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Exercise 12.1 We place ourselves in the setting of Chapter IV.4.
The goal of this exercise is to illustrate why we need to work with the larger set Z(y)
instead of the set of EMMs P. We construct an example where the infinum

inf
Q∈P

E

J (ydQ
dP

)
is not attained over P, but only over Z(y).
Recall that we try to solve

u(x) = sup
V ∈V(x)

E[U(VT )]

= sup
f∈C+(x)

E[U(f)]

where V(x) = {V = x + G(ϑ) ≥ 0|ϑ ∈ Θ} is the set of wealth processes of all self-
financing 0-admissible trading strategies, and C+(x) = {VT |V ∈ V(x)} = C(x) ∩ L0

+
is the set of corresponding terminal values. In the lectures you have derived the
corresponding dual optimization problem. Intuitively we can construct an upper
bound on u(x) by noting that Theorem II.7.2 (hedging duality) implies that f ∈ L0

+
satisfies

f ∈ C(x) ⇐⇒ EQ[f ] ≤ x for all Q ∈ P.

Thus
u(x) = sup

f∈L0
+

{E[U(f)]|EQ[f ] ≤ x for all Q ∈ P}.

For any x > 0, f ∈ L0
+, Q ∈ P such that EQ[f ] ≤ x, and y ≥ 0 (which later will be

chosen depending on x in order to guarantee no duality gap), we have:

E[U(f)] ≤ E[U(f)] + y

x− E [dQ
dP

f

]
= E

[
U(f)− ydQ

dP
f

]
+ xy

≤ E

J (ydQ
dP

)+ xy,

Updated: May 22, 2020 1 / 9



Introduction to Mathematical Finance, FS 2020 Exercise sheet 12

where J(y) := supx>0
(
U(x)− xy

)
, y > 0, is the Legendre transform of −U(−·). The

RHS does not depend on f anymore. Taking the supremum over f ∈ C+(x) and
infimum over Q ∈ P, we get:

u(x) ≤ inf
Q∈P

E

J (ydQ
dP

)+ xy

This is almost the dual problem!

1. It depends on y > 0. We will choose y such that strong duality holds (see
Chapter IV.6. in the lecture notes on the homepage).

2. The set P of EMMs has poor closure properties. So we work with a larger set
instead. For y > 0, we therefore define

Z(y) := { set of all nonnegative adaptedZ = (Zk)k=0,1,··· ,T with
Z0 = y such that ZV is a P-supermartingale for all V ∈ V(x)}.

We also define the set

D(y) := {h ∈ L0
+|h ≤ ZT for some Z ∈ Z(y)}.

In the lecture, we have shown that the dual problem involves solving the
optimization problem

j(y) = inf
Z∈Z(y)

E[J(Z)]

= inf
f∈D(y)

E[J(h)].

As mentioned in the beginning of the question, the goal of this exercise is to illustrate
why we need to work with the larger set Z(y) instead of the set of EMMs P. We
construct an example where the infinum

inf
Q∈P

E

J (ydQ
dP

)
is not attained over P, but only over Z(y).

We construct a one-period market defined on a countable probability space Ω. Let
(pn)∞n=0 be a sequence of strictly positive numbers such that ∑∞n=0 pn = 1 tending
sufficiently fast to 0, and let (xn)∞n=0 be a sequence of positive real numbers starting at
x0 = 2 and also decreasing to 0, but less fast than (pn)∞n=0. For example, p0 = 1− α,
pn = α2−n, for n ≥ 1, and x0 = 2, xn = 1/n, for n ≥ 1, will do, if 0 < α < 1 is small
enough to satisfy (1− α)/2 + α

∑∞
n=0 2−n(−n+ 1) > 0. Finally, consider a market

with a numéraire and one risky asset S with initial discounted price X0 = 1 and
terminal discounted price X1 taking the values (xn)∞n=0 with probabilities (pn)∞n=0.
We equip the probability space with the natural filtration of S.
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(a) Show that the market is arbitrage free, and argue that P 6= ∅. Is the market
complete?

(b) Determine an interval [a, b], with a < b in R, of the values for ϑ1 such that
1 + ϑ1 ·∆X1 ∈ V(1), i.e 1 + ϑ1 ·∆X1 ≥ 0 P-almost surely.

(c) Maximise the function

f(ϑ1) := E[log(1 + ϑ1∆X1)]

over [a, b].
Hint: Compute the derivative f ′(ϑ1) and plug-in the value of b form question
b).
Derive the optimal investment V ∗ ∈ V(1).

(d) Compute explicitly (in terms of (xn)∞n=0 and (pn)∞n=0) the value function u(x).
Show that u′(1) = 1.

(e) Compute the corresponding dual optimizer Z∗ ∈ Z(1) using Z∗T (y) = U ′(f ∗x)
and y∗x = u′(1) (see Theorem IV.6.2 in the lecture notes on the homepage).

(f) Conclude that Z∗ ∈ Z(1) is not a martingale, but only a supermartingale.
In particular, Z∗ is not the density process of a martingale measure for the
process S, and hence the infinum

inf
Q∈P

E

J (ydQ
dP

)
is not attained.

Solution 12.1

(a) We show that there is no arbitrage of the first kind. Note that a predictable
strategy corresponds to a deterministic ϑ1 ∈ R. If ϑ1 is an arbitrage candidate
of the first kind, then ϑ1 6= 0, as otherwise ϑ1 ·∆X1 > 0 with positive probability
could not hold. If ϑ1 < 0, then the condition ϑ1(X1 −X0) = ϑ1(X1 − 1) ≥ 0
would imply X1 ≤ 1 P-almost surely, which is not possible since x0 = 2.
Similarly, for ϑ1 > 0, the arbitrage condition would imply X1 ≥ 1 P-almost
surely, which again is not possible since xn → 0 as n→∞. There exists thus
no arbitrage of the first kind, and by Proposition I.3.1, the market is arbitrage
free. Hence, P 6= ∅ by the fundamental theorem of asset pricing.
The market is not complete. Given a contingent claim with payoff H, one has
to solve the system of equations H = v0 + ϑ1 · X1. This is a system with a
infinitely many equations, but only two unknowns. Hence for general H, the
system does not admit a solution. For example, the claim H = (X1)2 is not
replicable.
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(b) The condition 1 + ϑ1 ·∆X1 ≥ 0 P-a.s. is equivalent to the conditions

1 + ϑ1(2− 1) ≥ 0

1 + ϑ1( 1
n
− 1) ≥ 0 for all n ≥ 1

The first equation gives ϑ1 ≥ −1. Taking the limit as n → ∞ in the second
equation, we get ϑ1 ≤ 1. We thus conclude that 1 + ϑ1(X1 −X0) ∈ V(1) iff
ϑ1 ∈ [−1, 1].

(c) We obtain using elementary calculations

f ′(ϑ1) =
∞∑

n=0
pn

xn − 1
1 + ϑ1(xn − 1) .

Therefore f ′(ϑ1) is strictly positive for −1 ≤ ϑ1 ≤ 1 if α > 0 the above
assumption f ′(1) = (1 − α)/2 + α

∑∞
n=0 2−n(−n + 1) > 0. Hence f(ϑ1) is

strictly increasing and attains its maximum on [−1, 1] at ϑ1 = 1. The optimal
investment process V ∗ ∈ V(1) thus equals the process X.

(d) We have already shown that the optimal investment process V ∗ ∈ V(1) equals
the process X. We can thus explicitly compute the value process u(x):

u(x) = E[U(xX1)] =
∞∑

n=0
pn(xxn)

=
∞∑

n=0
pn

(
log(x) + log(xn)

)
= log(x) +

∞∑
n=0

pn log(xn).

In particular, u′(1) = 1.

(e) We have already shown that the optimal investment process V ∗ ∈ V(1) equals
the process S. By Theorem IV.6.2, the solutions of the primal problem

u(x) = sup
V ∈V(x)

E[U(VT )]

= sup
f∈C+(x)

E[U(f)]

and the dual problem

j(y) = inf
Z∈Z(y)

E[J(Z)]

= inf
f∈D(y)

E[J(h)].
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are related by
f ∗x = I(h∗y),

where I = (U ′)−1, y > 0 is given by the relation y∗z = u′(1), and f ∗x ∈ C+(x)
(receptively h∗y ∈ D(y) ) is the unique solution to the primal (respectively dual)
problem. We thus have

h∗y = I−1(f ∗x) = U ′(f ∗x)

or equivalently
Z∗ = U ′(V ∗) = 1

X1
.

(f) Note that

E[X−1
1 ] =

∞∑
n=0

pn

xn

= p0

2 +
∞∑

n=1
npn

is strictly less than X0 = 1 by the condition (1−α)/2+α∑∞n=0 2−n(−n+1) > 0.
In particular, the optimal dual Z∗ ∈ Z(1) is not a martingale (not even a local
martingale) but only a supermartingale, and Z∗ is therefore not the density of
a martingale measure for the process S.
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Exercise 12.2 Recall that in the beginning of Chapter IV, we defined the indirect
utility function (or value function) for a given utility function U as

u(x) := sup
V ∈V(x)

E[U(VT )]

where V(x) is the set of all wealth processes of self-financing 0-admissible strategies
with initial wealth x. Using that U is increasing and concave, show that

(a) the map x 7→ u(x) is increasing

(b) the map x 7→ u(x) is concave

In this course we made the standing assumption that u(x0) <∞ for some x0 > 0.
Show that under this assumption,

(c) u(x) <∞ ∀x > 0

Solution 12.2

(a) Fix 0 < x ≤ y. Then for all ϑ ∈ Θadm, we have x + GT (ϑ) ≤ x + GT (ϑ).
So using increasingness of U , we have U(x + GT (ϑ)) ≤ U(y + GT (ϑ)). Note
also that V(x) ⊆ V(y) and hence taking the supremum over ϑ yields that u is
increasing.

(b) Let λ ∈ (0, 1). Note that for V 1
T ∈ V(x), V 2

T ∈ V(y), we have λV 1
T ∈ V(λx) and

(1 − λ)V 2
T ∈ V((1 − λ)y). Moreover, λV 1

T + (1 − λ)V 2
T is in V(λx + (1 − λy).

Thus

u
(
λx+ (1− λ)y

)
≥ E[U(λV 1

T + (1− λ)V 2
T )]

≥ λE[U(V 1
T )] + (1− λ)E[U(V 2

T )].

Taking the supremum over V 1
T and V 2

T yields

u(λx+ (1− λ)y) ≥ λu(x) + (1− λ)u(y)

(c) First note that u(y) < ∞ for all y ≤ x0 since u(·) is increasing. Remains to
show that u(y) <∞ for all y > x0. Take x ∈ (0, x0) and note that since y > x0,
we can find some λ ∈ (0, 1) such that

x0 = λx+ (1− λ)y

Using concavity of u we then have

u(x0) ≥ λu(x) + (1− λ)u(y)

which implies u(y) <∞ since u(x0) <∞.
Alternatively, suppose for the sake of finding a contradiction that u(y) = +∞
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for some y > x0. By concavity of u, u(λx0 + (1− λ)y) = +∞ for all λ ∈ (0, 1)
and hence u(z) = +∞ ∀x0 < z ≤ y and finally using the increasingness of
u(·), u(z) = +∞ ∀z > x0. Let ε > 0. Then by the previous observations
u(x0 − ε) <∞ and u(x0 + ε) = +∞. By concavity of u, the segment joining
u(x0 − ε) and u(x0 + ε) must lie below the function. Taking the limit as ε→ 0,
this concavity property could only hold if u(x0) = +∞, a contradiction.
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Exercise 12.3 Fix an initial wealth x and let V(x) denote the set of all wealth
processes of self-financing 0-admissible strategies with initial wealth x. In Proposition
IV.2.1, we proved (in the case of a complete market) the existence of an optimal
solution to the terminal wealth utility optimization problem

u(x) := sup
V ∈V(x)

E[U(VT )]

Show the uniqueness of the optimal solution P -a.s.

Solution 12.3 First note that by Lemma IV.1.2, the wealth process (though maybe
not the strategy) is completely determined by its final value. It is thus enough to
show the uniquesness of final values to deduce the uniqueness of the optimal wealth
process as well.
Suppose to the contrary that V ∗ and V ∗∗ are two optimal solutions with P -as.
different final values (i.e. P [V ∗T 6= V ∗∗T ] > 0). Write u∗(x) = E[U(V ∗T )] = E[U(V ∗∗T )].
Consider the convex combination Ṽ· = 1

2(V ∗· + V ∗∗· ). Note that V(x) is convex and
hence Ṽ belongs to the set of feasible solutions. Indeed if ϑ and ϑ′ are 0-admissible
self-financing strategies with initial wealth x, then so is any convex combination of ϑ
and ϑ′ and hence

V conv
· = λ(x+G·(ϑ)) + (1− λ)(x+G·(ϑ

′)) = x+G·(λϑ+ (1− λ)ϑ′)

is an element of V(x).
Moreover, using strict concavity of the utility function U and P [V ∗T 6= V ∗∗T ] > 0, we
have

U(ṼT ) = U

(
1
2(V ∗T + V ∗∗T )

)
>

1
2U(V ∗T ) + 1

2U(V ∗∗T )

Taking expecation on both sides we get

E
[
U(ṼT )

]
>

1
2E[U(V ∗)] + 1

2E[U(V ∗∗)] = u∗(x)

contracting the optimality of V ∗. The argument here shows that if V ∗ and V ∗∗ are
two optimal solutions with different FINAL VALUES, then we get a contradiction.
This thus gives the uniqueness of final values. Uniqueness of the wealth process then
follows from Lemma IV.1.2.

Remark: Important to distinguish between wealth processes and their final
values.
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Exercise 12.4 Suppose that the utility function U is in C2 and denote by J its
conjugate. Show that J ′ = −(U ′)−1 and J is strictly convex and lower semicontinuous.
Show also that J ′(0) = −∞, J ′(∞) = 0.

Solution 12.4 By definition, J(y) := supx>0(U(x) − xy). So by the first order
condition, the supremum is attained for U ′(x)− y = 0 i.e. at x = (U ′)−1(y) =: I(y).
Therefore, we may write J(y) = U(I(y)) − I(y)y. Because U ∈ C2, the RHS is
continuously differentiable. So

J ′(y) = U ′(I(y))I ′(y)− I ′(y)y − I(y) = yI ′(y)− I ′(y)y − I(y) = −I(y)
= −(U ′)−1(y).

For any x > 0, the function y 7→ U(x) − xy is affine hence convex and lower-
semicontinuous. It’s epigraph (i.e {(y, t) ∈ R× R : U(x)− xy ≤ t}) is thus closed
and convex. Then, J(y) is the pointwise supremum of the above functions, and its
epigraph is the intersection of the above affine functions’ epigraphs. Each are closed
and convex, proving the epigraph of J(y) is closed and convex, thus J(y) is convex
and lower semicontinuous.
Finally, J ′(0) = −∞, J ′(∞) = 0 follow from the Inada conditions.
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