
Appendix B: The Kuhn–Tucker theorem

These notes give a short overview of some key results on optimisation under constraints. In

particular, they present the Kuhn–Tucker theorem on characterising optima for such prob-

lems. Note that this does not give existence of an optimiser, but only equivalent descriptions

which can then be used to derive other properties.

We consider an optimisation problem under constraints which is given by

(B.1) maximise U(y) over the set {y ∈ Y | g(y) ≤ 0},

where Y is a subset of some vector space (e.g. Y ⊆ IRn) and the constraints are given by a

mapping g : Y → IRm.

Definition. (B.1) is called a concave program if

(i) Y is convex.

(ii) U : Y → IR is concave.

(iii) g : Y → IRm is convex.

We can associate to (B.1) a Lagrange function L : Y × IRm
+ → IR by

L(y, λ) := U(y)− λ • g(y).

Definition. A point (y0, λ0) ∈ Y × IRm
+ is called a saddle point of L if

L(y, λ0) ≤ L(y0, λ0) ≤ L(y0, λ) for all (y, λ).

The vector λ0 is then called a Lagrange multiplier for (B.1).

Lemma B.1. If (y0, λ0) is a saddle point of L, then y0 is a solution of (B.1).

Proof. For all λ ∈ IRm
+ , we have from the saddle point property that

(λ− λ0) • g(y0) = U(y0)− λ0 • g(y0)−
(

U(y0)− λ • g(y0)
)

= L(y0, λ0)− L(y0, λ) ≤ 0.
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This implies that g(y0) ≤ 0 so that the constraint is satisfied in y0. For all y with g(y) ≤ 0,

we moreover have

U(y)− U(y0) = L(y, λ0) + λ0 • g(y)−
(

L(y0, λ) + λ • g(y0)
)

= L(y, λ0)− L(y0, λ) + λ0 • g(y)− λ • g(y0)

≤ λ0 • g(y)− λ • g(y0)

≤ −λ • g(y0),

where the first inequality again uses the saddle point property together with λ0 ≥ 0 and

g(y) ≤ 0. Taking λ = 0 shows that y0 is optimal for (B.1) and proves the result. q.e.d.

In order to obtain a converse result, we need an extra condition and some more properties.

Definition. We say that (B.1) satisfies the Slater condition if there exists some ŷ ∈ Y with

g(ŷ) ∈ IRm
−−

, i.e. g(ŷ) is strictly negative in all coordinates.

Theorem B.2. Suppose that (B.1) is a concave program which satisfies the Slater condition.

If y0 is a solution of (B.1), there exists some λ0 ∈ IRm
+ such that (y0, λ0) is a saddle point of

L. Moreover, the pair (y0, λ0) then also satisfies the complementary slackness condition that

λ0 • g(y0) = 0.

Proof. The idea of the proof is to use in a judicious way the separation theorem for well-

chosen convex sets.

Let

A := {(r, z) ∈ IR× IRm | U(y) ≥ r and z ≥ g(y) for some y ∈ Y },

B := {(r, z) ∈ IR× IRm | U(y0) ≤ r and z ≤ 0}.

The sets A and B are convex because U is concave and g is convex. Moreover, the interior B◦

of B is nonempty, and A∩B◦ = ∅ because y0 is a solution of (B.1). So a separation theorem

for convex sets (see Theorem A.4) yields the existence of a linear mapping f : IR× IRm → IR,
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f 6≡ 0, with f(u) ≤ f(v) for all u ∈ A and v ∈ B. We write f as f(r, z) = αr + λ̄ • z with

α ∈ IR and λ̄ ∈ IRm. For fixed u ∈ A, we thus have

f(u) ≤ f(r, z) = αr + λ̄ • z for all r ≥ U(y0) and all z ≤ 0,

and this implies that α ≥ 0 and λ̄ ≤ 0, since otherwise the right-hand side above would go

to −∞. If we had α = 0, then taking u0 := (U(ŷ), g(ŷ)) would give

f(u0) = λ̄ • g(ŷ) ≤ λ̄ • z for all z ≤ 0

and hence for z := 1

2
g(ŷ) also λ̄ • g(ŷ) ≤ 0. But we know that λ̄ ≤ 0 and g(ŷ) ∈ IRm

−−
by the

Slater condition; so we should get λ̄ = 0 and hence f ≡ 0, which is a contradiction. Therefore

we must have α > 0.

Now define λ0 := − λ̄
α
so that λ0 ∈ IRm

+ . Since g(y0) ≤ 0, the point (U(y0), 0) is both in

A and in B, and because (U(y0), g(y0)) is in A, we obtain

αU(y0) + λ̄ • g(y0) = f
(

U(y0), g(y0)
)

≤ f
(

U(y0), 0
)

= αU(y0).

Because also λ̄ ≤ 0 and g(y0) ≤ 0, we thus obtain 0 ≥ λ̄ • g(y0) ≥ 0, hence λ̄ • g(y0) = 0 and

also λ0 • g(y0) = 0. For arbitrary y and λ ≥ 0, this now gives, using g(y0) ≤ 0 and α > 0,

that

αL(y, λ0) = αU(y) + λ̄ • g(y) = f
(

U(y), g(y)
)

≤ f
(

U(y0), 0
)

= αU(y0) + λ̄ • g(y0)

= αL(y0, λ0)

≤ αU(y0)− αλ • g(y0)

= αL(y0, λ).

This shows that (y0, λ0) is a saddle point for L. q.e.d.

If U and g are differentiable, the saddle point property can also be described in a different

way by using the derivatives of U and g.
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Lemma B.3. Suppose that U and g are differentiable on Y . If (y0, λ0) is a saddle point of

L and y0 an interior point of Y , then

U ′(y0)− λ0 • g
′(y0) = 0,

where ′ denotes the gradient. Written out, we thus have

0 = gradU(y0)−
m
∑

i=1

λi
0 grad g

i(y0).

Proof. Because (y0, λ0) is a saddle point of L, the function y 7→ L(y, λ0) has a minimum

in y. Since y0 is an interior point of Y , the derivative ∂L
∂y

must therefore vanish in the point

(y0, λ0). But this derivative is easily computed to be ∂L
∂y

= U ′ − λ • g′ since U and g are

differentiable. q.e.d.

Remarks. 1) If for instance Y is open, then any y is an interior point of Y .

2) A similar statement for λ0 instead of y0 will not hold in general. The derivative ∂L
∂λ

need not vanish in a saddle point; and because λ ≥ 0, it is also not natural to assume that

λ0 is an interior point.

Corollary B.4. Suppose that (B.1) is a concave program which satisfies the Slater condition,

and assume that U and g are differentiable. If y0 is a solution of (B.1) and an interior point

of Y , then there exists λ0 ∈ IRm
+ with

U ′(y0)− λ0 • g
′(y0) = 0,

λ0 • g(y0) = 0.

Proof. This immediately follows from Theorem B.2 and Lemma B.3. q.e.d.
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