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Solution 10.1

(a) Let ϑ1, ϑ2 ∈ Ak(0). Define

ϑ3 := ϑ11A + ϑ21Ac ,

where A := {Γk(vk, ϑ1) ≤ Γk(vk, ϑ2)}. We have to show that ϑ3 ∈ Ak(0) and
Γk(vk, ϑ3) = min

{
Γk(vk, ϑ1), Γk(vk, ϑ2)

}
. Since ϑ1 ∈ Ak(0) and ϑ2 ∈ Ak(0) we

clearly have ϑ3
j = 0 for j ≤ k. Moreover, using that (ϑi •X)k ∈ L2 for i ∈ {1, 2}

and (ϑ3 •X)k = 1A(ϑ1 •X)k + 1Ac(ϑ2 •X)k, we have (ϑ3 •X)k ∈ L2(Fk) for
each k. This gives ϑ3 ∈ Ak(0). Further note that

H − vk −
T∑

j=k+1
ϑ3

j4Xj = 1A

(
H − vk −

T∑
j=k+1

ϑ1
j4Xj

)

+ 1Ac

(
H − vk −

T∑
j=k+1

ϑ2
j4Xj

)

is also in L2(FT ) for each k and hence Γk(vk, ϑ3) is well-defined . Finally, since
A ∈ Fk, we obtain

Γk(vk, ϑ3) = E
[(

H − vk −
T∑

j=k+1
ϑ3

j4Xj

)2∣∣∣∣Fk

]
= 1AΓk(vk, ϑ1) + 1AcΓk(vk, ϑ2)
= min

{
Γk(vk, ϑ1), Γk(vk, ϑ2)

}
.

(b) Fix k ≤ `. We apply part (a) with vk = x + (ϑ •X)k ∈ L2(Fk). So Corollary
E.2 yields

V`(x + (ϑ •X)`) = ess inf
ϑ′∈A`(0)

Γ`(x + (ϑ •X)`, ϑ′)

= ess inf
ϑ′∈A`(0)

E
[(

H − x−
∑̀
j=1

ϑj4Xj −
T∑

j=`+1
ϑ′j4Xj

)2∣∣∣∣F`

]

=↓ lim
n→∞

E
[(

H − x−
∑̀
j=1

ϑj4Xj −
T∑

j=`+1
ϑn

j4Xj

)2∣∣∣∣F`

]
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for a sequence (ϑn)n∈N ⊆ A`(0) ⊆ Ak(0). Note that Γ`(x + ϑ •X`, ϑn) is in L1

due to the definitions of ϑ, (ϑn)n∈N. Then using monotone convergence, the
tower property and (ϑn)n∈N ⊆ A`(0) ⊆ Ak(0), we have

E[V`(x + (ϑ •X)`)|Fk] = E
[

lim
n→∞

E
[(

H − x−
∑̀
j=1

ϑj4Xj −
T∑

j=`+1
ϑn

j4Xj

)2∣∣∣∣F`

]∣∣∣∣Fk

]

= lim
n→∞

E
[
E
[(

H − x−
∑̀
j=1

ϑj4Xj −
T∑

j=`+1
ϑn

j4Xj

)2∣∣∣∣F`

]∣∣∣∣Fk

]

= lim
n→∞

E
[(

H − x−
k∑

j=1
ϑj4Xj −

T∑
j=k+1

ϑn
j4Xj

)2∣∣∣∣Fk

]

≥ ess inf
ϑ′∈Ak(0)

E
[(

H − x−
k∑

j=1
ϑj4Xj −

T∑
j=k+1

ϑ′j4Xj

)2∣∣∣∣Fk

]
= Vk(x + (ϑ •X)k),

and so we have the submartingale property. The integrability then follows from

VT (x + (ϑ •X)T ) = (H − x− (ϑ •X)T )2 ∈ L1.

Remark: note that Vk is a non-negative random variable by definition of Γk

(c) “⇒” Let ϑ∗ ∈ A be optimal. We already know that (Vk(x + (ϑ∗ •X)k))k=0,...,T

is a submartingale. To show that it is a martingale, we thus only need to show
that

E[VT (c + (ϑ∗ •X)T )] = E[V0(c)].
By the optimality of ϑ∗, we have as in the lecture

E[V0(c)] = E
[

ess inf
ϑ∈A0

E[(H − c− (ϑ •X)T )2|F0]
]

= inf
ϑ∈A

E[(H − c− (ϑ •X)T )2]

= E[(H − c− (ϑ∗ •X)T )2] = E[VT (c + (ϑ∗ •X)T )].

This gives the desired equality.
“⇐” Suppose that (Vk(x + (ϑ∗ • X)k))k=0,...,T is a martingale. Then using
VT (c + (ϑ∗ •X)T ) = (H − c− (ϑ∗ •X)T )2 gives

E[V0(c)] = E[VT (c + (ϑ∗ •X)T )] = E[(H − c− (ϑ∗ •X)T )2]

Moreover, the same argument as above shows that

E[V0(C)] = inf
ϑ∈A

E[(H − c− (ϑ •X)T )2],

which implies that ϑ∗ is optimal.
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(d) By part (b), we have for every fixed ϑ′ ∈ Ak−1 that the process V·(x + (ϑ′ •X)·)
is a submartingale. So using ϑ′ ∈ Ak−1, we get

Vk−1(x) = Vk−1(x+(ϑ′•X)k−1) ≤ E[Vk(x+(ϑ′•X)k))|Fk−1] = E[Vk(x+ϑ′k4Xk)|Fk−1].

Taking ess inf yields

Vk−1(x) ≤ ess inf
ϑ′∈Ak−1

E[Vk(x + ϑ′k4Xk)|Fk−1].

To show “≥”, we fix ϑ ∈ Ak−1(0) and then compute

E[Vk(x + ϑk4Xk)|Fk−1] ≤ E
[
E
[(

H − (x + ϑk4Xk)−
T∑

j=k+1
ϑj4Xj

)2∣∣∣∣Fk

]∣∣∣∣Fk−1

]

= E
[(

H − x−
T∑

j=k

ϑj4Xj

)2∣∣∣∣Fk−1

]
,

where the inequality is obtained by observing that the strategy given by ϑ̃j = 0
for j ≤ k and ϑ̃j = ϑj is in Ak(0). Taking ess inf on both sides, we get

ess inf
ϑ∈Ak−1

E[Vk(x + ϑk4Xk)|Fk−1]

≤ ess inf
ϑ∈Ak−1

E
[(

H − x−
T∑

j=k

ϑj4Xj

)2∣∣∣∣Fk−1

]
= Vk−1(x).

Finally VT (x) = (H − x)2 is clear by definition of VT (x).

Solution 10.2

(a) Base: For k = T , we have VT (x) = (H − x)2 = x2 − 2Hx + H2. So AT =
1, BT = −H, and CT = H2.
Induction step: Suppose that Vk(x) = Akx2 + 2Bkx + Ck with 0 ≤ Ak ≤ 1. By
part (d) in the previous exercise, we need to compute

ess inf
ϑ∈Ak−1

E
[
Vk(x + ϑk4Xk)

∣∣Fk−1
]

= ess inf
ϑ∈Ak−1

E[Ak(x + ϑk4Xk)2

+ 2Bk(x + ϑk4Xk) + Ck|Fk−1]
= ess inf

ϑ∈Ak−1
{E[Akx2 + 2Bkx + Ck|Fk−1]

+ 2ϑkE[xAk4Xk + Bk4Xk|Fk−1]
+ ϑ2

kE[Ak(4Xk)2|Fk−1]}.

This is optimisation of a quadratic polynomial and it depends on whether the
leading coefficient is 0 or not.

Updated: May 17, 2020 3 / 5



Introduction to Mathematical Finance, FS 2020 Solution sheet 10

On the event Gk := {E[Ak(4Xk)2|Fk−1] = 0}, we first observe by the Cauchy-
Schwarz inequality for conditional expectations that

E[Ak4Xk|Fk−1]2 = E[
√

Ak

√
Ak4Xk|Fk−1]2 ≤ E[Ak|Fk−1]E[Ak(4Xk)2|Fk−1] = 0.

On the other hand, note that B2
k ≤ AkCk because Vk(x) ≥ 0. This implies

{Ak = 0} ⊆ {Bk = 0}. We have

E[Ak(4Xk)21Gk
] = E[E[Ak(4Xk)2|Fk−1]1Gk

] = 0.

Using Ak(4Xk)21Gk
≥ 0 P -a.s., we obtain Ak(4Xk)21Gk

= 0 P -a.s. Thus
Bk(4Xk)21Gk

= 0 P -a.s. and hence Bk4Xk1Gk
= 0 P -a.s. This yields

E[Bk4Xk|Fk−1]1Gk
= 0 P -a.s. To sum up, we obtain the implication

E[Ak(4Xk)2|Fk−1] = 0 =⇒ E[Ak4Xk|Fk−1] = 0 and E[Bk4Xk|Fk−1] = 0.

Now the optimisation problem on Gk becomes

Vk−1(x) = ess inf
ϑ′∈Ak−1

E
[
Vk(x + ϑ′k4Xk)

∣∣∣Fk−1

]
= ess inf

ϑ′∈Ak−1
E[Akx2 + 2Bkx + Ck|Fk−1]

= E[Akx2 + 2Bkx + Ck|Fk−1].

Thus Vk−1(x) = Ak−1x
2 + 2Bk−1x + Ck−1 with Ak−1 = E[Ak|Fk−1], Bk−1 =

E[Bk|Fk−1], Ck−1 = E[Ck|Fk−1]. This yields 0 ≤ Ak−1 ≤ 1 and verifies the
induction step.
On Gc

k = {E[Ak(4Xk)2|Fk−1] 6= 0}, the optimiser is

ϑk(x) = −E[(xAk + Bk)4Xk|Fk−1]
E[Ak(4Xk)2|Fk−1] .

Setting 0/0 := 0, we make ϑk(x) well defined on both Gk and Gc
k. Now

substituting ϑk(x) in the above gives

Vk−1(x) = E[Akx2 + 2Bkx + Ck|Fk−1]− 2(E[(xAk + Bk)4Xk|Fk−1])2

E[Ak(4Xk)2|Fk−1]

+
(

E[(xAk + Bk)4Xk|Fk−1]
E[Ak(4Xk)2|Fk−1]

)2

E[Ak(4Xk)2|Fk−1]

= E[Akx2 + 2Bkx + Ck|Fk−1]− (E[(xAk + Bk)4Xk|Fk−1])2

E[Ak(4Xk)2|Fk−1]

= x2
(

E[Ak|Fk−1]− (E[Ak4Xk|Fk−1])2

E[Ak(4Xk)2|Fk−1]

)

+ x

(
2E[Bk|Fk−1]− 2E[Ak4Xk|Fk−1]E[Bk4Xk|Fk−1]

E[Ak(4Xk)2|Fk−1]

)

+
(

E[Ck|Fk−1]− (E[Bk4Xk|Fk−1])2

E[Ak(4Xk)2|Fk−1]

)
.
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So set

Ak−1 := E[Ak|Fk−1]− (E[Ak4Xk|Fk−1])2

E[Ak(4Xk)2|Fk−1]

Bk−1 := E[Bk|Fk−1]− E[Ak4Xk|Fk−1]E[Bk4Xk|Fk−1]
E[Ak(4Xk)2|Fk−1]

Ck−1 := E[Ck|Fk−1]− (E[Bk4Xk|Fk−1])2

E[Ak(4Xk)2|Fk−1] .

We then have in general

Vk−1(x) = Ak−1x
2 + 2Bk−1x + Ck−1,

as well as 0 ≤ Ak−1 ≤ 1 which proves the induction step.

(b) Note by Dynamic Programming Principle (Exercise 10.1(d)) and part (a), we
have

Vk−1(vk−1) = ess inf
ϑk

E[Vk(vk−1 + ϑk4Xk)|Fk−1]

= ess inf
ϑk

E[Ak(vk−1 + ϑk4Xk)2 + 2Bk(vk−1 + ϑk4Xk) + Ck|Fk−1].

Setting the differential w.r.t ϑk to 0, we see that the first order condition is

2E[Ak(vk−1 + ϑk4Xk)4Xk|Fk−1] + 2E[Bk4Xk|Fk−1] = 0.

Using measurability of Ak, Bk, Ck and predictability of the strategy ϑ we get
that the optimal ϑk for a given vk−1 is

ϑ∗k(vk−1) = − E[Bk4Xk|Fk−1]
E[Ak(4Xk)2|Fk−1] −

E[Ak|Fk−1]
E[Ak(4Xk)2|Fk−1]vk−1

Finally since vk−1 = c + (ϑ∗ •X)k−1, we have

ϑ∗k := − E[Bk4Xk|Fk−1]
E[Ak(4Xk)2|Fk−1] −

E[Ak|Fk−1]
E[Ak(4Xk)2|Fk−1] (c + (ϑ∗ •X)k−1).

Thus ϑ∗k, k = 1, . . . , T give a candidate for an optimal strategy.
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