Introduction to Mathematical Finance Solution sheet 1

Solution 1.1

(a) By definition, $c \in B\left(e^{i}, \pi\right)$ iff there exists $\vartheta \in \mathbb{R}^{N}$ with $c_{0} \leq e_{0}^{i}-\vartheta \cdot \pi$ and $c_{T} \leq e_{T}^{i}+\mathcal{D} \vartheta$. That is, $c_{0}-e_{0}^{i} \leq-\vartheta \cdot \pi$ and $c_{T}-e_{T}^{i} \leq \mathcal{D} \vartheta$, which means $c-e \in B(0, \pi)$.
Now if $c-e^{i}$ is attainable with 0 initial wealth, then there exists $\hat{\vartheta} \in \mathbb{R}^{N}$ such that $c_{0}-e_{0}^{i}=-\pi \cdot \hat{\vartheta}$ and $c_{T}-e_{T}^{i}=\mathcal{D} \hat{\vartheta}$ which shows $c-e^{i} \in B(0, \pi)$.
(b) The idea is simply to find a nonattainable consumption which still lies in the budget set. To do this, we consider a matrix without full rank. Let

$$
\pi:=\binom{1}{1}, \mathcal{D}:=\left(\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right)
$$

Clearly $\mathcal{D}\left(\mathbb{R}^{2}\right)=\left\{(a, 2 a)^{\mathrm{tr}}: a \in \mathbb{R}\right\}$. Take for instance $\vartheta=(1,0)^{\mathrm{tr}}$, $c_{T}=e_{T}^{i}+(1,1.5)^{\operatorname{tr}}$, and $c_{0}=e_{0}^{i}-1$. Then

$$
\begin{aligned}
& c_{0}-e_{0}^{i} \leq-(1,0) \cdot(1,1)=-1 \\
& c_{T}-e_{T}^{i} \leq\left(\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right)\binom{1}{0}=\binom{1}{2} .
\end{aligned}
$$

Thus, $c-e^{i} \in B(0, \pi)$. But clearly $(1,1.5)^{\operatorname{tr}} \notin \mathcal{D}\left(\mathbb{R}^{2}\right)$, which shows $c-e^{i}$ cannot be attainable with 0 initial wealth.

Solution 1.2

(a) Consider a market consisting of a single asset with $\pi=0, \mathcal{D}=(1,2)^{\mathrm{tr}}$. Set $\vartheta=1$. Clearly, $\mathcal{D} \vartheta=(1,2)^{\operatorname{tr}} \geq 0$ and $\mathcal{D} \vartheta\left(\left\{\omega_{i}\right\}\right)>0$ for both $i=1,2$. Thus ϑ is an arbitrage opportunity of the first kind. However, since $\pi=0$, there exists no arbitrage of the second kind.
(b) Consider the situation where $\pi=1$ and $\mathcal{D}=(0,0)$. Then $\vartheta<0$ would be an arbitrage of the second kind. But since \mathcal{D} vanishes, we have for any $\tilde{\vartheta} \in \mathbb{R}$ that $\mathcal{D} \tilde{\vartheta}=(0,0)^{\mathrm{tr}}$. So there exists no arbitrage of the first kind.
(c) Suppose first that there is an asset $D^{\ell} \geq 0$ and $D^{\ell} \not \equiv 0$ and $\pi^{\ell}>0$. Let ϑ be an arbitrage opportunity of the second kind. Set $\alpha=-\vartheta \cdot \pi / \pi^{\ell}>0$. We consider a new strategy $\hat{\vartheta}=\vartheta+\alpha e_{\ell}$ where e_{ℓ} is the vector with 1 in its ℓ th component
and 0 elsewhere. Then $\hat{\vartheta} \cdot \pi=\vartheta \cdot \pi+\alpha \cdot \pi^{\ell}=0$ and $\mathcal{D} \hat{\vartheta}=\mathcal{D} \vartheta+\alpha \mathcal{D}^{\ell} \geq 0$. Since $\mathcal{D} \vartheta \geq 0$ and $\alpha \mathcal{D}^{\ell} \geq 0$ with $\alpha \mathcal{D}^{\ell} \not \equiv 0$, we have $\mathcal{D} \hat{\vartheta} \geq 0$ and $\mathcal{D} \hat{\vartheta} \not \equiv 0$. Hence, $\hat{\vartheta}$ is an arbitrage opportunity of the first kind. The other implication is true in general.

Solution 1.3

(a) Let c^{\prime} and c be arbitrary elements of \mathcal{C}. Without loss of generality, assume that $c^{\prime} \succeq c$. Then, by convexity, $\lambda c^{\prime}+(1-\lambda) c \succeq c$, and hence

$$
\mathcal{U}\left(\lambda c^{\prime}+(1-\lambda) c\right) \geq \mathcal{U}(c)=\min \left\{\mathcal{U}(c), \mathcal{U}\left(c^{\prime}\right)\right\}
$$

(b) In the solution above, we implicitly used completeness to assume $c^{\prime} \succsim c$, and we used convexity directly.
(c) Define \succeq by

$$
c^{\prime} \succeq c \quad: \Longleftrightarrow \quad c^{\prime} \cdot \mathbf{1} \geq c \cdot \mathbf{1} .
$$

It is easy to check that this satisfies the axioms (P1)-(P4). The natural utility functional is then given by

$$
\mathcal{U}(c)=c \cdot \mathbf{1} .
$$

However, since $\exp (\cdot)$ is increasing, it will preserve the order. Hence, $\exp (\mathcal{U}(\cdot))$ is also a utility functional, but not concave. More generally, exp can be replaced by any strictly increasing function on \mathbb{R}.

Solution 1.4

This exercise closely follows Chapter 2 of "Stochastic Finance - An Introduction in Discrete Time" by Hans Föllmer and Alexander Schied.
(a) Let \succeq be a binary relation satisfying

1. Completeness: for all $x, y \in \mathcal{C} \quad x \succeq y$ or $y \succeq x$
2. Transitivity: if $x \succeq y$ and $y \succeq z$ then $x \succeq z$

We want to show that the binary relation \succ defined as $y \succ x \Longleftrightarrow x \nsucceq y$ satisfies

1. Assymetry: if $x \succ y$ then $y \nsucc x$
2. Negative transitivity: if $x \succ y$ and $z \in \mathcal{C}$ then either $x \succ z$ or $z \succ y$ or both must hold

The proofs are trivial and only use the definitions. First, let \succeq be a complete and transitive relation. We show that the corresponding \succ is asymmetric and negative transitive.

- Suppose $x \succ y$. We want to show $y \nsucc x$, i.e $x \succeq y$. This is clear because by completeness of \succeq we have $x \succeq y$ or $y \succeq x$, but $y \succeq x$ cannot be true since $x \succ y \Longleftrightarrow y \nsucceq x$.
- Let $x \succ y$ and $z \in \mathcal{C}$. We need to show that either $x \succ z$ or $z \succ y$. By contradiction, suppose that $x \nsucc z$ and $z \nsucc y$, which by definition is equivalent to $z \succeq x$ and $y \succeq z$. By transitivity, we then have $y \succeq x$ which contradicts $x \succ y$.

Conversely let \succ be an asymmetric and negative transitive binary relation. We show that the corresponding \succeq is complete and transitive.

- By contradiction, suppose $y \nsucceq x$ and $x \nsucceq y$. By definition this is equivalent to $x \succ y$ and $y \succ x$ which contradicts the asymmetry of \succ.
- Let $x, y, z \in \mathcal{C}$ be such that $x \succeq y$ and $y \succeq z$. We want to show $x \succeq z$. By contradiction, suppose that $x \nsucceq z$, i.e. $z \succ x$. By negative transitivity, we must have either $z \succ y$ or $y \succ x$. But none of them is possible, as $x \succeq y$ and $y \succeq z$.
(b) Yes, every function $U: \mathcal{C} \rightarrow \mathbb{R}$ does represent an asymmetric and negative transitive binary relation. Indeed, given a function $U: \mathcal{C} \rightarrow \mathbb{R}$, consider the binary relation

$$
x \succ_{U} y \Longleftrightarrow U(x)>U(y)
$$

or, equivalently,

$$
x \succeq_{U} y \Longleftrightarrow U(x) \geq U(y)
$$

We need to show that \succeq_{U} is complete and transitive.

- Clearly, for all $x, y \in \mathcal{C}$, we have either $U(x) \geq U(y)$ or $U(y) \geq U(x)$ and hence $x \succeq_{U} y$ or $y \succeq_{U} x$.
- Suppose $x \succeq_{U} y$ and $y \succeq_{U} z$, i.e. $U(x) \geq U(y)$ and $U(y) \geq U(z)$. By transitivity of \geq, we have $U(x) \geq U(z)$ and hence $x \succeq_{U} z$.
(c) Suppose first that we are given a countable order dense subset \mathcal{Z} of \mathcal{C}. For $x \in \mathcal{C}$, set

$$
\mathcal{Z}_{\succ}(x):=\{z \in \mathcal{Z} \mid z \succ x\} \quad \text { and } \quad \mathcal{Z}_{\prec}(x):=\{z \in \mathcal{Z} \mid x \succ z\} .
$$

The relation $x \succeq y$ implies that $\mathcal{Z}_{\succ}(x) \subseteq \mathcal{Z}_{\succ}(y)$ and $\mathcal{Z}_{\prec}(x) \supseteq \mathcal{Z}_{\prec}(y)$. If the strict relation $x \succ y$ holds, then at least one of these inclusions is also strict. Indeed, using that \mathcal{Z} is order dense in \mathcal{C}, we can pick $z \in \mathcal{Z}$ with $x \succeq z \succeq y$, so either $x \succ z \succeq y$ or $x \succeq z \succ y$. In the first case $z \in \mathcal{Z}_{\prec}(x) \backslash \mathcal{Z}_{\prec}(y)$, while $z \in \mathcal{Z}_{\succ}(y) \backslash \mathcal{Z}_{\succ}(x)$ in the second case.

To construct a numerical representation U of \succ, consider any strictly positive probability measure μ on \mathcal{Z}, and let

$$
U(x):=\sum_{z \in \mathcal{Z}_{\prec}(x)} \mu(z)-\sum_{z \in \mathcal{Z}_{\succ}(x)} \mu(z)
$$

The above arguments show that $U(x)>U(y)$ if and only if $x \succ y$ and hence U is a desired numerical representation.
For the proof of the converse assertion, take a numerical representation U and let \mathcal{J} denote the countable set

$$
\mathcal{J}:=\left\{[a, b] \mid a, b \in \mathbb{Q}, a<b, U^{-1}([a, b]) \neq \emptyset\right\}
$$

For every interval $I \in \mathcal{J}$, we can choose some $z_{I} \in \mathcal{C}$ with $U\left(z_{I}\right) \in I$ and thus define the countable set

$$
A:=\left\{z_{I} \mid I \in \mathcal{J}\right\}
$$

At first glance it may seem that A is a good candidate for an order dense set. However, it may happen that there are $x, y \in \mathcal{C}$ such that $U(x)<U(y)$ and for which there is no $z \in \mathcal{C}$ with $U(x)<U(z)<U(y)$. In this case, an order dense set must contain at least one z with $U(z)=U(x)$ or $U(z)=U(y)$, a condition which cannot be guaranteed by A.
Let us define the set \mathcal{D} of all pairs (x, y) which do not admit any $z \in A$ with $y \succ z \succ x$:

$$
\mathcal{D}=\{(x, y) \mid x, y \in \mathcal{C} \backslash A, y \succ x \text { and } \nexists z \in A \text { with } y \succ z \succ x\}
$$

Note that $(x, y) \in \mathcal{D}$ implies that we cannot find $z \in \mathcal{C}$ with $y \succ z \succ x$. Indeed using the density of rational numbers, we could then find $a, b \in \mathbb{Q}$ such that

$$
U(x)<a<U(z)<b<U(y)
$$

so $I:=[a, b]$ would belong to \mathcal{J}, and the corresponding z_{I} would be an element of A satisfying $y \succ z_{I} \succ z$, contradicting the assumption that $(x, y) \in \mathcal{D}$.
It follows that all intervals $(U(x), U(y))$ with $(x, y) \in \mathcal{D}$ are disjoint and nonempty. Hence, there can only be countably many of them. For each such interval J, we choose exactly one pair $\left(x^{J}, y^{J}\right) \in \mathcal{D}$ such that $U\left(x^{J}\right)$ and $U\left(y^{J}\right)$ are the endpoints of the interval J, and we denote B the countable set containing all x^{J} and y^{J}.
It remains to show that $\mathcal{Z}:=A \cup B$ is an order dense subset of \mathcal{C}. Let $x, y \in \mathcal{C} \backslash \mathcal{Z}$ with $y \succ x$. Then, exactly one of the following hold. Either there is some $z \in A$ such that $y \succ z \succ x$, or $(x, y) \in \mathcal{D}$. In the latter case, there exists some $z \in B$ with $U(y)=U(z)>U(x)$ and consequently $y \succeq z \succ x$. Moreover the set \mathcal{Z} is by construction countable which finishes the proof.
(d) Let \succ be the usual lexicographical order on $\mathcal{C}:=[0,1] \times[0,1]$, i.e. $\left(x_{1}, x_{2}\right) \succ$ $\left(y_{1}, y_{2}\right)$ if and only if either $x_{1}>y_{1}$ or $x_{1}=y_{1}$ and simultaneously $x_{2}>y_{2}$. It is easy to verify (left as exercise) that \succ is asymmetric and negative transitive, and hence a preference order. We show that \succ does not admit a numerical representation. To this end, let \mathcal{Z} be any order dense subset of \mathcal{C}. Then for $x \in[0,1]$ there must exist some $\left(z_{1}, z_{2}\right) \in \mathcal{Z}$ such that

$$
(x, 1) \succeq\left(z_{1}, z_{2}\right) \succeq(x, 0)
$$

It follows that $z_{1}=x$ and hence \mathcal{Z} is uncountable. The result of the previous question therefore implies that the lexicographical order cannot have a numerical representation.
Recall that a weak preference order \succeq is called continuous if the sets

$$
\mathcal{B}_{\succeq}(x):=\{y \in \mathcal{C} \mid y \succeq x\} \quad \text { and } \quad \mathcal{B}_{\preceq}(x):=\{y \in \mathcal{C} \mid x \succeq y\}
$$

are closed for all $x \in \mathcal{C}$. Alternatively we can define continuity in terms of the corresponding preference order \succ. We say that \succ is continuous if for all $x \in \mathcal{C}$ the sets

$$
\mathcal{B}_{\succ}(x):=\{y \in \mathcal{C} \mid y \succ x\} \quad \text { and } \quad \mathcal{B}_{\prec}(x):=\{y \in \mathcal{C} \mid x \succ y\}
$$

are open. We next show that the lexicographical order is not continuous. Indeed for any given $\left(x_{1}, x_{2}\right) \in[0,1] \times[0,1]$, the set

$$
\left\{\left(y_{1}, y_{2}\right) \mid\left(y_{1}, y_{2}\right) \succ\left(x_{1}, x_{2}\right)\right\}=\left(x_{1}, 1\right] \times[0,1] \cup\left\{x_{1}\right\} \times\left(x_{2}, 1\right]
$$

is not open.

