Introduction to Mathematical Finance

Exercise sheet 2

Please hand in your solutions by Friday, 06/03/2020, 13:00 into Bálint Gersey's box next to HG G 53.2.

Exercise 2.1 Let $\mathcal{U}(c_0, c_T)$ be a numerical representation of a preference order \succeq satisfying (P1) - (P5) on $\mathcal{C}_+ := \mathbb{R}_+ \times \mathbb{R}_+^k$. Suppose \mathcal{U} is concave, C^1 and satisfies the Inada condition,

$$\frac{\partial U}{\partial c_i}(c_0, c_1, \dots, c_k) \to \infty, \quad c_i \to 0;$$
$$\frac{\partial U}{\partial c_i}(c_0, c_1, \dots, c_k) \to 0, \quad c_i \to \infty;$$

where $(c_0, c_1, \ldots, c_k) = (c_0, c_T(\omega_1), \ldots, c_T(\omega_k))$. An example of utility function satisfying the required condition is given by the squareroot utility: $\mathcal{U}(c_0, c_T) = \sqrt{c_0} + \beta \mathbb{E} \left[\sqrt{c_T}\right]$ for $\beta > 0$. Consider the optimization problem

$$\max_{c \in B_{+}(e,\pi)} \mathcal{U}(c_{0},c_{T})$$
(1)

where $B_+(e,\pi) := \{ c \in \mathcal{C}_+ : \exists \theta \in \mathbb{R}^N \text{ with } c_0 \leq e_0 - \theta \cdot \pi \text{ and } c_T \leq e_T + \mathcal{D}\theta \}$ and $e \in \mathbb{R}_+ \times \mathbb{R}^k_+$ is a fixed endowment.

Recall from the lecture that the optimization problem (1) admits a solution if and only if the market is arbitrage-free. From now on, we suppose the No Arbitrage assumption. The goal of this exercise is to show that the solution $\tilde{c} = (\tilde{c}_0, \tilde{c}_T) = (\tilde{c}_0, \tilde{c}_1, \ldots, \tilde{c}_k)$ to (1) is determined by

$$\frac{\partial \mathcal{U}}{\partial c_0}(\tilde{c}_0, \tilde{c}_T)(-\pi^l) + \sum_{i=1}^k \frac{\partial \mathcal{U}}{\partial c_i}(\tilde{c}_0, \tilde{c}_T)\mathcal{D}^{l,i} = 0$$

for all $l = 1, \ldots, N$, where $\frac{\partial \mathcal{U}}{\partial c_i}(\tilde{c}_0, \tilde{c}_T) > 0$ for all $i = 0, \ldots, k$.

(a) Show that, under the assumption that $\frac{\partial \mathcal{U}}{\partial c_i}(\tilde{c}_0, \tilde{c}_T) > 0$ for all $i = 0, \ldots, k$, the budget set is binding, i.e. there exists $\tilde{\theta} \in \mathbb{R}^N$ such that the optimal consumption \tilde{c} is generated by the endowment e and trading strategy $\tilde{\theta}$.

Using that the budget set is binding, the optimization problem (1) is equivalent to finding a maximizer $\tilde{\theta}$ of the function

$$f(\theta) := \mathcal{U}(e_0 - \theta \cdot \pi, e_T + \mathcal{D}\theta)$$

Updated: March 11, 2020

1/3

(b) Show that, in the interior of the optimization domain, a necessary and sufficient condition for the consumption generated by $\tilde{\theta}$ to be optimal is

$$\frac{\partial \mathcal{U}}{\partial c_0}(\tilde{c}_0, \tilde{c}_T)(-\pi^l) + \sum_{i=1}^k \frac{\partial \mathcal{U}}{\partial c_i}(\tilde{c}_0, \tilde{c}_T)\mathcal{D}^{l,i} = 0$$

for all l = 1, ..., N, where $\frac{\partial \mathcal{U}}{\partial c_i}(\tilde{c}_0, \tilde{c}_T) > 0$ for all i = 0, ..., k.

Remains to show that the optimal solution \tilde{c} is strictly positive, and hence, is in the interior of the optimization domain.

(c) Let $\varepsilon > 0$ satisfy $\tilde{c}_0 + \varepsilon \tilde{\theta} \cdot \pi > 0$ and $\tilde{c}_j - \varepsilon (\mathcal{D} \tilde{\theta})_j > 0$ for all $j = 1, \ldots, k$. Show that the consumption $c = (c_0, c_1, \ldots, c_T)$ defined by

$$c_0 = \tilde{c}_0 + \varepsilon \tilde{\theta} \cdot \pi$$

$$c_j = \tilde{c}_j - \varepsilon (\mathcal{D} \tilde{\theta})_j \quad j = 1, \dots, k$$

is in the budget set $B_+(e,\pi)$. Hint: Consider the portfolio $(1-\varepsilon)\tilde{\theta}$

(d) Let c be the consumption defined in the previous question. Show that

$$\mathcal{U}(c) - \mathcal{U}(\tilde{c}) \ge \varepsilon \left(\tilde{\theta} \cdot \pi \frac{\partial \mathcal{U}}{\partial c_o}(c) - \sum_{i=1}^k (\mathcal{D}\tilde{\theta})_i \frac{\partial \mathcal{U}}{\partial c_i}(c) \right).$$

(e) Conclude, using Inada conditions, that the optimal consumption \tilde{c} is strictly positive.

Exercise 2.2 Consider a financial market as in the lecture. Show the following properties.

(a) For $\theta \in \ker(\pi^T)^{\perp} \cap \ker(\mathcal{D})^{\perp}$, we have

 $\pi^T \theta = 0$ and $\mathcal{D}\theta = 0$ if and only if $\theta \equiv 0 \in \mathbb{R}^L$

From now on, we assume (NA) and suppose that for all consumption c in the budget set, the corresponding strategy θ satisfies $\theta \in \ker(\pi^T)^{\perp} \cap \ker(\mathcal{D})^{\perp}$.

(b) Show that, under the above assumptions, the budget set $B(e, \pi)$ is closed in the Euclidean norm.

Remark: For a finite probability space $|\Omega| < \infty$, the result in b) holds even without the (NA) assumption.

Exercise 2.3 Consider the one-step *binomial market* described by

$$\pi = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 and $\mathcal{D} = \begin{pmatrix} 1+r & 1+u \\ 1+r & 1+d \end{pmatrix}$,

for some r > -1, u and d with u > d.

Updated: March 11, 2020

- (a) Show that this market is free of arbitrage if and only if u > r > d.
- (b) Construct an arbitrage opportunity for a market where u = r > d.

Exercise 2.4 Consider the one-step trinomial market described by

$$\pi = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 and $\mathcal{D} = \begin{pmatrix} 1+r & 1+u \\ 1+r & 1+m \\ 1+r & 1+d \end{pmatrix}$,

for some r > -1, u, m and d with u > m > d and u > r > d.

- (a) Show that $\mathbb{P}(D^0)$ is convex.
- (b) Calculate the set $\mathbb{P}(D^0)$ of equivalent martingale measures. *Hint:* Use the probability of the 'middle outcome' as a parameter in a parametrization of $\mathbb{P}(D^0)$ as a line segment in \mathbb{R}^3 .
- (c) Denote by $\mathbb{P}_a(D^0)$ the set of all martingale measures Q which are absolutely continuous with respect to P, i.e., $Q \ll P$. An element $R \in \mathbb{P}_a(D^0)$ is an extreme point if $R = \lambda Q + (1 \lambda)Q'$ with $0 < \lambda < 1$ and $Q, Q' \in \mathbb{P}_a(D^0)$ implies Q = Q', i.e., R cannot be written as a strict convex combination of elements in $\mathbb{P}_a(D^0)$.

Find the extreme points of $\mathbb{P}_a(D^0)$ and represent $\mathbb{P}(D^0)$ by writing it as a (strict) convex combination of such extreme points. Verify that this coincides with the answer found above.