Introduction to Mathematical Finance Exercise sheet 11

Exercise 11.1 Consider a financial market with positive prices and i.i.d returns: $X_0^l > 0$ and $X_{k+1}^l = X_k^l R_{k+1}^l$, l = 1, ..., d, k = 0, ..., T - 1, where $R_1, ..., R_T$ are i.i.d with values in \mathbb{R}_{++}^d . Suppose that the filtration is given by the natural filtration of the stochastic process R, i.e. $\mathbb{F} = (\mathcal{F}_k)_k$ where $\mathcal{F}_k = \sigma(R_j, j \leq k)$. Consider the utility maximization problem with objective function

$$\mathcal{U}(\vartheta, c) = E\left[\sum_{j=0}^{T-1} U_c(c_j) + U_w(W_T^{v_0,\vartheta,c})\right]$$

As in Section III.1, we use the parameterization of the above optimization problem in terms of the proportion of time k wealth invested in asset l (denoted π_k^l) and the proportion of time k wealth spent on consumption (denoted γ_k):

$$W_{k+1}^{v_0,\pi,\gamma} = W_k^{v_0,\pi,\gamma} \left(1 + \pi_k \cdot (R_{k+1} - 1) - \gamma_k\right)$$
$$c_k = \gamma_k W_k^{v_0,\pi,\gamma}$$
$$\vartheta_{k+1}^l = \frac{\pi_k^l W_k^{v_0,\pi,\gamma}}{X_k^l}$$

Recall that $c_T = 0$; so $\gamma_T = 0$.

We thus consider the optimization problem

$$\mathcal{U}(\pi,\gamma) = E\left[\sum_{j=0}^{T-1} U_c(c_j) + U_w(W_T^{v_0,\pi,\gamma})\right]$$
(1)

In the lecture we solved (1) in the case when both the consumption and the final wealth utility functions were given by a power utility: $U_c(x) = U_w(x) = x^{\alpha}$ for some $\alpha > 0$. In this exercise you are asked to solve (1) in the case when the utility functions are given by the log utility: $U_c(x) = U_w(x) = \log(x)$. Hint: Use Dynamic Programming Principle

Solution 11.1 The dynamic programming principle (Proposition III.2.5) indicates that we should solve

$$\sigma_k(v_k) = \operatorname{ess\,sup}_{\pi_k,\gamma_k} \left(U_c(\gamma_k v_k) + E\left[\sigma_{k+1} \left(v_k(1 + \pi_k \cdot (R_{k+1} - 1) - \gamma_k)\right) |\mathcal{F}_k\right] \right)$$

by backwards induction to get candidate optimal solution.

• First note that $\sigma_T(v_T) = U_w(v_T) = \log(v_T)$

Updated: May 17, 2020

• Consider k = T - 1:

$$\begin{aligned} \sigma_{T-1}(v_{T-1}) &= \operatorname{ess\,sup}_{\pi_{T-1},\gamma_{T-1}} \left(\log(\gamma_{T-1}v_{T-1}) + E\left[\sigma_T \left(v_{T-1}(1 + \pi_{T-1} \cdot (R_T - 1) - \gamma_{T-1}) \right) | \mathcal{F}_{T-1} \right] \right) \\ &= \operatorname{ess\,sup}_{\pi_{T-1},\gamma_{T-1}} \left(\log(\gamma_{T-1}) + \log(v_{T-1}) + E\left[\log(v_{T-1}) - \gamma_{T-1} \right] | \mathcal{F}_{T-1} \right] \right) \\ &= 2\log(v_{T-1}) + \operatorname{ess\,sup}_{\pi_{T-1},\gamma_{T-1}} \left(\log(\gamma_{T-1}) + E\left[\log((1 + \pi_{T-1} \cdot (R_T - 1) - \gamma_{T-1}) | \mathcal{F}_{T-1} \right] \right) \\ &= 2\log(v_{T-1}) + \\ &\qquad \operatorname{ess\,sup}_{\pi_{T-1},\gamma_{T-1}} \left(\log(\gamma_{T-1}) + E\left[\log((1 + \pi \cdot (R_T - 1) - \gamma) \right]_{|\pi = \pi_{T-1},\gamma = \gamma_{T-1}} \right) \\ &= 2\log(v_{T-1}) + \\ &\qquad \operatorname{ess\,sup}_{\pi_{T-1},\gamma_{T-1}} \left(\log(\gamma_{T-1}) + E\left[\log((1 + \pi \cdot (R_T - 1) - \gamma) \right]_{|\pi = \pi_{T-1},\gamma = \gamma_{T-1}} \right) \end{aligned}$$

where

$$C_{T-1} := \sup_{\pi,\gamma} \left(\log(\gamma) + E \left[\log(1 + \pi \cdot (R-1) - \gamma) \right] \right)$$

In the fourth equality above, we have used that R_T is independent of \mathcal{F}_{T-1} and π_{T-1} and γ_{T-1} are \mathcal{F}_{T-1} measurable. The random variable R appearing in the definition of C_{T-1} is distributed identically as the i.i.d random variables R_k .

• For a general $0 \le k \le T - 1$, if $\sigma_{k+1}(v_{k+1}) = (T - (k+1) + 1)\log(v_{k+1}) + \sum_{j=k+1}^{T-1} C_j$ for some constants C_j , then:

$$\begin{split} \sigma_{k}(v_{k}) &= \operatorname{ess\,sup}_{\pi_{k},\gamma_{k}} \left(\log(\gamma_{k}v_{k}) + E\left[\sigma_{k+1} \left(v_{k}(1 + \pi_{k} \cdot (R_{k+1} - 1) - \gamma_{k}) \right) |\mathcal{F}_{k} \right] \right) \\ &= \operatorname{ess\,sup}_{\pi_{k},\gamma_{k}} \left(\log(\gamma_{k}) + \log(v_{k}) + \\ E\left[(T - (k+1) + 1) \{ \log(v_{k}) + \log(1 + \pi_{k} \cdot (R_{k+1} - 1) - \gamma_{k}) \} + \sum_{j=k+1}^{T-1} C_{j} |\mathcal{F}_{k} \right] \right) \\ &= (T - k + 1) \log(v_{k}) + \sum_{j=k+1}^{T-1} C_{j} \\ &+ \operatorname{ess\,sup}_{\pi_{k},\gamma_{k}} \left(\log(\gamma_{k}) + (T - k) E\left[\log((1 + \pi_{k} \cdot (R_{k+1} - 1) - \gamma_{k}) |\mathcal{F}_{k} \right] \right) \\ &= (T - k + 1) \log(v_{k}) + \sum_{j=k+1}^{T-1} C_{j} \\ & \operatorname{ess\,sup}_{\pi_{k},\gamma_{k}} \left(\log(\gamma_{k}) + (T - k) E\left[\log((1 + \pi \cdot (R_{k+1} - 1) - \gamma) \right]_{|\pi = \pi_{k},\gamma = \gamma_{k}} \right) \\ &= (T - k + 1) \log(v_{k}) + \sum_{j=k+1}^{T-1} C_{j} \\ & = (T - k + 1) \log(v_{k}) + \sum_{j=k+1}^{T-1} C_{j} \end{split}$$

Updated: May 17, 2020

where

$$C_k := \sup_{\pi,\gamma} \left(\log(\gamma) + (T-k)E \left[\log(1 + \pi \cdot (R-1) - \gamma) \right] \right)$$

This proves by induction that for all $0 \le k \le T - 1$,

$$\sigma_k(v_k) = (T - k + 1)\log(v_k) + \sum_{j=k}^{T-1} C_j$$

Assume the constants C_k are finite and that there exist maximisers (π_k^*, γ_k^*) (constrained to statisfy $\gamma_k^* \ge 0$ and $1^T \pi_k^* = 1$ for all k). We then expect by the dynamic programming principle (π_k^*, γ_k^*) to be optimal for the original static utility optimization problem (1). Indeed the dynamic programming principle (Proposition III.2.5) tells us that for an optimal solution of (1), $\sigma_k(v_k)$ computed above is equal to the optimal remaining utility at time k. In particular,

$$E[\sigma_0(v_0)] = \mathcal{U}^*$$

is the optimal value of (1). To find the optimal strategy achieving this value \mathcal{U}^* , we first calculate backwards $\sigma_k(v_k)$ and the corresponding optimizers $\pi_k^*(v_k)$ and $\gamma_k^*(v_k)$. In general this backward step gives the optimal strategy as a function of the current wealth v_k . To get the optimal strategy we then need to iterate forward starting from the initial wealth v_0 : $W_0 = v_0$ and if W_k is known, set

$$\pi_{k}^{*} = \pi_{k}^{*}(W_{k})$$

$$\gamma_{k}^{*} = \gamma_{k}^{*}(W_{k})$$

$$W_{k+1} = W_{k} (1 + \pi_{k}^{*} \cdot (R_{k+1} - 1) - \gamma_{k}^{*})$$

However, calculations simplify considerably in our setup, since the optimal γ_k^* and π_k^* do NOT depend on the current wealth v_k (see Remark below). **Remarks**

- 1. Note that the dynamic programming principle only gives a *candidate* solution to (1). To confirm the optimality, one should check the sufficient condition of the Martingale Optimality Principle, i.e. show that $J(\vartheta^*, c^*)$ is a true martingale (where recall that $c_k^* = \gamma_k^* W_k^{v_0, \pi^*, \gamma^*}$ and $\vartheta_{k+1}^{*,l} = \frac{\pi_k^{*,l} W_k^{v_0, \pi^*, \gamma^*}}{X_k^l}$).
- 2. The (candidate) optimal proportions γ_k^*, π_k^* are deterministic. But there is still trading and stochastic consumption involved because

$$c_k^* = \gamma_k^* W_k^{v_0, \pi^*, \gamma^*}$$

and

$$\vartheta_{k+1}^{*,l} = \frac{\pi_k^{*,l} W_k^{v_0,\pi^*,\gamma^*}}{X_k^l}$$

still depend on the randomly evolving wealth and asset values.

Updated: May 17, 2020

Fix a probability space (Ω, \mathcal{F}, P) and consider a sequence of random variables $(X_n)_n$ taking values in a state space E endowed with a sigma-algebra \mathcal{E} . We suppose that the dynamics of X_n is given by

$$X_{n+1} = \phi_n(X_n, \epsilon_n) \tag{2}$$

where ϵ_n is a sequence of random variables valued in W (with sigma- algebra \mathcal{W}) with the property that ϵ_n is independent of $\sigma(X_0, \epsilon_1, \ldots, \epsilon_{n-1})$, and each $\phi_n : E \times W \mapsto E$ is a measurable function. For $x \in E$ and $A \in \mathcal{E}$ we define

$$P_n(x,A) = P\left(\phi_n(x,\epsilon_n) \in A\right) \tag{3}$$

Note that each P_n defines a transition kernel on (E, \mathcal{E}) . Indeed,

- $\forall x \in E, A \mapsto P_n(x, A)$ is a probability measure on (E, \mathcal{E}) .
- $\forall A \in \mathcal{E}, x \mapsto P_n(x, A)$ is measurable.
- (a) Given a sequence (P_n) of transition kernels on (E, \mathcal{E}) , a sequence of random variables (X_n) (valued in E) is called *inhomogeneous Markov Chain* with transition kernels (P_n) , if $\forall A \in \mathcal{E}$ and $n \in \mathbb{N}$,

$$E\left[\mathbb{1}_{\{X_{n+1}\in A\}}|\sigma(X_0,\ldots,X_n)\right] = P_n(X_n,A)$$
(4)

Show that (X_n) defined by (2) defines an inhomogeneous Markov Chain with transition kernels given by (3).

We now introduce a very important notation: if P is a transition kernel on E and $f: E \mapsto \mathbb{R}_+$ is measurable, then we write for $x \in E$,

$$Pf(x) := \int_{E} f(y)P(x, dy)$$
(5)

Remark: the operator P defines a Feller semigroup. Feller semigroups are a very convinient way to talk about Markov Chains especially in a continuous time setup.

(b) Show that if (X_n) is an inhomogeneous Markov Chain with transition kernels (P_n) , and $f: E \mapsto \mathbb{R}_+$ is a measurable function, then $\forall n \in \mathbb{N}$,

$$E[f(X_{n+1})|\sigma(X_0,\ldots,X_n)] = P_n f(X_n)$$
(6)

Solution 11.2

Updated: May 17, 2020

$$X_{n+1} = \phi_n(X_n, \epsilon_n) = \phi_n(f_n(X_0, \epsilon_0, \dots, \epsilon_{n-1}), \epsilon_n)$$

is $\sigma(X_0, \epsilon_0, \ldots, \epsilon_n)$ measurable.

Since by assumption, ϵ_n is independent of $\sigma(X_0, \epsilon_0, \ldots, \epsilon_{n-1})$, we get by the above result that ϵ_n is independent of $\sigma(X_0, \ldots, X_n)$. Hence

$$E\left[\mathbb{1}_{\{X_{n+1}\in A\}}|\sigma(X_0,\ldots,X_n)\right] = E\left[\mathbb{1}_{\{\phi_n(X_n,\epsilon_n)\in A\}}|\sigma(X_0,\ldots,X_n)\right]$$
$$= P_n(X_n,A)$$

where in the last equality we used the following proposition: if X, Y are random variables such that X is \mathcal{G} measurable with respect to some sigma algebra \mathcal{G} and Y is independent of \mathcal{G} , then

$$E[f(X,Y)|\mathcal{G}] = E[f(z,Y)]\Big|_{z=X}$$

(b) The equality holds for $f = \mathbb{1}_A$ for any $A \in \mathcal{E}$ by the previous question. By linearity it also holds for simple functions, i.e functions for the form $f = \sum_{k=1}^{n} a_k \mathbb{1}_{A_k}$. Finally it also holds for positive measurable functions since every such functions is the increasing limit of a sequence of simple functions.

$$X_{n+1} = \phi_n(X_n, U_n, \epsilon_n) \tag{7}$$

where ϵ is again a sequence of independent random variables valued in W (with sigma-algebra \mathcal{W}) with the property that ϵ_n is independent of $\sigma(X_0, \epsilon_1, \ldots, \epsilon_{n-1})$, and each ϕ_n is a measurable function. We also suppose that the random variable U_n representing the control at time n takes values in (C, \mathcal{C}) and that the process U is adapted to the natural filtration of X (i.e. for all $n \geq 0$, U_n is $\sigma(X_0, \ldots, X_n)$ measurable). This last assumption ensures that the control at time n only depends on the information available up to that time. Note that by the factorization lemma of measurable functions, adaptedness of U to the natural filtration of X is equivalent to the existence of a sequence of measurable maps $\eta_n : E^{n+1} \mapsto C$ such that

$$U_n = \eta_n(X_0, \ldots, X_n)$$

We call the sequence $\eta = (\eta_n)_n$ a *strategy*. For $x \in E$, $u \in C$, and $A \in \mathcal{E}$, we define

$$P_n^{(u)}(x,A) = P\left(\phi_n(x,u,\epsilon_n) \in A\right) \tag{8}$$

Note that each $P_n^{(u)}$ defines a transition kernel on (E, \mathcal{E}) . Indeed,

- $\forall x \in E, A \mapsto P_n^{(u)}(x, A)$ is a probability measure on (E, \mathcal{E})).
- $\forall A \in \mathcal{E}, x \mapsto P_n^{(u)}(x, A)$ is measurable.
- (a) Show that (X_n) defined by (7) satisfies $\forall A \in \mathcal{E}$ and $n \in \mathbb{N}$,

$$E\left[\mathbb{1}_{\{X_{n+1}\in A\}}|\sigma(X_0,\ldots,X_n)\right] = P_n^{(U_n)}(X_n,A)$$

Note that we are not in a Markovian setup (as in the last exercise) since U_n can depend not only on X_n but also on the whole history of the process X up to time n.

We call (7) a random controlled dynamic system. The result of the previous sub-question tells us that the conditional law of X_{n+1} given $\sigma(X_0, ..., X_n)$ is $P_n^{(U_n)}(X_n, \cdot)$. Note that a random controlled dynamic system can thus be defined equivalently by specifying a strategy η and a family of transition kernels $(P_n^{(u)})$ such that $\forall A \in \mathcal{E}$, the map

$$(x, u) \mapsto P_n^{(u)}(x, A)$$

is measurable. Indeed, let $X_0 = x_0$ be fixed, and define recursively X_{n+1} by sampling from $P_n^{(U_n)}(X_n, \cdot)$ where $U_n = \eta_n(X_0, \ldots, X_n)$. We will write $E_{x_0}^{\eta}$ for

Updated: May 17, 2020

the expectation under the law of the process (X_n) starting at $X_0 = x_0$ and controlled by the strategy η . Recall from the last exercise, that we if P is a transition kernel on E and $f: E \mapsto \mathbb{R}_+$ is measurable, then we write for $x \in E$

$$Pf(x) := \int_E f(y)P(x, dy)$$

(b) Show that for all $f: E \mapsto \mathbb{R}_+$ positive measurable functions, we have $\forall n \in \mathbb{N}$,

$$E_{x_0}^{\eta}[f(X_{n+1})|\sigma(X_0=x_0,\ldots,X_n)] = P_n^{(U_n)}f(X_n)$$

where $U_n = \eta_n(X_0, \ldots, X_n)$.

Solution 11.3

(a) The proof is very similar to the solution of the question 11.1.a). Again by induction one can see that X_n and U_n are $\sigma(X_0, \epsilon_0, ..., \epsilon_{n-1})$ measurable. Indeed it is again clearly true for n = 0 and by induction, if X_n and U_n are $\sigma(X_0, \epsilon_0, ..., \epsilon_{n-1})$ measurable, then there exists some measurable functions f_n and g_n such that $X_n = f_n(X_0, \epsilon_0, ..., \epsilon_{n-1})$ and $U_n = g_n(X_0, \epsilon_1, ..., \epsilon_{n-1})$

$$X_{n+1} = \phi_n(X_n, U_n, \epsilon_n) = \phi_n(f_n(X_0, \epsilon_0, ..., \epsilon_{n-1}), g_n(X_0, \epsilon_0, ..., \epsilon_{n-1}), \epsilon_n)$$

is $\sigma(X_0, \epsilon_0, \ldots, \epsilon_n)$ measurable and thus so is U_{n+1} since U is adapted to the natural filtration of X.

Since by assumption, ϵ_n is independent of $\sigma(X_0, \epsilon_0, \ldots, \epsilon_{n-1})$, we get by the above result that ϵ_n is independent of $\sigma(X_0, \ldots, X_n)$. Hence we have (using the same proposition as in question 11.1.a)),

$$E\left[\mathbbm{1}_{\{X_{n+1}\in A\}}|\sigma(X_0,\ldots,X_n)\right] = E\left[\mathbbm{1}_{\{\phi_n(X_n,U_n,\epsilon_n)\in A\}}|\sigma(X_0,\ldots,X_n)\right]$$
$$= P_n^{(U_n)}(X_n,A)$$

(b) The solution follows the same ideas as question 11.1.b). The equality holds for $f = \mathbb{1}_A$ for any $A \in \mathcal{E}$ by the previous question. By linearity it also holds for simple functions, i.e functions for the form $f = \sum_{k=1}^{n} a_k \mathbb{1}_{A_k}$. Finally it also holds for positive measurable function since every such functions is the increasing limit of a sequence of simple functions.

Exercise 11.4 (Dynamic Programming: Bellman's Theorem) Consider a random controlled dynamic system starting at $X_0 = x_0$ (see previous exercise). Fix a time horizon N, intermediate cost functions $c_k : E \times C \mapsto \mathbb{R} \cup \{+\infty\}$ for $k = 0, \ldots, N-1$ and a terminal cost function $\gamma : E \mapsto \mathbb{R} \cup \{+\infty\}$. In this exercise we are interested in minimizing the total expected cost

$$E\left[\sum_{k=0}^{N-1} c_k(X_k, U_k) + \gamma(X_N)\right]$$
(9)

over the sequence of controls U_0, \ldots, U_{N-1} .

We break down this (unconditional) optimization problem into a series of much simpler conditional optimization problems. Define by backwards induction

$$O_N(x) = \gamma(x) \qquad \forall x \in E$$

$$O_n(x) = \min_{u \in C} \left(c_n(x, u) + (P_n^{(u)} O_{n+1})(x) \right) \qquad \forall x \in E \qquad n = N - 1, \dots, 1, 0$$
⁽¹⁰⁾

where recall that we have showed in the last exercise that

$$(P_n^{(U)}O_{n+1})(X_n) = E_{x_0}^{\eta} \left[O_{n+1}(X_{n+1}) | \sigma(X_0, \dots, X_n) \right]$$

where η is the strategy corresponding to the controls U. The goal of this exercise is to show Bellman's Theorem

Theorem 1. Suppose that for all $x \in E$ and $0 \le n \le N$, the optimization problem (10) admits a solution and write $u_n^{min}(x)$ for the mimizer. Moreover suppose that the map $u_n^{min} : E \mapsto C$ is measurable. Then there exists a strategy η which minimizes (9) and this strategy is given by $\eta^{min} := (u_n^{min})_{n=0,\dots,N-1}$. Moreover, for all n, we have

$$O_n(X_n) = \min_{strategy \eta} E_{x_0}^{\eta} \left[\sum_{k=n}^{N-1} c_k(X_k, U_k) + \gamma(X_N) | \sigma(X_0, \dots, X_n) \right]$$

In particular,

$$O_0(x_0) = \min_{strategy \eta} E_{x_0}^{\eta} \left[\sum_{k=0}^{N-1} c_k(X_k, U_k) + \gamma(X_N) \right]$$

is the optimal value of (9).

To prove this theorem you are asked to show that at all time steps n we have: (a)

$$O_n(X_n) = E_{x_0}^{\eta^{min}} \left[\sum_{k=n}^{N-1} c_k(X_k, U_k) + \gamma(X_N) | \sigma(X_0, \dots, X_n) \right]$$

where recall that $\eta^{\min} := (u_n^{\min})_{n=0,\dots,N-1}$.

Updated: May 17, 2020

(b) for all strategy η ,

$$E_{x_0}^{\eta^{min}} \left[\sum_{k=n}^{N-1} c_k(X_k, U_k) + \gamma(X_N) | \sigma(X_0, \dots, X_n) \right] \leq E_{x_0}^{\eta} \left[\sum_{k=n}^{N-1} c_k(X_k, U_k) + \gamma(X_N) | \sigma(X_0, \dots, X_n) \right]$$

Hint: Use backwards induction for both questions

Solution 11.4 As suggested by the hint, we use bakward induction for both questions.

(a) It is clearly true for n = N:

$$O_N(X_N) = \gamma(X_N) = E_{x_0}^{\eta^{min}} \left[\gamma(X_N) | \sigma(X_0, \dots, X_N) \right]$$

Now we suppose that the desired property holds for n+1 and show that it still holds for n

$$\begin{aligned} O_n(X_n) &= c_n(X_n, U_n^{(min)}(X_n)) + (P_n^{(U_n^{(min)}(X_n))}O_{n+1})(X_n) \quad (by \ definition) \\ &= c_n(X_n, U_n^{(min)}(X_n)) + E_{x_0}^{\eta^{min}} \left[O_{n+1}(X_{n+1}) | \sigma(X_0, \dots, X_n)\right] \\ (using \ the \ result \ from \ question \ 2) \\ &= c_n(X_n, U_n^{(min)}(X_n)) \\ &+ E_{x_0}^{\eta^{min}} \left[E_{x_0}^{\eta^{min}} \left[\sum_{k=n+1}^{N-1} c_k(X_k, U_k) + \gamma(X_N) | \sigma(X_0, \dots, X_{n+1}) \right] | \sigma(X_0, \dots, X_n) \right] \\ (by \ induction \ hypotheses) \end{aligned}$$

$$= c_n(X_n, U_n^{(min)}(X_n))$$

+ $E_{x_0}^{\eta^{min}} \left[\sum_{k=n+1}^{N-1} c_k(X_k, U_k) + \gamma(X_N) | \sigma(X_0, \dots, X_n) \right]$
(by tower property)
= $E_{x_0}^{\eta^{min}} \left[\sum_{k=n}^{N-1} c_k(X_k, U_k) + \gamma(X_N) | \sigma(X_0, \dots, X_n) \right]$

(b) Fix a strategy η corresponding to controls U. The claimed result is clearly true for n = N:

$$O_N(X_N) = \gamma(X_N) = E_{x_0}^{\eta} \left[\gamma(X_N) | \sigma(X_0, \dots, X_N) \right]$$

Updated: May 17, 2020

Now we suppose that the desired property holds for n+1 and show that it still holds for n

$$O_n(X_n) = c_n(X_n, U_n^{(min)}(X_n)) + (P_n^{(U_n^{(min)}(X_n))}O_{n+1})(X_n) \quad (by \ definition)$$

$$\leq c_n(X_n, U_n(X_n)) + (P_n^{(U_n(X_n))}O_{n+1})(X_n) \quad (by \ definition \ of \ optimal \ strategy)$$

$$= c_n(X_n, U_n(X_n)) + E_{x_0}^{\eta} \left[O_{n+1}(X_{n+1}) | \sigma(X_0, \dots, X_n)\right]$$

$$(using \ the \ result \ from \ question \ 3)$$

$$\leq c_n(X_n, U_n(X_n))$$

$$+ E_{x_0}^{\eta} \left[E_{x_0}^{\eta} \left[\sum_{k=n+1}^{N-1} c_k(X_k, U_k) + \gamma(X_N) | \sigma(X_0, \dots, X_{n+1})\right] | \sigma(X_0, \dots, X_n)\right]$$

$$(bu \ induction \ humotherapy \ the \ result \ from \ question \ (a))$$

(by induction hypotheses + result from question (a))

$$= c_n(X_n, U_n(X_n)) + E_{x_0}^{\eta} \left[\sum_{k=n+1}^{N-1} c_k(X_k, U_k) + \gamma(X_N) | \sigma(X_0, \dots, X_n) \right]$$

(by tower property)

$$= E_{x_0}^{\eta} \left[\sum_{k=n}^{N-1} c_k(X_k, U_k) + \gamma(X_N) | \sigma(X_0, \dots, X_n) \right]$$