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Exercise 1.1 Let C := R x R¥ be the consumption space with the payoff matrix D
and let e, m be an endowment, and a price vector, respectively. Recall the budget set

B(e',n) :={ceC:3 € RY with ¢y < e — V-7 and e < €} + DV}

(a) Show c € B(e', 1) <= c—¢€' € B(0,7) <= ¢ — €' is attainable with 0 initial
wealth.

(b) Show by an example that the converse of the second implication is not true in
general.
Solution 1.1

(a) By definition, ¢ € B(e', ) iff there exists ¥ € RY with ¢y < e} — o - 7 and
cr < e+ DY. That is, ¢g — €y < =0 -7 and ¢r — €}, < DY, which means
c—ee B(0,m).

Now if ¢ — €' is attainable with 0 initial wealth, then there exists 9 € RN such
that ¢y — e, = —7 -9 and ¢r — eb, = DY which shows ¢ — e € B(0, 7).

(b) The idea is simply to find a nonattainable consumption which still lies in the
budget set. To do this, we consider a matrix without full rank. Let

()l

Clearly D(R?) = {(a,2a)" : @ € R}. Take for instance ¥ = (1,0)",
cr = eh 4 (1,1.5)", and ¢y = €}, — 1. Then

co—eh < —(1,0)-(1,1) = —1,

= (5 1) (0) = (5)

Thus, ¢ — ¢* € B(0,7). But clearly (1,1.5)" ¢ D(R?), which shows ¢ — ¢
cannot be attainable with 0 initial wealth.
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Exercise 1.2

(a) Construct a market with arbitrage of the first kind but with no arbitrage of
the second kind.

(b) Construct a market with arbitrage of the second kind but with no arbitrage of
the first kind.

(c) Prove Proposition 1.3.1. That is suppose there exists an asset D! with D! > 0
and D' # 0. Show that under this assumption, the market is arbitrage-free iff
there is no arbitrage of first kind.

Solution 1.2

(a) Consider a market consisting of a single asset with 7 = 0, D = (1,2)". Set
¥ = 1. Clearly, D = (1,2)" > 0 and DY({w;}) > 0 for both i = 1,2. Thus ¥
is an arbitrage opportunity of the first kind. However, since m = 0, there exists
no arbitrage of the second kind.

(b) Consider the situation where 7 =1 and D = (0,0). Then ¥ < 0 would be an
arbitrage of the second kind. But since D vanishes, we have for any ¥ € R that
DY = (0,0)". So there exists no arbitrage of the first kind.

(c) Suppose first that there is an asset D* > 0 and D* # 0 and 7° > 0. Let 9 be an
arbitrage opportunity of the second kind. Set o = — - r/7¢ > 0. We consider
a new strategy J=9+ - aeg where eg Is the vector with 1 in its /th component
and 0 elsewhere. Then J-7 = -7+ a-7f = 0 and DI = DI + aD’ > 0. Since
DY > 0 and oD’ > 0 with aD’ # 0, we have DY > 0 and DI # 0. Hence, )
is an arbitrage opportunity of the first kind. The other implication is true in
general.
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Exercise 1.3 Let = be a preference order on C satisfying axioms (P1)-(P5). A
function U : C — R is called a wutility functional representing = or a numerical
representation of »= if

dr-c <= U)>Ule).

(a) Show that all U representing > must be quasiconcave, i.e., for all ¢, € C and
A€ [0,1],
U(Ae+ (1= N)) > min{U(c),U()}.

(b) Which axioms are needed for this result?

(¢) Show by a counterexample that a preference order can be represented by a
utility functional which is not concave.

Solution 1.3

(a) Let ¢ and ¢ be arbitrary elements of C. Without loss of generality, assume that
¢ = c. Then, by convexity, A’ + (1 — A)c = ¢, and hence

U+ (1= X)) > U(e) = min{U(c),U()}.

(b) In the solution above, we implicitly used completeness to assume ¢ - ¢, and
we used convexity directly.

(c) Define = by
d>¢c = d-1>c¢-1.
It is easy to check that this satisfies the axioms (P1)—(P4). The natural utility

functional is then given by
U(c) =c- 1.

However, since exp(-) is increasing, it will preserve the order. Hence, exp(U(+))
is also a utility functional, but not concave. More generally, exp can be replaced
by any strictly increasing function on R.
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Exercise 1.4 This question is optional.

(a) Show that any complete and transitive relation > induces an asymmetric and
negative transitive order > via

y-x <= ¥y

Conversely, show that any asymmetric and negative transitive binary relation
> induces a complete and transitive binary relation >.

In this question, we refer to an asymmetric and negative transitive relation > as
preference order and to the corresponding complete and transitive binary relation
> as weak preference order. Moreover, we denote by C the set of consumption
processes.

(b) Does every function U : C — R represent some preference order, i.e. an
asymmetric and negative transitive relation?

Let > be a preference relation on C. A subset Z of C is called order dense if for any
pair x,y € C such that z > y there exists some z € Z with x = 2 > y.

(c) Show that, for the existence of a numerical representation of a preference
relation >, it is necessary and sufficient that C contains a countable, order
dense subset Z.

(d) Find a preference order that does not admit a numerical representation. Which
axioms from (P1)-(P5) does your example not satisfy?
Hint: Try the lexicographical order

Solution 1.4
This exercise closely follows Chapter 2 of "Stochastic Finance — An Introduction
in Discrete Time" by Hans Féllmer and Alexander Schied.

(a) Let > be a binary relation satisfying

1. Completeness: forallz,yeC z>yory>=z
2. Transitivity: if x =y and y = z then z = 2
We want to show that the binary relation > defined as y = = < x % y
satisfies
1. Assymetry: if x > y then y ¥ x
2. Negative transitivity: if x > y and z € C then either x > z or z > y or
both must hold

The proofs are trivial and only use the definitions. First, let > be a complete
and transitive relation. We show that the corresponding > is asymmetric and
negative transitive.
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e Suppose x > y. We want to show y % z, i.e x >~ y. This is clear because
by completeness of > we have x > y or y = x, but y > x cannot be true
since z -y < y 't .

e et z > y and z € C. We need to show that either z > 2z or z > y.
By contradiction, suppose that = 3 z and z ¥ y, which by definition is
equivalent to z = x and y >~ z. By transitivity, we then have y > x which
contradicts = > y.

Conversely let > be an asymmetric and negative transitive binary relation. We
show that the corresponding > is complete and transitive.

e By contradiction, suppose y # = and x  y. By definition this is equivalent
to x > y and y > = which contradicts the asymmetry of >.

e Let z,y,z € C be such that x = y and y = 2. We want to show x > z.
By contradiction, suppose that « % z, i.e. z > z. By negative transitivity,
we must have either z > y or y > x. But none of them is possible, as
r>=yandy > z.

(b) Yes, every function U : C — R does represent an asymmetric and negative
transitive binary relation. Indeed, given a function U : C — R, consider the
binary relation

r-py <= U(x)>U(y)

or, equivalently,

rryy <= U(r) > U(y)

We need to show that > is complete and transitive.

e Clearly, for all z,y € C, we have either U(z) > U(y) or U(y) > U(x) and
hence x >y y or y =y .

e Suppose z =y y and y =y z, i.e. U(z) > U(y) and U(y) > U(z). By
transitivity of >, we have U(x) > U(z) and hence = =y z.

(c) Suppose first that we are given a countable order dense subset Z of C. For
x € C, set

Z (x):={z€Z|z>2} and 2 (z):={z€ Z|zx> z}.

The relation x »= y implies that Z. (x) C Z.(y) and Z.(x) O Z.(y). If the
strict relation x > y holds, then at least one of these inclusions is also strict.
Indeed, using that Z is order dense in C, we can pick z € Z with x = z > v,
so either © > z = y or x = z > y. In the first case z € Z_(z) \ Z<(y), while
z € Z. (y)\ Z-(z) in the second case.
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To construct a numerical representation U of >, consider any strictly positive
probability measure p on Z, and let

Ua):= Y ez - Y al)

z€Z4(x) z€Z, (x)

The above arguments show that U(z) > U(y) if and only if > y and hence U
is a desired numerical representation.

For the proof of the converse assertion, take a numerical representation U and
let J denote the countable set

J = {[a,b|a,b € Q,a < b,U ([a,b]) # 0}

For every interval I € J, we can choose some z; € C with U(z;) € I and thus
define the countable set

A= {z|l € T}

At first glance it may seem that A is a good candidate for an order dense set.
However, it may happen that there are z,y € C such that U(z) < U(y) and for
which there is no z € C with U(z) < U(z) < U(y). In this case, an order dense
set must contain at least one z with U(z) = U(z) or U(z) = U(y), a condition
which cannot be guaranteed by A.

Let us define the set D of all pairs (z,y) which do not admit any z € A with
Y=z

D = {(z,y)|r,y €C\ A, y =2 and Pz € A with y = z = z}.

Note that (z,y) € D implies that we cannot find z € C with y > 2z > z. Indeed
using the density of rational numbers, we could then find a,b € Q such that

Ulx) <a<U(z) <b<U(y),

so I := [a, b] would belong to J, and the corresponding z; would be an element
of A satisfying y > z; > z , contradicting the assumption that (z,y) € D.

It follows that all intervals (U(z),U(y)) with (z,y) € D are disjoint and
nonempty. Hence, there can only be countably many of them. For each such
interval J, we choose exactly one pair (z/,y”) € D such that U(z’) and
U(y”) are the endpoints of the interval .J, and we denote B the countable set
containing all 7 and y”.

It remains to show that Z := A U B is an order dense subset of C. Let
z,y € C\ Z with y > x. Then, exactly one of the following hold. Either there
is some z € A such that y > z > x, or (z,y) € D. In the latter case, there
exists some z € B with U(y) = U(z) > U(x) and consequently y = z > .
Moreover the set Z is by construction countable which finishes the proof.
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(d) Let > be the usual lexicographical order on C := [0, 1] x [0,1], i.e. (x1,22) >
(y1,y2) if and only if either z; > y; or 7 = y; and simultaneously xs > ys. It
is easy to verify (left as exercise) that > is asymmetric and negative transitive,
and hence a preference order. We show that > does not admit a numerical
representation. To this end, let Z be any order dense subset of C. Then for
x € [0, 1] there must exist some (21, 22) € Z such that

(,1) = (21, 22) = (,0)

It follows that z; = x and hence Z is uncountable. The result of the previous
question therefore implies that the lexicographical order cannot have a numerical
representation.

Recall that a weak preference order > is called continuous if the sets
B.(z) :={yeClyzx} and Bx(z):={yeClrzy}

are closed for all z € C. Alternatively we can define continuity in terms of the
corresponding preference order >=. We say that > is continuous if for all x € C
the sets

B.(x) ={yeClCly>==x} and Bi(z):={yeCClzr>y}

are open. We next show that the lexicographical order is not continuous.
Indeed for any given (xq,x3) € [0, 1] x [0, 1], the set

{(v1,92)(Y1,92) = (21, 22)} = (21, 1] X [0, 1] U {1} x (9, 1]

is not open.
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