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Solutions 9

1. Almost complex structure

An almost complex structure J on a manifold M™ is a (1, 1)-tensor field with
the following property: if for every p € M we denote by J,: T'M, — T M,
the linear map associated with J (recall Theorem T.3), then

JpO Jp = _idTMp .

Prove that every complex manifold admist an almost complex structure.
Hint: Composed with the differential of a complex chart ¢: U — o(U) C C",
Jp amounts to the multiplication by i.

Solution. Let ¢: U — ¢(U) C C™ be a chart with coordinates (z1,y1, ..., Zn, Yn)-
As suggested by the hint, we define J locally by

0 0 0 0
J(ax) ~ Oy’ J<8y,~> T on
fori=1,...,n.

It follows that Jj, o J, = —idraz,. It remains to show that .J is (globally)
well defined. Let ¢: V' — (V) € C™ be another complex chart on M such
that UNV # () and denote the coordinates on V' by (uy,v1,. .., Un,vy,), then

0 _Zﬁui 0 +avz 0
N Oxy Ou;  Oxy, Ov;’

izzauia ov; 0

Ayy, Ou; ~ dyy Ovi

Since 1) o ¢! is biholomorphic, the Cauchy-Riemann equations imply
that

Bui . 8’UZ‘
Oy, Oyx’
8ui N 81),-
dyr Oz,

Denote by J' the corresponding map, defined on V' with respect to v, then
ou; 81}' 0
!/ ! 3 (2
J azk =J (Z oxy 8u1 &’ck 81},-)
o Z auz o 81}1 8
Ox, Ov; Oz Ou;

B Z ov; 0 8ui 0
Oy, Ov; 3yk Ou;

ayk
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and similarly J’(%) = —%. This shows that J and .J’ coincide on UNV.

2. Kahler manifolds

Let M be a complex manifold with an almost complex structure J € I'(T7 1 M)
(as in Exercise 1). Suppose that M is endowed with an hermitian metric,
that is, g,(Jpv, Jyw) = gp(v,w) for all p € M and v, w € T'M,. Show that

w(X,Y) = g(X,JY) (X,Y eT(TM))

defines a 2-form w € Q?(M), which is closed if and only if J is parallel (i.e.
DJ = D%'J =0).

Solution. By definition w is a (0, 2)-tensor field in I'(Tp 2 M'). We still have to
show that it’s antisymmetric and for that we’ll use that Jg = —idpp,. For
X, Y eT(TM)

w(X,Y) =g(X,JY) =g(JX,J?Y) = —g(JX, Y)=—g(Y,JX) =—-w(Y,X),

thus w € Q?(M).
In order to prove the second statement, we’ll prove the following two
identities

dw(X7 Y, Z) = g(X, (DZJ)Y) —I—g(Y, (DXJ)Z) +g(Z, (DYJ)X)
29(Dx(JY), Z) = dw(X, JY, JZ) — dw(X,Y, Z).

Let XY, Z JX,JY,JZ be coordinate vector fields on a chart of M, in par-
ticular they commute. Then (see Theorem 11.3 of Differential Geometry I)

dw(X,Y,Z) = Xw(Y,Z) = Yw(X, Z) + Zw(X,Y)
= Xg(Y,JZ)-Yg(X,]Z)+ Zg(X,JY)
= Xg(Y,JZ)+Yg(Z,JX) + Zg(X,JY)

Thus by the compatibility of the Levi-Civita connection with g and the
product rule Dx(JZ) = (DxJ)Z+J(DxZ) for tensor derivations (similarly
for the other tuples), we compute

dw(X,Y,Z2)=Xg(Y,JZ)+Yg(Z,JX)+ Zg(X,JY)
=9(DxY,JZ) +g(Y,Dx(JZ)) + g(DyZ,JX)
+9(Z,Dy(JX))+9(DzX,JY)+ g(X,Dz(JY))
=g(DxY,JZ)+ g(DyZ,JX)+ g(DzX,JY)
+9(Y,JDxZ)+ g(Z,JDyX) + g(X,JDzY)
+9(Y,(DxJ)Z) + 9(Z,(Dy J)X) + g(X, (DzJ)Y)
=g(Y,(DxJ)Z) + 9(Z,(Dy J)X) + g(X, (DzJ)Y),
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where in the last step we have used that ¢ is hermitian and the vector fields
commute. This proves the first identity.
For the second identity first note that

9(DxJ)Y,Z) = g(Dx(JY), Z)—g(JDxY, Z) = g(Dx(JY), Z)+9(DxY, J Z).
Now, by the Koszul formula we have

29(Dx(JY),Z) = Xg(JY, Z) + JY g(X, Z) — Zg(X, JY)
= Xw(Z,Y) = JYg(X,JJZ) — Zw(X,Y)
= —Xw(Y,Z) = JYw(X,JZ) — Zw(X,Y)

and

290(DxY,JZ) = Xg(Y,JZ)+Yg(X,JZ) — JZg(X,Y)
= —Xg(JZ,JIY)+Yw(X,2)+ JZg(X,JJY)
= —Xw(JZ,JY)+Yw(X,Z)+ JZw(X,JY).

By summing the two expression we obtain the second identity:

3. Translations

Suppose that I' is a group of translations of R that acts freely and properly
discontinuously on R".

a) Show that there exist linearly independent vectors vy,...,v, € R™
such that

k

F:{xHx—FZzivi:(zl,...,zk)GZk}:Zk.
i=1

b) Let ! denote the infimum of the lengths of all closed curves in R /T" that
are not null-homotopic. Show that [ equals the length of the shortest
k .
non-zero vector of the form ) | zv; with z; € Z as above.

Solution. a) For each g € T' there is some vy € R™ such that gz = = + v,
for all z € R™ and since I' acts freely, we have vy # 0 for g # id. We denote
V = {vy € R™ : g € T'}. Note that, as I acts properly discontinuously,
V' N B,(0) is finite for all » > 0 and thus each subset of V' has an element of
minimal length.

We now do induction on m. For m = 1, choose g € I"\ {id} such that
|vg| is of minimal length. If there is some v € V' with v = Avg, X ¢ Z, we also
have w := v— [ A|vy, € V'\ {0} with |w| < |v,], a contradiction to minimality.

For m > 2, let vy € V'\ {0} be of minimal length and let V' := span(vg) N
V. By the same argument as above, we get V' = Zuv,.
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Then we have R™ = R™~ ! @ Rv, with projection map 7: R™ — R
and IV := T'/gZ acts by translations on R™~! via [h]lz = z + 7(vy). As
for h ¢ gZ we have w(vy) # 0, this action is free. We claim that it is
properly discontinuous as well. If not, there are (hy)neny € T' with 7(vp,, ) #
m(vp,,) and |7 (vp, )| < r for some r > 0. But then, there are l,, € Z such
that |vp, — m(vp,) — lnvg| < |vg], i.e. (Un,—1,9)nen is an infinite subset of
VN B, 4},((0), contradicting that I' acts properly discontinuously.

By our induction hypothesis, there are hg, ..., hi € I' such that

(V) = Zn(vh,) ® ... ® Zr(vp,)

and consequently V' = Zv, © Zvp, ® ... D Zvp,,.

b) Let w: R™ — R™/I" denote the covering map and let c: [0, 1] — R™/I’
be a closed curve in R™/T". Then for p € 7~ !(c(0)), there exists a unique lift
¢: [0,1] — R™ of ¢ with ¢(0) = p. Furthermore, if ¢ is not null-homotopic,
we have g :=¢(1) # ¢(0) and therefore

k

E 2iU4

=1

L(c) = L(c) = d(p, q) =

)

for some (z1,...,2;) € ZF\ {0}.
Finally, if v = Zle ziv; # 0 is of minimal length, then c: [0, 1] — R™/T,
c(t) := 7w(tv), has length L(c) = |v|.



