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Solutions 8

1. Locally symmetric spaces

Let M be a connected m-dimensional Riemannian manifold. Then M is cal-
led locally symmetric if for all p ∈M there is a normal neighborhood B(p, r)
such that the local geodesic reflection σp := expp ◦(− id) ◦ exp−1p : B(p, r)→
B(p, r) is an isometry.

(a) Show that if M is locally symmetric, then DR ≡ 0.

[Use that d(σp)p = − id on TMp.]

(b) Suppose that DR ≡ 0. Show that if c : [−1, 1]→ M is a geodesic and
{Ei}mi=1 is a parallel orthonormal frame along c, then R(Ei, c

′)c′ =∑m
k=1 r

k
i Ek for constants rki .

(c) Show that if DR ≡ 0, then M is locally symmetric.

[Let q ∈ B(p, r), q 6= p, and v ∈ TMq. To show that |d(σp)q(v)| = |v|,
consider the geodesic c : [−1, 1]→ B(p, r) with c(0) = p, c(1) = q, and
a Jacobi field Y along c with Y (0) = 0 and Y (1) = v. Use (b).]

Solution. (a) Suppose thatM is locally symmetric, let p ∈M and w, x, y, z ∈
TMp. Then, since σp is an isometry and d(σp)p = − id on TMp we have

−(DwR)(x, y)z = d(σp)p(DwR)(x, y)z

= (Dd(σp)pw)(d(σp)px, d(σp)py)d(σp)pz

= (D−wR)(−x,−y)− z
= (DwR)(x, y)z,

so (DwR)(x, y)z = 0.
b) Recall that for X,Y, Z,W ∈ Γ(TM)

DW (R(X,Y )Z) =R(X,Y )DW (Z) +R(DWX,Y )

+R(X,DWY )Z + (DWR)(X,Y )Z.

Now, write R(Ei, c
′)c′ =

∑m
k=1 f

k
i Ek for some functions fki : [−1, 1] → R.
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Since Ei and c′ are parallel vector fields, the above relation implies that

0 = (D∂/∂tR)(Ei, c
′)c′

= D∂/∂t

(
R(Ei, c

′)c′
)

=
m∑
k=1

D∂/∂t(f
k
i Ek)

=
m∑
k=1

(
f
. k
iEk + fki D∂/∂tEk

)
=

m∑
k=1

f
. k
iEk,

hence the fki are constant.
c) Let q ∈ B(p, r), q 6= p and v ∈ TMq. We must show that |d(σp)q(v)| =

|v|. Let c : [−1, 1] → M be the geodesic with c(0) = p and c(1) = q. Let Y
be the Jacobi field along c with Y (0) = 0 and Y (1) = v. Since σp reverts
geodesics it follows that d(σp)qY (1) = Y (−1), so it remains to show that
|Y (1)| = |Y (−1)|. Write Y =

∑m
i=1 h

iEi for some functions hi : [−1, 1]→ R
then the Jacobi equation implies that

h
..k

+

m∑
i=1

hirki = 0,

with hi(0) = 0, for k = 1, . . . ,m. It follows that hi(−t) = −hi(t) for all
t ∈ [−1, 1]. In particular |Y (−1)| = |Y (1)|.
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2. Conjugate points in manifolds with curvature bounded from
above

(a) Prove directly, without using the Rauch Comparison Theorem, that
there are no conjugate points in manifolds with non-positive sectional
curvature.

(b) Show that in manifolds with sectional curvature at most κ, where κ >
0, there are no conjugate points along geodesics of length < π/

√
κ.

(c) Show that if c : [0, π/
√
κ]→M is a unit speed geodesic in a manifold

with sec ≥ κ > 0, then some c(t) is conjugate to c(0) along c|[0,t].

Solution. (a) Let Y be a Jacobi field along some geodesic c : [0, l]→M with
Y (0) = 0 and define f : [0, l] → R, f(t) := |Y (t)|2 ≥ 0. By our assumption,
we have R(Y, c′, Y, c′) ≤ 0 and therefore

f ′(t) = 2〈Y (t), Y ′(t)〉
f ′′(t) = 2〈Y ′(t), Y ′(t)〉+ 2〈Y (t), Y ′′(t)〉

= 2|Y ′(t)|2 − 2R(Y (t), c′(t), Y (t), c′(t)) ≥ 2|Y ′(t)|2 ≥ 0.

This implies that f is convex and hence, if Y (t) = 0 for some t > 0, we get
f |[0,t] ≡ 0, i.e. Y ≡ 0.

(b) First, consider the model spaceMκ with constant sectional curvature
κ. Let c : [0, l]→Mκ be a geodesic with |c′(t)| = 1 and Y a Jacobi field along
c with Y (0) = 0. Such a Jacobi field is given by

Y (t) = atc′(t) + b sin(
√
κt)N(t),

where N is a normal and parallel vector field along c, compare 1 in Serie
7. In particular, we have |Y (t)| > 0 for 0 < t < π/

√
κ, (a, b) 6= (0, 0) and

therefore, c(t) is not conjugate to c(0) along c.
For a manifoldM with sec ≤ κ, we can now apply the Rauch Comparison

Theorem forM andMκ. We conclude that if Y is a Jacobi field with Y (0) = 0
and Y ′(0) 6= 0 along some geodesic c : [0, l]→M with L(c) < π/

√
κ, we have

|Y (t)| ≥ |Y (t)| > 0.
(c) Assume that there are no conjugate points along c.
Let c : [0, π/

√
κ] → Mκ be a geodesic and consider the Jacobi field

Y (t) = sin(
√
κt)N(t) for some normal and parallel vector field N along

c. Furthermore, let Y be a normal Jacobi field along c with Y (0) = 0 and
|Y ′(0)| = |Y ′(0)|. But then we get by the Rauch Comparison Theorem that
|Y ( π√

κ
)| ≥ |Y ( π√

κ
)| > 0, a contradiction.
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3. Volume comparison

Let M be an m-dimensional Riemannian manifold with sectional curvature
sec ≤ κ, p ∈ M and r > 0 such that expp |Br(0) is a diffeomorphism. Fur-
thermore, let V m

κ (r) denote the volume of a ball with radius r in the m-
dimensional model space Mm

κ of constant sectional curvature κ ∈ R. Prove
that V (Br(p)) ≥ V m

κ .

Solution. Note first that if κ > 0, then V m
κ (r) = V m

κ (Dκ) for all r > Dκ :=
π/
√
κ (the diameter of Mm

κ ). Hence, if κ > 0, we may assume that r ≤ Dκ.
Choose a base point p inMm

κ and a linear isometry H : TMp → T (Mm
κ )p.

Since expp |Br is a diffeomorpism onto its image, we know from Proposition
1.21 that Br(p) = expp(Br). Define F : Br(p) → Br(p) by F := expp ◦H ◦
(expp |Br)−1. The proof of Corollary 3.19 shows that for all x,w ∈ TMp with
|x| < r,

|d(expp)x(w)| ≥ |d(expp)Hx(Hw)|.

Thus, for all q ∈ Br(p) and v ∈ TMq,

|dFq(v)| ≤ |v|.

This implies that the volume distortion factor JF (q) of F at q is ≤ 1. Hence,

V m
κ (r) = V (Bp(r)) =

∫
Bp(r)

JF (q) dV (q) ≤ V (Bp(r)).
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