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Exercise 11.1 Consider a financial market with positive prices and i.i.d returns:
X l

0 > 0 and X l
k+1 = X l

kR
l
k+1, l = 1, . . . , d, k = 0, . . . , T − 1, where R1, . . . RT are

i.i.d with values in Rd
++. Suppose that the filtration is given by the natural filtration

of the stochastic process R, i.e. F = (Fk)k where Fk = σ(Rj, j ≤ k).
Consider the utility maximization problem with objective function

U(ϑ, c) = E

T−1∑
j=0

Uc(cj) + Uw(W v0,ϑ,c
T )


As in Section III.1, we use the parameterization of the above optimization problem
in terms of the proportion of time k wealth invested in asset l (denoted πlk) and the
proportion of time k wealth spent on consumption (denoted γk):

W v0,π,γ
k+1 = W v0,π,γ

k

(
1 + πk · (Rk+1 − 1)− γk

)
ck = γkW

v0,π,γ
k

ϑlk+1 = πlkW
v0,π,γ
k

X l
k

Recall that cT = 0; so γT = 0.
We thus consider the optimization problem

U(π, γ) = E

T−1∑
j=0

Uc(cj) + Uw(W v0,π,γ
T )

 (1)

In the lecture we solved (1) in the case when both the consumption and the final
wealth utility functions were given by a power utility: Uc(x) = Uw(x) = xα for
some α > 0. In this exercise you are asked to solve (1) in the case when the utility
functions are given by the log utility: Uc(x) = Uw(x) = log(x).
Hint: Use Dynamic Programming Principle

Solution 11.1 The dynamic programming principle (Proposition III.2.5) indicates
that we should solve

σk(vk) = ess supπk,γk
(
Uc(γkvk) + E

[
σk+1

(
vk(1 + πk · (Rk+1 − 1)− γk)

)
|Fk

])
by backwards induction to get candidate optimal solution.

• First note that σT (vT ) = Uw(vT ) = log(vT )
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• Consider k = T − 1:

σT−1(vT−1) = ess supπT−1,γT−1

(
log(γT−1vT−1) + E

[
σT
(
vT−1(1 + πT−1 · (RT − 1)− γT−1)

)
|FT−1

])
= ess supπT−1,γT−1

(
log(γT−1) + log(vT−1)+

E
[
log(vT−1) + log

(
1 + πT−1 · (RT − 1)− γT−1

)
|FT−1

] )
= 2 log(vT−1) + ess supπT−1,γT−1

(
log(γT−1) + E

[
log(

(
1 + πT−1 · (RT − 1)− γT−1

)
|FT−1

])
= 2 log(vT−1)+

ess supπT−1,γT−1

(
log(γT−1) + E

[
log(

(
1 + π · (RT − 1)− γ

)]
|π=πT−1,γ=γT−1

)
= 2 log(vT−1) + CT−1

where
CT−1 := sup

π,γ

(
log(γ) + E

[
log(1 + π · (R− 1)− γ)

])

In the fourth equality above, we have used that RT is independent of FT−1 and
πT−1 and γT−1 are FT−1 measurable. The random variable R appearing in the
definition of CT−1 is distributed identically as the i.i.d random variables Rk.

• For a general 0 ≤ k ≤ T − 1, if σk+1(vk+1) = (T − (k + 1) + 1) log(vk+1) +∑T−1
j=k+1 Cj for some constants Cj, then:

σk(vk) = ess supπk,γk
(

log(γkvk) + E
[
σk+1

(
vk(1 + πk · (Rk+1 − 1)− γk)

)
|Fk

])
= ess supπk,γk

(
log(γk) + log(vk)+

E

(T − (k + 1) + 1){log(vk) + log
(
1 + πk · (Rk+1 − 1)− γk

)
}+

T−1∑
j=k+1

Cj|Fk

)

= (T − k + 1) log(vk) +
T−1∑
j=k+1

Cj

+ ess supπk,γk
(

log(γk) + (T − k)E
[
log(

(
1 + πk · (Rk+1 − 1)− γk

)
|Fk

])

= (T − k + 1) log(vk) +
T−1∑
j=k+1

Cj

ess supπk,γk
(

log(γk) + (T − k)E
[
log(

(
1 + π · (Rk+1 − 1)− γ

)]
|π=πk,γ=γk

)

= (T − k + 1) log(vk) +
T−1∑
j=k

Cj
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where
Ck := sup

π,γ

(
log(γ) + (T − k)E

[
log(1 + π · (R− 1)− γ)

])
This proves by induction that for all 0 ≤ k ≤ T − 1,

σk(vk) = (T − k + 1) log(vk) +
T−1∑
j=k

Cj

Assume the constants Ck are finite and that there exist maximisers (π∗k, γ∗k) (con-
strained to statisfy γ∗k ≥ 0 and 1Tπ∗k = 1 for all k). We then expect by the dynamic
programming principle (π∗k, γ∗k) to be optimal for the original static utility optimiza-
tion problem (1). Indeed the dynamic programming principle (Proposition III.2.5)
tells us that for an optimal solution of (1), σk(vk) computed above is equal to the
optimal remaining utility at time k. In particular,

E[σ0(v0)] = U∗

is the optimal value of (1). To find the optimal strategy achieving this value U∗, we
first calculate backwards σk(vk) and the corresponding optimizers π∗k(vk) and γ∗k(vk).
In general this backward step gives the optimal strategy as a function of the current
wealth vk. To get the optimal strategy we then need to iterate forward starting from
the initial wealth v0: W0 = v0 and if Wk is known, set

π∗k = π∗k(Wk)
γ∗k = γ∗k(Wk)

Wk+1 = Wk

(
1 + π∗k · (Rk+1 − 1)− γ∗k

)
However, calculations simplify considerably in our setup, since the optimal γ∗k and
π∗k do NOT depend on the current wealth vk (see Remark below).
Remarks

1. Note that the dynamic programming principle only gives a candidate solution to
(1). To confirm the optimality, one should check the sufficient condition of the
Martingale Optimality Principle, i.e. show that J(ϑ∗, c∗) is a true martingale
(where recall that c∗k = γ∗kW

v0,π∗,γ∗

k and ϑ∗,lk+1 = π∗,l
k
W
v0,π

∗,γ∗
k

Xl
k

).

2. The (candidate) optimal proportions γ∗k, π∗k are deterministic. But there is still
trading and stochastic consumption involved because

c∗k = γ∗kW
v0,π∗,γ∗

k

and
ϑ∗,lk+1 = π∗,lk W

v0,π∗,γ∗

k

X l
k

still depend on the randomly evolving wealth and asset values.
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Exercise 11.2 The goal of the following exercises is to prove Bellman’s Theorem
for controlled dynamic systems. Questions 2 and 3 describe the basic setup needed
for question 4. These results give more precise versions of those in the lecture for
controlled dynamic systems and Markov Chains.
Fix a probability space (Ω,F , P ) and consider a sequence of random variables (Xn)n
taking values in a state space E endowed with a sigma-algebra E . We suppose that
the dynamics of Xn is given by

Xn+1 = φn(Xn, εn) (2)

where εn is a sequence of random variables valued inW (with sigma- algebraW) with
the property that εn is independent of σ(X0, ε1, . . . , εn−1), and each φn : E×W 7→ E
is a measurable function. For x ∈ E and A ∈ E we define

Pn(x,A) = P
(
φn(x, εn) ∈ A

)
(3)

Note that each Pn defines a transition kernel on (E, E). Indeed,

• ∀x ∈ E,A 7→ Pn(x,A) is a probability measure on (E, E).

• ∀A ∈ E , x 7→ Pn(x,A) is measurable.

(a) Given a sequence (Pn) of transition kernels on (E, E), a sequence of random
variables (Xn) (valued in E) is called inhomogeneous Markov Chain with
transition kernels (Pn), if ∀A ∈ E and n ∈ N,

E
[
1{Xn+1∈A}|σ(X0, . . . , Xn)

]
= Pn(Xn, A) (4)

Show that (Xn) defined by (2) defines an inhomogeneous Markov Chain with
transition kernels given by (3).

We now introduce a very important notation: if P is a transition kernel on E and
f : E 7→ R+ is measurable, then we write for x ∈ E,

Pf(x) :=
∫
E
f(y)P (x, dy) (5)

Remark: the operator P defines a Feller semigroup. Feller semigroups are a very
convinient way to talk about Markov Chains especially in a continous time setup.

(b) Show that if (Xn) is an inhomogeneous Markov Chain with transition kernels
(Pn), and f : E 7→ R+ is a measurable function, then ∀n ∈ N,

E[f(Xn+1)|σ(X0, . . . , Xn)] = Pnf(Xn) (6)

Solution 11.2
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(a) First note by induction that Xn is σ(X0, ε0, ..., εn−1) measurable. Indeed it is
clearly true for n = 0 and by induction, if Xn is σ(X0, ε0, ..., εn−1) measurable,
then Xn = fn(X0, ε0, ..., εn−1) for a certain measurable function fn and so

Xn+1 = φn(Xn, εn) = φn
(
fn(X0, ε0, ..., εn−1), εn

)
is σ(X0, ε0, . . . , εn) measurable.
Since by assumption, εn is independent of σ(X0, ε0, . . . , εn−1), we get by the
above result that εn is independent of σ(X0, . . . , Xn). Hence

E
[
1{Xn+1∈A}|σ(X0, . . . , Xn)

]
= E

[
1{φn(Xn,εn)∈A}|σ(X0, . . . , Xn)

]
= Pn(Xn, A)

where in the last equality we used the following proposition: if X, Y are random
variables such that X is G measurable with respect to some sigma algebra G
and Y is independent of G, then

E[f(X, Y )|G] = E[f(z, Y )]
∣∣∣
z=X

(b) The equality holds for f = 1A for any A ∈ E by the previous question.
By linearity it also holds for simple functions, i.e functions for the form
f = ∑n

k=1 ak1Ak . Finally it also holds for positive measurable functions since
every such functions is the increasing limit of a sequence of simple functions.
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Exercise 11.3 (Dynamic systems in discrete time: random controlled dynamic
systems, i.e. Markov Decision Processes). We extend the setup of the previous
question to allow for controls. We thus suppose that at each time n, the dynamics of
the system (Xn) (taking values in (E, E)) can be controlled with a certain control
Un:

Xn+1 = φn(Xn, Un, εn) (7)
where ε is again a sequence of independent random variables valued in W (with
sigma-algebra W) with the property that εn is independent of σ(X0, ε1, . . . , εn−1),
and each φn is a measurable function. We also suppose that the random variable
Un representing the control at time n takes values in (C, C) and that the process
U is adapted to the natural filtration of X (i.e. for all n ≥ 0, Un is σ(X0, ..., Xn)
measurable). This last assumption ensures that the control at time n only depends
on the information available up to that time. Note that by the factorization lemma
of measurable functions, adaptedness of U to the natural filtration of X is equivalent
to the existence of a sequence of measurable maps ηn : En+1 7→ C such that

Un = ηn(X0, . . . , Xn)

We call the sequence η = (ηn)n a strategy. For x ∈ E, u ∈ C, and A ∈ E , we define

P (u)
n (x,A) = P

(
φn(x, u, εn) ∈ A

)
(8)

Note that each P (u)
n defines a transition kernel on (E, E). Indeed,

• ∀x ∈ E,A 7→ P (u)
n (x,A) is a probability measure on (E, E)).

• ∀A ∈ E , x 7→ P (u)
n (x,A) is measurable.

(a) Show that (Xn) defined by (7) satsisfies ∀A ∈ E and n ∈ N,

E
[
1{Xn+1∈A}|σ(X0, . . . , Xn)

]
= P (Un)

n (Xn, A)

Note that we are not in a Markovian setup (as in the last exercise) since Un
can depend not only on Xn but also on the whole history of the process X up
to time n.
We call (7) a random controlled dynamic system. The result of the previous
sub-question tells us that the conditional law of Xn+1 given σ(X0, ..., Xn) is
P (Un)
n (Xn, ·). Note that a random controlled dynamic system can thus be

defined equivalently by specifying a strategy η and a family of transition
kernels (P (u)

n ) such that ∀A ∈ E , the map

(x, u) 7→ P (u)
n (x,A)

is measurable. Indeed, let X0 = x0 be fixed, and define recursively Xn+1 by
sampling from P (Un)

n (Xn, ·) where Un = ηn(X0, . . . , Xn). We will write Eη
x0 for
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the expectation under the law of the process (Xn) starting at X0 = x0 and
controlled by the strategy η. Recall from the last exercise, that we if P is a
transition kernel on E and f : E 7→ R+ is measurable, then we write for x ∈ E

Pf(x) :=
∫
E
f(y)P (x, dy)

(b) Show that for all f : E 7→ R+ positive measurable functions, we have ∀n ∈ N,

Eη
x0 [f(Xn+1)|σ(X0 = x0, . . . , Xn)] = P (Un)

n f(Xn)

where Un = ηn(X0, . . . , Xn).

Solution 11.3

(a) The proof is very similar to the solution of the question 11.1.a). Again
by induction one can see that Xn and Un are σ(X0, ε0, ..., εn−1) measurable.
Indeed it is again clearly true for n = 0 and by induction, if Xn and Un are
σ(X0, ε0, ..., εn−1) measurable, then there exists some measurable functions fn
and gn such that Xn = fn(X0, ε0, ..., εn−1) and Un = gn(X0, ε1, . . . , εn−1)

Xn+1 = φn(Xn, Un, εn) = φn
(
fn(X0, ε0, ..., εn−1), gn(X0, ε0, ..., εn−1), εn

)
is σ(X0, ε0, . . . , εn) measurable and thus so is Un+1 since U is adapted to the
natural filtration of X.
Since by assumption, εn is independent of σ(X0, ε0, . . . , εn−1), we get by the
above result that εn is independent of σ(X0, . . . , Xn). Hence we have (using
the same proposition as in question 11.1.a)),

E
[
1{Xn+1∈A}|σ(X0, . . . , Xn)

]
= E

[
1{φn(Xn,Un,εn)∈A}|σ(X0, . . . , Xn)

]
= P (Un)

n (Xn, A)

(b) The solution follows the same ideas as question 11.1.b). The equality holds
for f = 1A for any A ∈ E by the previous question. By linearity it also holds
for simple functions, i.e functions for the form f = ∑n

k=1 ak1Ak . Finally it
also holds for positive measurable function since every such functions is the
increasing limit of a sequence of simple functions.

Updated: May 17, 2020 7 / 10



Introduction to Mathematical Finance, FS 2020 Exercise sheet 11

Exercise 11.4 (Dynamic Programming: Bellman’s Theorem) Consider a random
controlled dynamic system starting at X0 = x0 (see previous exercise). Fix a time
horizon N , intermediate cost functions ck : E ×C 7→ R∪{+∞} for k = 0, . . . , N − 1
and a terminal cost function γ : E 7→ R ∪ {+∞}. In this exercise we are interested
in minimizing the total expected cost

E

N−1∑
k=0

ck(Xk, Uk) + γ(XN)
 (9)

over the sequence of controls U0, . . . , UN−1.
We break down this (unconditional) optimization problem into a series of much
simpler conditional optimization problems. Define by backwards induction

ON(x) = γ(x) ∀x ∈ E
On(x) = min

u∈C

(
cn(x, u) + (P (u)

n On+1)(x)
)

∀x ∈ E n = N − 1, . . . , 1, 0 (10)

where recall that we have showed in the last exercise that

(P (U)
n On+1)(Xn) = Eη

x0

[
On+1(Xn+1)|σ(X0, . . . , Xn)

]
where η is the strategy corresponding to the controls U .
The goal of this exercise is to show Bellman’s Theorem

Theorem 1. Suppose that for all x ∈ E and 0 ≤ n ≤ N , the optimization problem
(10) admits a solution and write uminn (x) for the mimizer. Moreover suppose that the
map uminn : E 7→ C is measurable. Then there exists a strategy η which minimizes (9)
and this strategy is given by ηmin := (uminn )n=0,...,N−1. Moreover, for all n, we have

On(Xn) = min
strategy η

Eη
x0

N−1∑
k=n

ck(Xk, Uk) + γ(XN)|σ(X0, . . . , Xn)


In particular,

O0(x0) = min
strategy η

Eη
x0

N−1∑
k=0

ck(Xk, Uk) + γ(XN)


is the optimal value of (9).

To prove this theorem you are asked to show that at all time steps n we have:

(a)

On(Xn) = Eηmin

x0

N−1∑
k=n

ck(Xk, Uk) + γ(XN)|σ(X0, . . . , Xn)


where recall that ηmin := (uminn )n=0,...,N−1.
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(b) for all strategy η,

Eηmin

x0

N−1∑
k=n

ck(Xk, Uk) + γ(XN)|σ(X0, . . . , Xn)
 ≤

Eη
x0

N−1∑
k=n

ck(Xk, Uk) + γ(XN)|σ(X0, . . . , Xn)


Hint: Use backwards induction for both questions

Solution 11.4 As suggested by the hint, we use bakward induction for both
questions.

(a) It is clearly true for n = N :

ON(XN) = γ(XN) = Eηmin

x0

[
γ(XN)|σ(X0, . . . , XN)

]
Now we suppose that the desired property holds for n + 1 and show that it
still holds for n

On(Xn) = cn(Xn, U
(min)
n (Xn)) + (P (U(min)

n (Xn))
n On+1)(Xn) (by definition)

= cn(Xn, U
(min)
n (Xn)) + Eηmin

x0

[
On+1(Xn+1)|σ(X0, . . . , Xn)

]
(using the result from question 2)

= cn(Xn, U
(min)
n (Xn))

+ Eηmin

x0

Eηmin

x0

 N−1∑
k=n+1

ck(Xk, Uk) + γ(XN)|σ(X0, . . . , Xn+1)
 |σ(X0, . . . , Xn)


(by induction hypotheses)

= cn(Xn, U
(min)
n (Xn))

+ Eηmin

x0

 N−1∑
k=n+1

ck(Xk, Uk) + γ(XN)|σ(X0, . . . , Xn)


(by tower property)

= Eηmin

x0

N−1∑
k=n

ck(Xk, Uk) + γ(XN)|σ(X0, . . . , Xn)


(b) Fix a strategy η corresponding to controls U . The claimed result is clearly true
for n = N :

ON(XN) = γ(XN) = Eη
x0

[
γ(XN)|σ(X0, . . . , XN)

]
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Now we suppose that the desired property holds for n + 1 and show that it
still holds for n

On(Xn) = cn(Xn, U
(min)
n (Xn)) + (P (U(min)

n (Xn))
n On+1)(Xn) (by definition)

≤ cn(Xn, Un(Xn)) + (P (Un(Xn))
n On+1)(Xn) (by definition of optimal strategy)

= cn(Xn, Un(Xn)) + Eη
x0

[
On+1(Xn+1)|σ(X0, . . . , Xn)

]
(using the result from question 3)
≤ cn(Xn, Un(Xn))

+ Eη
x0

Eη
x0

 N−1∑
k=n+1

ck(Xk, Uk) + γ(XN)|σ(X0, . . . , Xn+1)
 |σ(X0, . . . , Xn)


(by induction hypotheses + result from question (a))

= cn(Xn, Un(Xn))

+ Eη
x0

 N−1∑
k=n+1

ck(Xk, Uk) + γ(XN)|σ(X0, . . . , Xn)


(by tower property)

= Eη
x0

N−1∑
k=n

ck(Xk, Uk) + γ(XN)|σ(X0, . . . , Xn)
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