M$ with $L(c) < \pi/\sqrt{\kappa}$, we have $|Y(t)| \geq |\overline{Y}(t)| > 0$.

(c) Assume that there are no conjugate points along c.

Let $\overline{c}: [0, \pi/\sqrt{\kappa}] \to M_{\kappa}$ be a geodesic and consider the Jacobi field $\overline{Y}(t) = \sin(\sqrt{\kappa}t)N(t)$ for some normal and parallel vector field N along \overline{c} . Furthermore, let Y be a normal Jacobi field along c with Y(0) = 0 and $|Y'(0)| = |\overline{Y}'(0)|$. But then we get by the Rauch Comparison Theorem that $|\overline{Y}(\frac{\pi}{\sqrt{\kappa}})| \ge |Y(\frac{\pi}{\sqrt{\kappa}})| > 0$, a contradiction.

D-MATH	Differential Geometry II
Prof. Dr. Urs Lang	

3. Volume comparison

Let M be an m-dimensional Riemannian manifold with sectional curvature sec $\leq \kappa, p \in M$ and r > 0 such that $\exp_p|_{B_r(0)}$ is a diffeomorphism. Furthermore, let $V_{\kappa}^m(r)$ denote the volume of a ball with radius r in the mdimensional model space M_{κ}^m of constant sectional curvature $\kappa \in \mathbb{R}$. Prove that $V(B_r(p)) \geq V_{\kappa}^m$.

Solution. Note first that if $\kappa > 0$, then $V_{\kappa}^{m}(r) = V_{\kappa}^{m}(D_{\kappa})$ for all $r > D_{\kappa} := \pi/\sqrt{\kappa}$ (the diameter of M_{κ}^{m}). Hence, if $\kappa > 0$, we may assume that $r \leq D_{\kappa}$.

Choose a base point \overline{p} in M_{κ}^m and a linear isometry $H: TM_p \to T(M_{\kappa}^m)_{\overline{p}}$. Since $\exp_p|_{B_r}$ is a diffeomorphism onto its image, we know from Proposition 1.21 that $B_r(p) = \exp_p(B_r)$. Define $F: B_r(p) \to B_r(\overline{p})$ by $F := \exp_{\overline{p}} \circ H \circ (\exp_p|_{B_r})^{-1}$. The proof of Corollary 3.19 shows that for all $x, w \in TM_p$ with |x| < r,

$$|d(\exp_p)_x(w)| \ge |d(\exp_{\overline{p}})_{Hx}(Hw)|.$$

Thus, for all $q \in B_r(p)$ and $v \in TM_q$,

$$|dF_q(v)| \le |v|.$$

This implies that the volume distortion factor $J_F(q)$ of F at q is ≤ 1 . Hence,

$$V_{\kappa}^{m}(r) = V(B_{\overline{p}}(r)) = \int_{B_{p}(r)} J_{F}(q) \, dV(q) \le V(B_{p}(r)).$$

4