Introduction to Mathematical Finance Solution sheet 1

Solution 1.1

(a) By definition, $c \in B(e^i, \pi)$ iff there exists $\vartheta \in \mathbb{R}^N$ with $c_0 \leq e_0^i - \vartheta \cdot \pi$ and $c_T \leq e_T^i + \mathcal{D}\vartheta$. That is, $c_0 - e_0^i \leq -\vartheta \cdot \pi$ and $c_T - e_T^i \leq \mathcal{D}\vartheta$, which means $c - e \in B(0, \pi)$.

Now if $c - e^i$ is attainable with 0 initial wealth, then there exists $\hat{\vartheta} \in \mathbb{R}^N$ such that $c_0 - e^i_0 = -\pi \cdot \hat{\vartheta}$ and $c_T - e^i_T = \mathcal{D}\hat{\vartheta}$ which shows $c - e^i \in B(0, \pi)$.

(b) The idea is simply to find a nonattainable consumption which still lies in the budget set. To do this, we consider a matrix without full rank. Let

$$\pi := \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \mathcal{D} := \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}.$$

Clearly $\mathcal{D}(\mathbb{R}^2) = \{(a, 2a)^{\text{tr}} : a \in \mathbb{R}\}$. Take for instance $\vartheta = (1, 0)^{\text{tr}}$, $c_T = e_T^i + (1, 1.5)^{\text{tr}}$, and $c_0 = e_0^i - 1$. Then

$$c_0 - e_0^i \le -(1, 0) \cdot (1, 1) = -1,$$

 $c_T - e_T^i \le \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}.$

Thus, $c - e^i \in B(0, \pi)$. But clearly $(1, 1.5)^{\text{tr}} \notin \mathcal{D}(\mathbb{R}^2)$, which shows $c - e^i$ cannot be attainable with 0 initial wealth.

Solution 1.2

- (a) Consider a market consisting of a single asset with $\pi = 0$, $\mathcal{D} = (1,2)^{\text{tr}}$. Set $\vartheta = 1$. Clearly, $\mathcal{D}\vartheta = (1,2)^{\text{tr}} \ge 0$ and $\mathcal{D}\vartheta(\{\omega_i\}) > 0$ for both i = 1, 2. Thus ϑ is an arbitrage opportunity of the first kind. However, since $\pi = 0$, there exists no arbitrage of the second kind.
- (b) Consider the situation where $\pi = 1$ and $\mathcal{D} = (0, 0)$. Then $\vartheta < 0$ would be an arbitrage of the second kind. But since \mathcal{D} vanishes, we have for any $\tilde{\vartheta} \in \mathbb{R}$ that $\mathcal{D}\tilde{\vartheta} = (0, 0)^{\text{tr}}$. So there exists no arbitrage of the first kind.
- (c) Suppose first that there is an asset $D^{\ell} \ge 0$ and $D^{\ell} \not\equiv 0$ and $\pi^{\ell} > 0$. Let ϑ be an arbitrage opportunity of the second kind. Set $\alpha = -\vartheta \cdot \pi/\pi^{\ell} > 0$. We consider a new strategy $\hat{\vartheta} = \vartheta + \alpha e_{\ell}$ where e_{ℓ} is the vector with 1 in its ℓ th component

and 0 elsewhere. Then $\hat{\vartheta} \cdot \pi = \vartheta \cdot \pi + \alpha \cdot \pi^{\ell} = 0$ and $\mathcal{D}\hat{\vartheta} = \mathcal{D}\vartheta + \alpha \mathcal{D}^{\ell} \ge 0$. Since $\mathcal{D}\vartheta \ge 0$ and $\alpha \mathcal{D}^{\ell} \ge 0$ with $\alpha \mathcal{D}^{\ell} \not\equiv 0$, we have $\mathcal{D}\hat{\vartheta} \ge 0$ and $\mathcal{D}\hat{\vartheta} \not\equiv 0$. Hence, $\hat{\vartheta}$ is an arbitrage opportunity of the first kind. The other implication is true in general.

Solution 1.3

(a) Let c' and c be arbitrary elements of C. Without loss of generality, assume that $c' \succeq c$. Then, by convexity, $\lambda c' + (1 - \lambda)c \succeq c$, and hence

$$\mathcal{U}(\lambda c' + (1 - \lambda)c) \ge \mathcal{U}(c) = \min\{\mathcal{U}(c), \mathcal{U}(c')\}$$

- (b) In the solution above, we implicitly used completeness to assume $c' \succeq c$, and we used convexity directly.
- (c) Define \succeq by

$$c' \succeq c \quad :\iff \quad c' \cdot \mathbf{1} \ge c \cdot \mathbf{1}.$$

It is easy to check that this satisfies the axioms (P1)-(P4). The natural utility functional is then given by

$$\mathcal{U}(c) = c \cdot \mathbf{1}.$$

However, since $\exp(\cdot)$ is increasing, it will preserve the order. Hence, $\exp(\mathcal{U}(\cdot))$ is also a utility functional, but not concave. More generally, exp can be replaced by any strictly increasing function on \mathbb{R} .

Solution 1.4

This exercise closely follows Chapter 2 of "Stochastic Finance – An Introduction in Discrete Time" by Hans Föllmer and Alexander Schied.

- (a) Let \succeq be a binary relation satisfying
 - 1. Completeness: for all $x, y \in \mathcal{C}$ $x \succeq y$ or $y \succeq x$
 - 2. Transitivity: if $x \succeq y$ and $y \succeq z$ then $x \succeq z$

We want to show that the binary relation \succ defined as $y \succ x \iff x \not\succeq y$ satisfies

- 1. Assymetry: if $x \succ y$ then $y \not\succ x$
- 2. Negative transitivity: if $x \succ y$ and $z \in C$ then either $x \succ z$ or $z \succ y$ or both must hold

The proofs are trivial and only use the definitions. First, let \succeq be a complete and transitive relation. We show that the corresponding \succ is asymmetric and negative transitive.

- Suppose $x \succ y$. We want to show $y \not\succ x$, i.e $x \succeq y$. This is clear because by completeness of \succeq we have $x \succeq y$ or $y \succeq x$, but $y \succeq x$ cannot be true since $x \succ y \iff y \not\succeq x$.
- Let $x \succ y$ and $z \in C$. We need to show that either $x \succ z$ or $z \succ y$. By contradiction, suppose that $x \not\succ z$ and $z \not\succ y$, which by definition is equivalent to $z \succeq x$ and $y \succeq z$. By transitivity, we then have $y \succeq x$ which contradicts $x \succ y$.

Conversely let \succ be an asymmetric and negative transitive binary relation. We show that the corresponding \succeq is complete and transitive.

- By contradiction, suppose $y \not\succeq x$ and $x \not\succeq y$. By definition this is equivalent to $x \succ y$ and $y \succ x$ which contradicts the asymmetry of \succ .
- Let $x, y, z \in \mathcal{C}$ be such that $x \succeq y$ and $y \succeq z$. We want to show $x \succeq z$. By contradiction, suppose that $x \not\succeq z$, i.e. $z \succ x$. By negative transitivity, we must have either $z \succ y$ or $y \succ x$. But none of them is possible, as $x \succeq y$ and $y \succeq z$.
- (b) Yes, every function $U : \mathcal{C} \to \mathbb{R}$ does represent an asymmetric and negative transitive binary relation. Indeed, given a function $U : \mathcal{C} \to \mathbb{R}$, consider the binary relation

$$x \succ_U y \iff U(x) > U(y)$$

or, equivalently,

$$x \succeq_U y \iff U(x) \ge U(y)$$

We need to show that \succeq_U is complete and transitive.

- Clearly, for all $x, y \in C$, we have either $U(x) \ge U(y)$ or $U(y) \ge U(x)$ and hence $x \succeq_U y$ or $y \succeq_U x$.
- Suppose $x \succeq_U y$ and $y \succeq_U z$, i.e. $U(x) \ge U(y)$ and $U(y) \ge U(z)$. By transitivity of \ge , we have $U(x) \ge U(z)$ and hence $x \succeq_U z$.
- (c) Suppose first that we are given a countable order dense subset \mathcal{Z} of \mathcal{C} . For $x \in \mathcal{C}$, set

$$\mathcal{Z}_{\succ}(x) := \{ z \in \mathcal{Z} | z \succ x \} \quad \text{and} \quad \mathcal{Z}_{\prec}(x) := \{ z \in \mathcal{Z} | x \succ z \}.$$

The relation $x \succeq y$ implies that $\mathcal{Z}_{\succ}(x) \subseteq \mathcal{Z}_{\succ}(y)$ and $\mathcal{Z}_{\prec}(x) \supseteq \mathcal{Z}_{\prec}(y)$. If the strict relation $x \succ y$ holds, then at least one of these inclusions is also strict. Indeed, using that \mathcal{Z} is order dense in \mathcal{C} , we can pick $z \in \mathcal{Z}$ with $x \succeq z \succeq y$, so either $x \succ z \succeq y$ or $x \succeq z \succ y$. In the first case $z \in \mathcal{Z}_{\prec}(x) \setminus \mathcal{Z}_{\prec}(y)$, while $z \in \mathcal{Z}_{\succ}(y) \setminus \mathcal{Z}_{\succ}(x)$ in the second case. To construct a numerical representation U of \succ , consider any strictly positive probability measure μ on \mathcal{Z} , and let

$$U(x) := \sum_{z \in \mathcal{Z}_{\prec}(x)} \mu(z) - \sum_{z \in \mathcal{Z}_{\succ}(x)} \mu(z)$$

The above arguments show that U(x) > U(y) if and only if $x \succ y$ and hence U is a desired numerical representation.

For the proof of the converse assertion, take a numerical representation U and let $\mathcal J$ denote the countable set

$$\mathcal{J} := \{ [a, b] | a, b \in \mathbb{Q}, a < b, U^{-1}([a, b]) \neq \emptyset \}$$

For every interval $I \in \mathcal{J}$, we can choose some $z_I \in \mathcal{C}$ with $U(z_I) \in I$ and thus define the countable set

$$A := \{ z_I | I \in \mathcal{J} \}$$

At first glance it may seem that A is a good candidate for an order dense set. However, it may happen that there are $x, y \in C$ such that U(x) < U(y) and for which there is no $z \in C$ with U(x) < U(z) < U(y). In this case, an order dense set must contain at least one z with U(z) = U(x) or U(z) = U(y), a condition which cannot be guaranteed by A.

Let us define the set \mathcal{D} of all pairs (x, y) which do not admit any $z \in A$ with $y \succ z \succ x$:

$$\mathcal{D} = \{(x, y) | x, y \in \mathcal{C} \setminus A, \ y \succ x \text{ and } \nexists z \in A \text{ with } y \succ z \succ x \}.$$

Note that $(x, y) \in \mathcal{D}$ implies that we cannot find $z \in \mathcal{C}$ with $y \succ z \succ x$. Indeed using the density of rational numbers, we could then find $a, b \in \mathbb{Q}$ such that

$$U(x) < a < U(z) < b < U(y),$$

so I := [a, b] would belong to \mathcal{J} , and the corresponding z_I would be an element of A satisfying $y \succ z_I \succ z$, contradicting the assumption that $(x, y) \in \mathcal{D}$.

It follows that all intervals (U(x), U(y)) with $(x, y) \in \mathcal{D}$ are disjoint and nonempty. Hence, there can only be countably many of them. For each such interval J, we choose exactly one pair $(x^J, y^J) \in \mathcal{D}$ such that $U(x^J)$ and $U(y^J)$ are the endpoints of the interval J, and we denote B the countable set containing all x^J and y^J .

It remains to show that $\mathcal{Z} := A \cup B$ is an order dense subset of \mathcal{C} . Let $x, y \in \mathcal{C} \setminus \mathcal{Z}$ with $y \succ x$. Then, exactly one of the following hold. Either there is some $z \in A$ such that $y \succ z \succ x$, or $(x, y) \in \mathcal{D}$. In the latter case, there exists some $z \in B$ with U(y) = U(z) > U(x) and consequently $y \succeq z \succ x$. Moreover the set \mathcal{Z} is by construction countable which finishes the proof.

Updated: February 25, 2020

(d) Let \succ be the usual lexicographical order on $\mathcal{C} := [0, 1] \times [0, 1]$, i.e. $(x_1, x_2) \succ (y_1, y_2)$ if and only if either $x_1 > y_1$ or $x_1 = y_1$ and simultaneously $x_2 > y_2$. It is easy to verify (left as exercise) that \succ is asymmetric and negative transitive, and hence a preference order. We show that \succ does not admit a numerical representation. To this end, let \mathcal{Z} be any order dense subset of \mathcal{C} . Then for $x \in [0, 1]$ there must exist some $(z_1, z_2) \in \mathcal{Z}$ such that

$$(x,1) \succeq (z_1,z_2) \succeq (x,0)$$

It follows that $z_1 = x$ and hence \mathcal{Z} is uncountable. The result of the previous question therefore implies that the lexicographical order cannot have a numerical representation.

Recall that a weak preference order \succeq is called continuous if the sets

$$\mathcal{B}_{\succeq}(x) := \{ y \in \mathcal{C} | y \succeq x \} \quad \text{and} \quad \mathcal{B}_{\preceq}(x) := \{ y \in \mathcal{C} | x \succeq y \}$$

are closed for all $x \in C$. Alternatively we can define continuity in terms of the corresponding preference order \succ . We say that \succ is continuous if for all $x \in C$ the sets

$$\mathcal{B}_{\succ}(x) := \{ y \in \mathcal{C} | y \succ x \} \quad \text{and} \quad \mathcal{B}_{\prec}(x) := \{ y \in \mathcal{C} | x \succ y \}$$

are open. We next show that the lexicographical order is not continuous. Indeed for any given $(x_1, x_2) \in [0, 1] \times [0, 1]$, the set

$$\{(y_1, y_2) | (y_1, y_2) \succ (x_1, x_2)\} = (x_1, 1] \times [0, 1] \cup \{x_1\} \times (x_2, 1]$$

is not open.