Introduction to Mathematical Finance Solution sheet 10

Solution 10.1

(a) Let $\vartheta^1, \vartheta^2 \in \mathcal{A}_k(0)$. Define

$$\vartheta^3 := \vartheta^1 \mathbb{1}_A + \vartheta^2 \mathbb{1}_{A^c},$$

where $A := \{\Gamma_k(v_k, \vartheta^1) \leq \Gamma_k(v_k, \vartheta^2)\}$. We have to show that $\vartheta^3 \in \mathcal{A}_k(0)$ and $\Gamma_k(v_k, \vartheta^3) = \min \{\Gamma_k(v_k, \vartheta^1), \Gamma_k(v_k, \vartheta^2)\}$. Since $\vartheta^1 \in \mathcal{A}_k(0)$ and $\vartheta^2 \in \mathcal{A}_k(0)$ we clearly have $\vartheta_j^3 = 0$ for $j \leq k$. Moreover, using that $(\vartheta^i \bullet X)_k \in L^2$ for $i \in \{1, 2\}$ and $(\vartheta^3 \bullet X)_k = \mathbbm{1}_A(\vartheta^1 \bullet X)_k + \mathbbm{1}_{A^c}(\vartheta^2 \bullet X)_k$, we have $(\vartheta^3 \bullet X)_k \in L^2(\mathcal{F}_k)$ for each k. This gives $\vartheta^3 \in \mathcal{A}_k(0)$. Further note that

$$H - v_k - \sum_{j=k+1}^T \vartheta_j^3 \triangle X_j = \mathbb{1}_A \left(H - v_k - \sum_{j=k+1}^T \vartheta_j^1 \triangle X_j \right) \\ + \mathbb{1}_{A^c} \left(H - v_k - \sum_{j=k+1}^T \vartheta_j^2 \triangle X_j \right)$$

is also in $L^2(\mathcal{F}_T)$ for each k and hence $\Gamma_k(v_k, \vartheta^3)$ is well-defined. Finally, since $A \in \mathcal{F}_k$, we obtain

$$\Gamma_{k}(v_{k},\vartheta^{3}) = E\left[\left(H - v_{k} - \sum_{j=k+1}^{T} \vartheta_{j}^{3} \bigtriangleup X_{j}\right)^{2} \middle| \mathcal{F}_{k} \right]$$
$$= \mathbb{1}_{A}\Gamma_{k}(v_{k},\vartheta^{1}) + \mathbb{1}_{A^{c}}\Gamma_{k}(v_{k},\vartheta^{2})$$
$$= \min\left\{\Gamma_{k}(v_{k},\vartheta^{1}),\Gamma_{k}(v_{k},\vartheta^{2})\right\}.$$

(b) Fix $k \leq \ell$. We apply part (a) with $v_k = x + (\vartheta \bullet X)_k \in L^2(\mathcal{F}_k)$. So Corollary E.2 yields

$$V_{\ell}(x + (\vartheta \bullet X)_{\ell}) = \underset{\vartheta' \in \mathcal{A}_{\ell}(0)}{\operatorname{ess inf}} \Gamma_{\ell}(x + (\vartheta \bullet X)_{\ell}, \vartheta')$$

$$= \underset{\vartheta' \in \mathcal{A}_{\ell}(0)}{\operatorname{ess inf}} E\Big[\Big(H - x - \sum_{j=1}^{\ell} \vartheta_{j} \bigtriangleup X_{j} - \sum_{j=\ell+1}^{T} \vartheta'_{j} \bigtriangleup X_{j}\Big)^{2}\Big|\mathcal{F}_{\ell}\Big]$$

$$= \downarrow \underset{n \to \infty}{\operatorname{lim}} E\Big[\Big(H - x - \sum_{j=1}^{\ell} \vartheta_{j} \bigtriangleup X_{j} - \sum_{j=\ell+1}^{T} \vartheta^{n}_{j} \bigtriangleup X_{j}\Big)^{2}\Big|\mathcal{F}_{\ell}\Big]$$

Updated: May 17, 2020

1 / 5

for a sequence $(\vartheta^n)_{n\in\mathbb{N}} \subseteq \mathcal{A}_{\ell}(0) \subseteq \mathcal{A}_k(0)$. Note that $\Gamma_{\ell}(x + \vartheta \bullet X_{\ell}, \vartheta^n)$ is in L^1 due to the definitions of $\vartheta, (\vartheta^n)_{n\in\mathbb{N}}$. Then using monotone convergence, the tower property and $(\vartheta^n)_{n\in\mathbb{N}} \subseteq \mathcal{A}_{\ell}(0) \subseteq \mathcal{A}_k(0)$, we have

$$E[V_{\ell}(x + (\vartheta \bullet X)_{\ell})|\mathcal{F}_{k}] = E\left[\lim_{n \to \infty} E\left[\left(H - x - \sum_{j=1}^{\ell} \vartheta_{j} \bigtriangleup X_{j} - \sum_{j=\ell+1}^{T} \vartheta_{j}^{n} \bigtriangleup X_{j}\right)^{2} \middle|\mathcal{F}_{\ell}\right] \middle|\mathcal{F}_{k}\right]$$

$$= \lim_{n \to \infty} E\left[E\left[\left(H - x - \sum_{j=1}^{\ell} \vartheta_{j} \bigtriangleup X_{j} - \sum_{j=\ell+1}^{T} \vartheta_{j}^{n} \bigtriangleup X_{j}\right)^{2} \middle|\mathcal{F}_{\ell}\right] \middle|\mathcal{F}_{k}\right]$$

$$= \lim_{n \to \infty} E\left[\left(H - x - \sum_{j=1}^{k} \vartheta_{j} \bigtriangleup X_{j} - \sum_{j=k+1}^{T} \vartheta_{j}^{n} \bigtriangleup X_{j}\right)^{2} \middle|\mathcal{F}_{k}\right]$$

$$\geq \operatorname{ess\,inf}_{\vartheta' \in \mathcal{A}_{k}(0)} E\left[\left(H - x - \sum_{j=1}^{k} \vartheta_{j} \bigtriangleup X_{j} - \sum_{j=k+1}^{T} \vartheta_{j}^{n} \bigtriangleup X_{j}\right)^{2} \middle|\mathcal{F}_{k}\right]$$

$$= V_{k}(x + (\vartheta \bullet X)_{k}),$$

and so we have the submartingale property. The integrability then follows from

$$V_T(x + (\vartheta \bullet X)_T) = (H - x - (\vartheta \bullet X)_T)^2 \in L^1.$$

Remark: note that V_k is a non-negative random variable by definition of Γ_k

(c) " \Rightarrow " Let $\vartheta^* \in \mathcal{A}$ be optimal. We already know that $(V_k(x + (\vartheta^* \bullet X)_k))_{k=0,...,T}$ is a submartingale. To show that it is a martingale, we thus only need to show that

$$E[V_T(c + (\vartheta^* \bullet X)_T)] = E[V_0(c)].$$

By the optimality of ϑ^* , we have as in the lecture

$$E[V_0(c)] = E\left[\underset{\vartheta \in \mathcal{A}_0}{\operatorname{ess inf}} E[(H - c - (\vartheta \bullet X)_T)^2 | \mathcal{F}_0]\right]$$

=
$$\inf_{\vartheta \in \mathcal{A}} E[(H - c - (\vartheta \bullet X)_T)^2]$$

=
$$E[(H - c - (\vartheta^* \bullet X)_T)^2] = E[V_T(c + (\vartheta^* \bullet X)_T)].$$

This gives the desired equality.

"⇐" Suppose that $(V_k(x + (\vartheta^* \bullet X)_k))_{k=0,...,T}$ is a martingale. Then using $V_T(c + (\vartheta^* \bullet X)_T) = (H - c - (\vartheta^* \bullet X)_T)^2$ gives

$$E[V_0(c)] = E[V_T(c + (\vartheta^* \bullet X)_T)] = E[(H - c - (\vartheta^* \bullet X)_T)^2]$$

Moreover, the same argument as above shows that

$$E[V_0(C)] = \inf_{\vartheta \in \mathcal{A}} E[(H - c - (\vartheta \bullet X)_T)^2],$$

which implies that ϑ^* is optimal.

Updated: May 17, 2020

2 / 5

(d) By part (b), we have for every fixed $\vartheta' \in \mathcal{A}_{k-1}$ that the process $V(x + (\vartheta' \bullet X))$ is a submartingale. So using $\vartheta' \in \mathcal{A}_{k-1}$, we get

$$V_{k-1}(x) = V_{k-1}(x + (\vartheta' \bullet X)_{k-1}) \le E[V_k(x + (\vartheta' \bullet X)_k))|\mathcal{F}_{k-1}] = E[V_k(x + \vartheta'_k \triangle X_k)|\mathcal{F}_{k-1}]$$

Taking essinf yields

$$V_{k-1}(x) \leq \underset{\vartheta' \in \mathcal{A}_{k-1}}{\operatorname{ess\,inf}} E[V_k(x + \vartheta'_k \triangle X_k) | \mathcal{F}_{k-1}].$$

To show " \geq ", we fix $\vartheta \in \mathcal{A}_{k-1}(0)$ and then compute

$$E[V_k(x+\vartheta_k \triangle X_k)|\mathcal{F}_{k-1}] \leq E\left[E\left[\left(H - (x+\vartheta_k \triangle X_k) - \sum_{j=k+1}^T \vartheta_j \triangle X_j\right)^2 \middle| \mathcal{F}_k\right] \middle| \mathcal{F}_{k-1}\right]$$
$$= E\left[\left(H - x - \sum_{j=k}^T \vartheta_j \triangle X_j\right)^2 \middle| \mathcal{F}_{k-1}\right],$$

where the inequality is obtained by observing that the strategy given by $\tilde{\vartheta}_j = 0$ for $j \leq k$ and $\tilde{\vartheta}_j = \vartheta_j$ is in $\mathcal{A}_k(0)$. Taking essinf on both sides, we get

$$\underset{\vartheta \in \mathcal{A}_{k-1}}{\operatorname{ess\,inf}} E[V_k(x + \vartheta_k \triangle X_k) | \mathcal{F}_{k-1}] \\ \leq \underset{\vartheta \in \mathcal{A}_{k-1}}{\operatorname{ess\,inf}} E\left[\left(H - x - \sum_{j=k}^T \vartheta_j \triangle X_j\right)^2 \middle| \mathcal{F}_{k-1}\right] = V_{k-1}(x).$$

Finally $V_T(x) = (H - x)^2$ is clear by definition of $V_T(x)$.

Solution 10.2

(a) *Base:* For k = T, we have $V_T(x) = (H - x)^2 = x^2 - 2Hx + H^2$. So $A_T = 1, B_T = -H$, and $C_T = H^2$.

Induction step: Suppose that $V_k(x) = A_k x^2 + 2B_k x + C_k$ with $0 \le A_k \le 1$. By part (d) in the previous exercise, we need to compute

$$\begin{aligned} \underset{\vartheta \in \mathcal{A}_{k-1}}{\operatorname{ess\,inf}} E\left[V_k(x + \vartheta_k \triangle X_k) \,|\, \mathcal{F}_{k-1}\right] &= \underset{\vartheta \in \mathcal{A}_{k-1}}{\operatorname{ess\,inf}} E[A_k(x + \vartheta_k \triangle X_k)^2 \\ &\quad + 2B_k(x + \vartheta_k \triangle X_k) + C_k |\mathcal{F}_{k-1}] \\ &= \underset{\vartheta \in \mathcal{A}_{k-1}}{\operatorname{ess\,inf}} \{E[A_k x^2 + 2B_k x + C_k |\mathcal{F}_{k-1}] \\ &\quad + 2\vartheta_k E[xA_k \triangle X_k + B_k \triangle X_k |\mathcal{F}_{k-1}] \\ &\quad + \vartheta_k^2 E[A_k(\triangle X_k)^2 |\mathcal{F}_{k-1}]\}. \end{aligned}$$

This is optimisation of a quadratic polynomial and it depends on whether the leading coefficient is 0 or not.

Updated: May 17, 2020

On the event $G_k := \{ E[A_k(\Delta X_k)^2 | \mathcal{F}_{k-1}] = 0 \}$, we first observe by the Cauchy-Schwarz inequality for conditional expectations that

$$E[A_k \triangle X_k | \mathcal{F}_{k-1}]^2 = E[\sqrt{A_k} \sqrt{A_k} \triangle X_k | \mathcal{F}_{k-1}]^2 \le E[A_k | \mathcal{F}_{k-1}] E[A_k (\triangle X_k)^2 | \mathcal{F}_{k-1}] = 0.$$

On the other hand, note that $B_k^2 \leq A_k C_k$ because $V_k(x) \geq 0$. This implies $\{A_k = 0\} \subseteq \{B_k = 0\}$. We have

$$E[A_k(\triangle X_k)^2 \mathbb{1}_{G_k}] = E[E[A_k(\triangle X_k)^2 | \mathcal{F}_{k-1}] \mathbb{1}_{G_k}] = 0.$$

Using $A_k(\Delta X_k)^2 \mathbb{1}_{G_k} \geq 0$ *P*-a.s., we obtain $A_k(\Delta X_k)^2 \mathbb{1}_{G_k} = 0$ *P*-a.s. Thus $B_k(\Delta X_k)^2 \mathbb{1}_{G_k} = 0$ *P*-a.s. and hence $B_k \Delta X_k \mathbb{1}_{G_k} = 0$ *P*-a.s. This yields $E[B_k \Delta X_k | \mathcal{F}_{k-1}] \mathbb{1}_{G_k} = 0$ *P*-a.s. To sum up, we obtain the implication

$$E[A_k(\triangle X_k)^2 | \mathcal{F}_{k-1}] = 0 \implies E[A_k \triangle X_k | \mathcal{F}_{k-1}] = 0 \text{ and } E[B_k \triangle X_k | \mathcal{F}_{k-1}] = 0.$$

Now the optimisation problem on G_k becomes

$$V_{k-1}(x) = \underset{\vartheta' \in \mathcal{A}_{k-1}}{\operatorname{ess inf}} E\left[V_k(x + \vartheta'_k \triangle X_k) \left| \mathcal{F}_{k-1} \right]\right]$$
$$= \underset{\vartheta' \in \mathcal{A}_{k-1}}{\operatorname{ess inf}} E[A_k x^2 + 2B_k x + C_k | \mathcal{F}_{k-1}]$$
$$= E[A_k x^2 + 2B_k x + C_k | \mathcal{F}_{k-1}].$$

Thus $V_{k-1}(x) = A_{k-1}x^2 + 2B_{k-1}x + C_{k-1}$ with $A_{k-1} = E[A_k|\mathcal{F}_{k-1}], B_{k-1} = E[B_k|\mathcal{F}_{k-1}], C_{k-1} = E[C_k|\mathcal{F}_{k-1}]$. This yields $0 \le A_{k-1} \le 1$ and verifies the induction step.

On $G_k^c = \{ E[A_k(\triangle X_k)^2 | \mathcal{F}_{k-1}] \neq 0 \}$, the optimiser is

$$\vartheta_k(x) = -\frac{E[(xA_k + B_k) \triangle X_k | \mathcal{F}_{k-1}]}{E[A_k(\triangle X_k)^2 | \mathcal{F}_{k-1}]}.$$

Setting 0/0 := 0, we make $\vartheta_k(x)$ well defined on both G_k and G_k^c . Now substituting $\vartheta_k(x)$ in the above gives

$$\begin{split} V_{k-1}(x) &= E[A_k x^2 + 2B_k x + C_k |\mathcal{F}_{k-1}] - 2 \frac{(E[(xA_k + B_k) \triangle X_k |\mathcal{F}_{k-1}])^2}{E[A_k (\triangle X_k)^2 |\mathcal{F}_{k-1}]} \\ &+ \left(\frac{E[(xA_k + B_k) \triangle X_k |\mathcal{F}_{k-1}]}{E[A_k (\triangle X_k)^2 |\mathcal{F}_{k-1}]}\right)^2 E[A_k (\triangle X_k)^2 |\mathcal{F}_{k-1}] \\ &= E[A_k x^2 + 2B_k x + C_k |\mathcal{F}_{k-1}] - \frac{(E[(xA_k + B_k) \triangle X_k |\mathcal{F}_{k-1}])^2}{E[A_k (\triangle X_k)^2 |\mathcal{F}_{k-1}]} \\ &= x^2 \left(E[A_k |\mathcal{F}_{k-1}] - \frac{(E[A_k \triangle X_k |\mathcal{F}_{k-1}])^2}{E[A_k (\triangle X_k)^2 |\mathcal{F}_{k-1}]}\right) \\ &+ x \left(2E[B_k |\mathcal{F}_{k-1}] - 2\frac{E[A_k \triangle X_k |\mathcal{F}_{k-1}]E[B_k \triangle X_k |\mathcal{F}_{k-1}]}{E[A_k (\triangle X_k)^2 |\mathcal{F}_{k-1}]}\right) \\ &+ \left(E[C_k |\mathcal{F}_{k-1}] - \frac{(E[B_k \triangle X_k |\mathcal{F}_{k-1}])^2}{E[A_k (\triangle X_k)^2 |\mathcal{F}_{k-1}]}\right). \end{split}$$

Updated: May 17, 2020

4 / 5

So set

$$A_{k-1} := E[A_k | \mathcal{F}_{k-1}] - \frac{(E[A_k \triangle X_k | \mathcal{F}_{k-1}])^2}{E[A_k (\triangle X_k)^2 | \mathcal{F}_{k-1}]}$$

$$B_{k-1} := E[B_k | \mathcal{F}_{k-1}] - \frac{E[A_k \triangle X_k | \mathcal{F}_{k-1}] E[B_k \triangle X_k | \mathcal{F}_{k-1}]}{E[A_k (\triangle X_k)^2 | \mathcal{F}_{k-1}]}$$

$$C_{k-1} := E[C_k | \mathcal{F}_{k-1}] - \frac{(E[B_k \triangle X_k | \mathcal{F}_{k-1}])^2}{E[A_k (\triangle X_k)^2 | \mathcal{F}_{k-1}]}.$$

We then have in general

$$V_{k-1}(x) = A_{k-1}x^2 + 2B_{k-1}x + C_{k-1},$$

as well as $0 \le A_{k-1} \le 1$ which proves the induction step.

(b) Note by Dynamic Programming Principle (Exercise 10.1(d)) and part (a), we have

$$V_{k-1}(v_{k-1}) = \operatorname{ess\,inf}_{\vartheta_k} E[V_k(v_{k-1} + \vartheta_k \triangle X_k) | \mathcal{F}_{k-1}]$$

=
$$\operatorname{ess\,inf}_{\vartheta_k} E[A_k(v_{k-1} + \vartheta_k \triangle X_k)^2 + 2B_k(v_{k-1} + \vartheta_k \triangle X_k) + C_k | \mathcal{F}_{k-1}].$$

Setting the differential w.r.t ϑ_k to 0, we see that the first order condition is

$$2E[A_k(v_{k-1} + \vartheta_k \triangle X_k) \triangle X_k | \mathcal{F}_{k-1}] + 2E[B_k \triangle X_k | \mathcal{F}_{k-1}] = 0.$$

Using measurability of A_k , B_k , C_k and predictability of the strategy ϑ we get that the optimal ϑ_k for a given v_{k-1} is

$$\vartheta_k^*(v_{k-1}) = -\frac{E[B_k \triangle X_k | \mathcal{F}_{k-1}]}{E[A_k(\triangle X_k)^2 | \mathcal{F}_{k-1}]} - \frac{E[A_k | \mathcal{F}_{k-1}]}{E[A_k(\triangle X_k)^2 | \mathcal{F}_{k-1}]}v_{k-1}$$

Finally since $v_{k-1} = c + (\vartheta^* \bullet X)_{k-1}$, we have

$$\vartheta_k^* := -\frac{E[B_k \triangle X_k | \mathcal{F}_{k-1}]}{E[A_k (\triangle X_k)^2 | \mathcal{F}_{k-1}]} - \frac{E[A_k | \mathcal{F}_{k-1}]}{E[A_k (\triangle X_k)^2 | \mathcal{F}_{k-1}]} (c + (\vartheta^* \bullet X)_{k-1}).$$

Thus ϑ_k^* , $k = 1, \ldots, T$ give a candidate for an optimal strategy.