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1. Almost complex structure

An almost complex structure J on a manifoldMm is a (1, 1)-tensor field with
the following property: if for every p ∈ M we denote by Jp : TMp → TMp

the linear map associated with J (recall Theorem T.3), then

Jp ◦ Jp = − idTMp .

Prove that every complex manifold admist an almost complex structure.
Hint: Composed with the differential of a complex chart ϕ : U → ϕ(U) ⊂ Cn,
Jp amounts to the multiplication by i.

Solution. Let ϕ : U → ϕ(U) ⊂ Cn be a chart with coordinates (x1, y1, . . . , xn, yn).
As suggested by the hint, we define J locally by

J
( ∂

∂xi

)
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∂

∂yi
, J

( ∂

∂yi

)
= − ∂

∂xi
,

for i = 1, . . . , n.
It follows that Jp ◦ Jp = − idTMp . It remains to show that J is (globally)

well defined. Let ψ : V → ψ(V ) ⊂ Cn be another complex chart on M such
that U ∩V 6= ∅ and denote the coordinates on V by (u1, v1, . . . , un, vn), then
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Since ψ ◦ ϕ−1 is biholomorphic, the Cauchy-Riemann equations imply
that
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.

Denote by J ′ the corresponding map, defined on V with respect to ψ, then
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and similarly J ′
(

∂
∂yk

)
= − ∂

∂xk
. This shows that J and J ′ coincide on U ∩ V .

2. Kähler manifolds

LetM be a complex manifold with an almost complex structure J ∈ Γ(T1,1M)
(as in Exercise 1). Suppose that M is endowed with an hermitian metric,
that is, gp(Jpv, Jpw) = gp(v, w) for all p ∈M and v, w ∈ TMp. Show that

ω(X,Y ) := g(X, JY ) (X,Y ∈ Γ(TM))

defines a 2-form ω ∈ Ω2(M), which is closed if and only if J is parallel (i.e.
DJ = D1,1J ≡ 0).

Solution. By definition ω is a (0, 2)-tensor field in Γ(T0,2M). We still have to
show that it’s antisymmetric and for that we’ll use that J2

p = − idTMp . For
X,Y ∈ Γ(TM)

ω(X,Y ) = g(X, JY ) = g(JX, J2Y ) = −g(JX, Y ) = −g(Y, JX) = −ω(Y,X),

thus ω ∈ Ω2(M).
In order to prove the second statement, we’ll prove the following two

identities

dω(X,Y, Z) = g(X, (DZJ)Y ) + g(Y, (DXJ)Z) + g(Z, (DY J)X)

2g(DX(JY ), Z) = dω(X, JY, JZ)− dω(X,Y, Z).

Let X,Y, Z, JX, JY, JZ be coordinate vector fields on a chart of M , in par-
ticular they commute. Then (see Theorem 11.3 of Differential Geometry I)

dω(X,Y, Z) = Xω(Y, Z)− Y ω(X,Z) + Zω(X,Y )

= Xg(Y, JZ)− Y g(X, JZ) + Zg(X,JY )

= Xg(Y, JZ) + Y g(Z, JX) + Zg(X,JY )

Thus by the compatibility of the Levi-Civita connection with g and the
product rule DX(JZ) = (DXJ)Z+J(DXZ) for tensor derivations (similarly
for the other tuples), we compute

dω(X,Y, Z) = Xg(Y, JZ) + Y g(Z, JX) + Zg(X, JY )

= g(DXY, JZ) + g(Y,DX(JZ)) + g(DY Z, JX)

+ g(Z,DY (JX)) + g(DZX, JY ) + g(X,DZ(JY ))

= g(DXY, JZ) + g(DY Z, JX) + g(DZX, JY )

+ g(Y, JDXZ) + g(Z, JDYX) + g(X, JDZY )

+ g(Y, (DXJ)Z) + g(Z, (DY J)X) + g(X, (DZJ)Y )

= g(Y, (DXJ)Z) + g(Z, (DY J)X) + g(X, (DZJ)Y ),
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where in the last step we have used that g is hermitian and the vector fields
commute. This proves the first identity.

For the second identity first note that

g((DXJ)Y,Z) = g(DX(JY ), Z)−g(JDXY, Z) = g(DX(JY ), Z)+g(DXY, JZ).

Now, by the Koszul formula we have

2g(DX(JY ), Z) = Xg(JY, Z) + JY g(X,Z)− Zg(X, JY )

= Xω(Z, Y )− JY g(X, JJZ)− Zω(X,Y )

= −Xω(Y,Z)− JY ω(X, JZ)− Zω(X,Y )

and

2g(DXY, JZ) = Xg(Y, JZ) + Y g(X, JZ)− JZg(X,Y )

= −Xg(JZ, JJY ) + Y ω(X,Z) + JZg(X, JJY )

= −Xω(JZ, JY ) + Y ω(X,Z) + JZω(X, JY ).

By summing the two expression we obtain the second identity:

3. Translations

Suppose that Γ is a group of translations of Rm that acts freely and properly
discontinuously on Rm.

a) Show that there exist linearly independent vectors v1, . . . , vk ∈ Rm

such that

Γ =
{
x 7→ x+

k∑
i=1

zivi : (z1, . . . , zk) ∈ Zk
}
' Zk.

b) Let l denote the infimum of the lengths of all closed curves in Rm/Γ that
are not null-homotopic. Show that l equals the length of the shortest
non-zero vector of the form

∑k
i=1 zivi with zi ∈ Z as above.

Solution. a) For each g ∈ Γ there is some vg ∈ Rm such that gx = x + vg
for all x ∈ Rm and since Γ acts freely, we have vg 6= 0 for g 6= id. We denote
V := {vg ∈ Rm : g ∈ Γ}. Note that, as Γ acts properly discontinuously,
V ∩Br(0) is finite for all r > 0 and thus each subset of V has an element of
minimal length.

We now do induction on m. For m = 1, choose g ∈ Γ \ {id} such that
|vg| is of minimal length. If there is some v ∈ V with v = λvg, λ /∈ Z, we also
have w := v−bλcvg ∈ V \{0} with |w| < |vg|, a contradiction to minimality.

For m ≥ 2, let vg ∈ V \{0} be of minimal length and let V ′ := span(vg)∩
V . By the same argument as above, we get V ′ = Zvg.
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Then we have Rm = Rm−1 ⊕ Rvg with projection map π : Rm → Rm−1

and Γ′ := Γ/gZ acts by translations on Rm−1 via [h]x = x + π(vh). As
for h /∈ gZ we have π(vh) 6= 0, this action is free. We claim that it is
properly discontinuous as well. If not, there are (hn)n∈N ∈ Γ with π(vhn) 6=
π(vhn′ ) and |π(vhn)| < r for some r > 0. But then, there are ln ∈ Z such
that |vhn − π(vhn) − lnvg| < |vg|, i.e. (vhn−lng)n∈N is an infinite subset of
V ∩Br+|vg |(0), contradicting that Γ acts properly discontinuously.

By our induction hypothesis, there are h2, . . . , hk ∈ Γ such that

π(V ) = Zπ(vh2)⊕ . . .⊕ Zπ(vhk
)

and consequently V = Zvg ⊕ Zvh2 ⊕ . . .⊕ Zvhk
.

b) Let π : Rm → Rm/Γ denote the covering map and let c : [0, 1]→ Rm/Γ
be a closed curve in Rm/Γ. Then for p ∈ π−1(c(0)), there exists a unique lift
c : [0, 1] → Rm of c with c(0) = p. Furthermore, if c is not null-homotopic,
we have q := c(1) 6= c(0) and therefore

L(c) = L(c) ≥ d(p, q) =

∣∣∣∣∣
k∑

i=1

zivi

∣∣∣∣∣ ,
for some (z1, . . . , zk) ∈ Zk \ {0}.

Finally, if v =
∑k

i=1 zivi 6= 0 is of minimal length, then c : [0, 1]→ Rm/Γ,
c(t) := π(tv), has length L(c) = |v|.
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