Solutions 9

1. Almost complex structure

An almost complex structure J on a manifold M^m is a (1, 1)-tensor field with the following property: if for every $p \in M$ we denote by $J_p: TM_p \to TM_p$ the linear map associated with J (recall Theorem T.3), then

$$J_p \circ J_p = -\operatorname{id}_{TM_p}$$
.

Prove that every complex manifold admist an almost complex structure. Hint: Composed with the differential of a complex chart $\varphi \colon U \to \varphi(U) \subset \mathbb{C}^n$, J_p amounts to the multiplication by *i*.

Solution. Let $\varphi \colon U \to \varphi(U) \subset \mathbb{C}^n$ be a chart with coordinates $(x_1, y_1, \ldots, x_n, y_n)$. As suggested by the hint, we define J locally by

$$J\left(\frac{\partial}{\partial x_i}\right) = \frac{\partial}{\partial y_i}, \qquad J\left(\frac{\partial}{\partial y_i}\right) = -\frac{\partial}{\partial x_i},$$

for i = 1, ..., n.

It follows that $J_p \circ J_p = -\operatorname{id}_{TM_p}$. It remains to show that J is (globally) well defined. Let $\psi \colon V \to \psi(V) \subset \mathbb{C}^n$ be another complex chart on M such that $U \cap V \neq \emptyset$ and denote the coordinates on V by $(u_1, v_1, \ldots, u_n, v_n)$, then

$$\frac{\partial}{\partial x_k} = \sum_i \frac{\partial u_i}{\partial x_k} \frac{\partial}{\partial u_i} + \frac{\partial v_i}{\partial x_k} \frac{\partial}{\partial v_i},$$
$$\frac{\partial}{\partial y_k} = \sum_i \frac{\partial u_i}{\partial y_k} \frac{\partial}{\partial u_i} + \frac{\partial v_i}{\partial y_k} \frac{\partial}{\partial v_i}.$$

Since $\psi \circ \varphi^{-1}$ is biholomorphic, the Cauchy-Riemann equations imply that

$$\begin{split} \frac{\partial u_i}{\partial x_k} &= \frac{\partial v_i}{\partial y_k},\\ \frac{\partial u_i}{\partial y_k} &= -\frac{\partial v_i}{\partial x_k} \end{split}$$

Denote by J' the corresponding map, defined on V with respect to ψ , then

$$J'\left(\frac{\partial}{\partial x_k}\right) = J'\left(\sum_i \frac{\partial u_i}{\partial x_k} \frac{\partial}{\partial u_i} + \frac{\partial v_i}{\partial x_k} \frac{\partial}{\partial v_i}\right)$$
$$= \sum_i \frac{\partial u_i}{\partial x_k} \frac{\partial}{\partial v_i} - \frac{\partial v_i}{\partial x_k} \frac{\partial}{\partial u_i}$$
$$= \sum_i \frac{\partial v_i}{\partial y_k} \frac{\partial}{\partial v_i} + \frac{\partial u_i}{\partial y_k} \frac{\partial}{\partial u_i}$$
$$= \frac{\partial}{\partial y_k}$$

D-MATH					Differential Geometry	Π
ъ	c	D	T T	т		

Prof. Dr. Urs Lang

and similarly $J'(\frac{\partial}{\partial y_k}) = -\frac{\partial}{\partial x_k}$. This shows that J and J' coincide on $U \cap V$.

2. Kähler manifolds

Let M be a complex manifold with an almost complex structure $J \in \Gamma(T_{1,1}M)$ (as in Exercise 1). Suppose that M is endowed with an hermitian metric, that is, $g_p(J_pv, J_pw) = g_p(v, w)$ for all $p \in M$ and $v, w \in TM_p$. Show that

$$\omega(X,Y) \coloneqq g(X,JY) \quad (X,Y \in \Gamma(TM))$$

defines a 2-form $\omega \in \Omega^2(M)$, which is closed if and only if J is parallel (i.e. $DJ = D^{1,1}J \equiv 0$).

Solution. By definition ω is a (0, 2)-tensor field in $\Gamma(T_{0,2}M)$. We still have to show that it's antisymmetric and for that we'll use that $J_p^2 = -\operatorname{id}_{TM_p}$. For $X, Y \in \Gamma(TM)$

$$\omega(X,Y) = g(X,JY) = g(JX,J^2Y) = -g(JX,Y) = -g(Y,JX) = -\omega(Y,X)$$

thus $\omega \in \Omega^2(M)$.

In order to prove the second statement, we'll prove the following two identities

$$d\omega(X,Y,Z) = g(X,(D_ZJ)Y) + g(Y,(D_XJ)Z) + g(Z,(D_YJ)X)$$

$$2g(D_X(JY),Z) = d\omega(X,JY,JZ) - d\omega(X,Y,Z).$$

Let X, Y, Z, JX, JY, JZ be coordinate vector fields on a chart of M, in particular they commute. Then (see Theorem 11.3 of Differential Geometry I)

$$d\omega(X, Y, Z) = X\omega(Y, Z) - Y\omega(X, Z) + Z\omega(X, Y)$$

= $Xg(Y, JZ) - Yg(X, JZ) + Zg(X, JY)$
= $Xg(Y, JZ) + Yg(Z, JX) + Zg(X, JY)$

Thus by the compatibility of the Levi-Civita connection with g and the product rule $D_X(JZ) = (D_XJ)Z + J(D_XZ)$ for tensor derivations (similarly for the other tuples), we compute

$$d\omega(X, Y, Z) = Xg(Y, JZ) + Yg(Z, JX) + Zg(X, JY)$$

= $g(D_XY, JZ) + g(Y, D_X(JZ)) + g(D_YZ, JX)$
+ $g(Z, D_Y(JX)) + g(D_ZX, JY) + g(X, D_Z(JY))$
= $g(D_XY, JZ) + g(D_YZ, JX) + g(D_ZX, JY)$
+ $g(Y, JD_XZ) + g(Z, JD_YX) + g(X, JD_ZY)$
+ $g(Y, (D_XJ)Z) + g(Z, (D_YJ)X) + g(X, (D_ZJ)Y)$
= $g(Y, (D_XJ)Z) + g(Z, (D_YJ)X) + g(X, (D_ZJ)Y),$

last stap we have used that a is hownitian and the

where in the last step we have used that g is hermitian and the vector fields commute. This proves the first identity.

For the second identity first note that

$$g((D_X J)Y, Z) = g(D_X(JY), Z) - g(JD_X Y, Z) = g(D_X(JY), Z) + g(D_X Y, JZ)$$

Now, by the Koszul formula we have

$$2g(D_X(JY), Z) = Xg(JY, Z) + JYg(X, Z) - Zg(X, JY)$$

= $X\omega(Z, Y) - JYg(X, JJZ) - Z\omega(X, Y)$
= $-X\omega(Y, Z) - JY\omega(X, JZ) - Z\omega(X, Y)$

and

$$2g(D_XY, JZ) = Xg(Y, JZ) + Yg(X, JZ) - JZg(X, Y)$$

= $-Xg(JZ, JJY) + Y\omega(X, Z) + JZg(X, JJY)$
= $-X\omega(JZ, JY) + Y\omega(X, Z) + JZ\omega(X, JY).$

By summing the two expression we obtain the second identity:

3. Translations

Suppose that Γ is a group of translations of \mathbb{R}^m that acts freely and properly discontinuously on \mathbb{R}^m .

a) Show that there exist linearly independent vectors $v_1, \ldots, v_k \in \mathbb{R}^m$ such that

$$\Gamma = \left\{ x \mapsto x + \sum_{i=1}^{k} z_i v_i : (z_1, \dots, z_k) \in \mathbb{Z}^k \right\} \simeq \mathbb{Z}^k.$$

b) Let l denote the infimum of the lengths of all closed curves in \mathbb{R}^m/Γ that are not null-homotopic. Show that l equals the length of the shortest non-zero vector of the form $\sum_{i=1}^{k} z_i v_i$ with $z_i \in \mathbb{Z}$ as above.

Solution. a) For each $g \in \Gamma$ there is some $v_g \in \mathbb{R}^m$ such that $gx = x + v_g$ for all $x \in \mathbb{R}^m$ and since Γ acts freely, we have $v_g \neq 0$ for $g \neq id$. We denote $V := \{v_g \in \mathbb{R}^m : g \in \Gamma\}$. Note that, as Γ acts properly discontinuously, $V \cap B_r(0)$ is finite for all r > 0 and thus each subset of V has an element of minimal length.

We now do induction on m. For m = 1, choose $g \in \Gamma \setminus \{\text{id}\}$ such that $|v_g|$ is of minimal length. If there is some $v \in V$ with $v = \lambda v_g$, $\lambda \notin \mathbb{Z}$, we also have $w := v - \lfloor \lambda \rfloor v_g \in V \setminus \{0\}$ with $|w| < |v_g|$, a contradiction to minimality.

For $m \geq 2$, let $v_g \in V \setminus \{0\}$ be of minimal length and let $V' := \operatorname{span}(v_g) \cap V$. By the same argument as above, we get $V' = \mathbb{Z}v_g$.

Then we have $\mathbb{R}^m = \mathbb{R}^{m-1} \oplus \mathbb{R}v_g$ with projection map $\pi \colon \mathbb{R}^m \to \mathbb{R}^{m-1}$ and $\Gamma' := \Gamma/g\mathbb{Z}$ acts by translations on \mathbb{R}^{m-1} via $[h]x = x + \pi(v_h)$. As for $h \notin g\mathbb{Z}$ we have $\pi(v_h) \neq 0$, this action is free. We claim that it is properly discontinuous as well. If not, there are $(h_n)_{n\in\mathbb{N}}\in\Gamma$ with $\pi(v_{h_n})\neq$ $\pi(v_{h_n})$ and $|\pi(v_{h_n})| < r$ for some r > 0. But then, there are $l_n \in \mathbb{Z}$ such that $|v_{h_n} - \pi(v_{h_n}) - l_n v_g| < |v_g|$, i.e. $(v_{h_n - l_n g})_{n \in N}$ is an infinite subset of $V \cap B_{r+|v_q|}(0)$, contradicting that Γ acts properly discontinuously.

By our induction hypothesis, there are $h_2, \ldots, h_k \in \Gamma$ such that

$$\pi(V) = \mathbb{Z}\pi(v_{h_2}) \oplus \ldots \oplus \mathbb{Z}\pi(v_{h_k})$$

and consequently $V = \mathbb{Z}v_g \oplus \mathbb{Z}v_{h_2} \oplus \ldots \oplus \mathbb{Z}v_{h_k}$.

b) Let $\pi: \mathbb{R}^m \to \mathbb{R}^m / \Gamma$ denote the covering map and let $c: [0,1] \to \mathbb{R}^m / \Gamma$ be a closed curve in \mathbb{R}^m/Γ . Then for $p \in \pi^{-1}(c(0))$, there exists a unique lift $\overline{c}: [0,1] \to \mathbb{R}^m$ of c with $\overline{c}(0) = p$. Furthermore, if c is not null-homotopic, we have $q := \overline{c}(1) \neq \overline{c}(0)$ and therefore

$$L(c) = L(\overline{c}) \ge d(p,q) = \left| \sum_{i=1}^{k} z_i v_i \right|,$$

for some $(z_1, \ldots, z_k) \in \mathbb{Z}^k \setminus \{0\}$. Finally, if $v = \sum_{i=1}^k z_i v_i \neq 0$ is of minimal length, then $c \colon [0, 1] \to \mathbb{R}^m / \Gamma$, $c(t) := \pi(tv)$, has length L(c) = |v|.