Introduction to Mathematical Finance Solution sheet 2

Solution 2.1

(a) We need to show that, although we optimize over all consumption in the budget set $B_{+}(e,\pi)$, the optimal consumption is attained at the boundary of $B_{+}(e,\pi)$, i.e. there exists $\tilde{\theta} \in \mathbb{R}^{N}$ such that the optimal consumption \tilde{c} is generated by the endowment e and trading strategy $\tilde{\theta}$:

$$\tilde{c}_0 = e_0 - \tilde{\theta} \cdot \pi$$

$$\tilde{c}_j = e_j + (\mathcal{D}\tilde{\theta})_j \quad j = 1, \dots, k$$

Suppose by contradiction that either $\tilde{c}_0 < e_0 - \tilde{\theta} \cdot \pi$ or $\tilde{c}_j < e_j + (\mathcal{D}\tilde{\theta})_j$ for some $j = 1, \ldots, k$. The positivity assumption on the partial derivatives of \mathcal{U} imply that the numerical representation is strictly increasing in all arguments and hence the utility corresponding to the consumption $(e_0 - \tilde{\theta} \cdot \pi, e_1 + (\mathcal{D}\tilde{\theta})_1, \ldots, e_k + (\mathcal{D}\tilde{\theta})_k)$ would be strictly larger than $\mathcal{U}(\tilde{c}_0, \tilde{c}_T)$ contradicting the optimality of \tilde{c} .

- (b) In the interior of the optimization domain, the first order optimality condition $\nabla f(\tilde{\theta}) = 0$ is necessary and sufficient. A direct application of the chain rule gives the desired result.
- (c) As suggested by the hint, consider the portfolio $(1 \varepsilon)\tilde{\theta}$. The corresponding generated consumption is exactly c. Indeed,

$$c_0 = e_0 - (1 - \varepsilon)\widetilde{\theta} \cdot \pi = \widetilde{c}_0 + \varepsilon \widetilde{\theta} \cdot \pi$$

$$c_j = e_j + (1 - \varepsilon)(\mathcal{D}\widetilde{\theta})_j = \widetilde{c}_j - \varepsilon(\mathcal{D}\widetilde{\theta})_j \quad j = 1, \dots, k$$

Moreover, $c \in \mathcal{C}_+$ by assumption, and therefore the consumption c indeed lies in the budget set $B_+(e,\pi)$.

(d) This is a direct consequence of the concavity of \mathcal{U} . Recall that every concave function lies, at any point, below the supporting hyperplane of its graph:

$$\mathcal{U}(\tilde{c}) \le \mathcal{U}(c) + \nabla \mathcal{U}^{T}(c)(\tilde{c} - c) \tag{1}$$

Using that

$$\tilde{c}_0 - c_0 = -\varepsilon \tilde{\theta} \cdot \pi$$

$$\tilde{c}_j - c_j = \varepsilon (\mathcal{D}\tilde{\theta})_j \quad j = 1, \dots, k$$

the concavity condition (1) reads

$$\mathcal{U}(c) - \mathcal{U}(\tilde{c}) \ge \varepsilon \left(\widetilde{\theta} \cdot \pi \frac{\partial \mathcal{U}}{\partial c_o}(c) - \sum_{i=1}^k (\mathcal{D}\widetilde{\theta})_i \frac{\partial \mathcal{U}}{\partial c_i}(c) \right).$$

(e) For a proof by contradiction, suppose that \tilde{c} is not strictly positive, i.e. it admits at least one zero component. We have to distinguish two cases: $\tilde{c}_0 = 0$ or $\tilde{c}_i = 0$ for some $j = 1, \ldots, k$.

Note that for ε small enough the lower bound derived in the previous question is strictly positive. Indeed, if $\tilde{c}_0 = 0$, the binding budget set condition $\tilde{c}_0 = e_0 - \tilde{\theta} \cdot \pi$ implies $\tilde{\theta} \cdot \pi = e_0 > 0$. Similarly, if $\tilde{c}_j = 0$ for some $j = 1, \ldots, k$, the binding budget set condition $\tilde{c}_j = e_j + (\mathcal{D}\tilde{\theta})_j$ implies $(\mathcal{D}\tilde{\theta})_j = -e_j < 0$.

Moreover, as $\varepsilon \to 0$, we have $c \to \tilde{c}$, and hence Inada condition gives us

$$\lim_{\varepsilon \to 0} \frac{\partial \mathcal{U}}{\partial c_l}(c) = \infty$$

for all components l = 0, 1, ..., k such that $\tilde{c}_l = 0$ and

$$\lim_{\varepsilon \to 0} \frac{\partial \mathcal{U}}{\partial c_m}(c) < \infty$$

for all components m = 0, 1, ..., k such that $\tilde{c}_m \neq 0$.

Solution 2.2

(a) The sufficient condition is trivial. For the necessary one, let $\theta \in \ker(\pi^T)^{\perp} \cap \ker(\mathcal{D})^{\perp}$. By definition, we have

$$\theta^T \widetilde{\theta} = 0$$
 for all $\widetilde{\theta} \in \mathbb{R}^L$ such that $\pi^T \widetilde{\theta} = 0 = \mathcal{D}\widetilde{\theta}$.

In particular, by our assumption, we can take $\tilde{\theta} = \theta$ which gives $||\theta||^2 = 0$, and hence $\theta \equiv 0$.

(b) The budget set under our additional assumption is given by

$$B(e,\pi) := \{ c \in \mathcal{C} = \mathbb{R}^{k+1} : \exists \theta \in \ker(\pi^T)^{\perp} \cap \ker(\mathcal{D})^{\perp} \text{ with } c \leq e + \bar{\mathcal{D}}\theta \}.$$

Take a sequence of consumption $(c_n)_{n\in\mathbb{N}}$ in the budget set that converge to a certain consumption c_{∞} . We need to show $c_{\infty} \in B(e, \pi)$. Using that $c_n \in B(e, \pi)$, we have for all n:

- $c_n \in \mathcal{C} = \mathbb{R}^{k+1}$
- $c_n \leq e + \bar{\mathcal{D}}\theta_n$ for some $\theta_n \in \ker(\pi^T)^{\perp} \cap \ker(\mathcal{D})^{\perp}$

Suppose the sequence θ_n is bounded. Then it admits a converging sub-sequence $\theta_{n_i} \to \theta_{\infty}$, and taking the limit along the sub-sequence gives

- $c_{\infty} \in \mathcal{C} = \mathbb{R}^{k+1}$
- $c_{\infty} \leq e + \bar{\mathcal{D}}\theta_{\infty}$

where $\theta_{\infty} \in \ker(\pi^T)^{\perp} \cap \ker(\mathcal{D})^{\perp}$ (convince yourself). This shows that, if the sequence $(\theta_n)_n$ is bounded, we have $c \in B(e, \pi)$ and hence $B(e, \pi)$ is sequentially closed in the metric space \mathcal{C} and therefore is closed.

Remains to prove that the sequence $(\theta_n)_n$ is bounded. Suppose, for a proof by contradiction, that $|\theta_n| \to \infty$ and consider the bounded sequence $\hat{\theta}_n := \frac{\theta_n}{|\theta_n|}$. Since the sequence $(\hat{\theta}_n)_n$ is bounded, we can extract a converging sub-sequence $\hat{\theta}_{n_j} \to \xi_{\infty}$ for some ξ_{∞} . It is easy to see that $|\xi_{\infty}| = 1$ (use that the inner product is a continuous map). Using that $c_n \in B(e, \pi)$, we have

$$\frac{c_n}{|\theta_n|} \le \frac{e}{|\theta_n|} + \bar{\mathcal{D}}\hat{\theta}_n$$

which, taking the limit over the converging sub-sequence of $\hat{\theta}$, gives

$$0 \leq \bar{\mathcal{D}}\xi_{\infty}$$
.

The (NA) assumption implies $\bar{\mathcal{D}}\xi_{\infty} = 0$. Note that $\theta_n \in \ker(\pi^T)^{\perp} \cap \ker(\mathcal{D})^{\perp}$ implies that $\xi_{\infty} \in \ker(\pi^T)^{\perp} \cap \ker(\mathcal{D})^{\perp}$, and hence we can use the result from a) to conclude $\xi_{\infty} = 0$.. This contradicts that $|\xi_{\infty}| = 1$ and hence the sequence $(\theta_n)_n$ is bounded.

Solution 2.3

(a) The market being arbitrage-free is equivalent to the existence of a probability measure $Q = (q_u, q_d)$ with

$$E_Q\left[\frac{D^1}{D^0}\right] = q_u \frac{1+u}{1+r} + q_d \frac{1+d}{1+r} = 1,$$

 $q_u + q_d = 1$, $q_u > 0$, and $q_d > 0$. These equalities are satisfied by

$$q_u = \frac{r-d}{u-d}$$
 and $q_d = \frac{u-r}{u-d}$,

which satisfy the positivity conditions if and only if $r \in (d, u)$.

(b) If u = r, the risky asset can only lose value, relative to the risk-free asset. An arbitrage of the first kind is therefore given by ("go long risk-free asset and short risky asset")

$$\vartheta = \begin{pmatrix} 1 \\ -1 \end{pmatrix}.$$

This strategy costs $\vartheta \cdot \pi = 0$ at time 0 and yields

$$\mathcal{D}\vartheta = \begin{pmatrix} 0 \\ r - d \end{pmatrix}$$

at time T.

Solution 2.4

(a) Let Q^1 and Q^2 be two equivalent martingale measures and define $Q = \lambda Q^1 + (1 - \lambda)Q^2$ for $\lambda \in [0, 1]$. Clearly $Q[\Omega] = 1$ and $Q[\{\omega_k\}] > 0$ for all k. Furthermore,

$$E_Q\left[\frac{D^\ell}{D^0}\right] = \lambda E_{Q^1}\left[\frac{D^\ell}{D^0}\right] + (1-\lambda)E_{Q^2}\left[\frac{D^\ell}{D^0}\right] = \lambda \pi^\ell + (1-\lambda)\pi^\ell = \pi^\ell,$$

for all ℓ , showing that $Q \in \mathbb{P}(D^0)$. Since λ was arbitrary, $\mathbb{P}(D^0)$ is convex.

(b) Let Q be any probability measure on \mathcal{F} and $q_i = Q[\{\omega_i\}]$ for $i \in \{u, m, d\}$. Now write down the conditions on q_i :

$$\pi^{1} = E_{Q} \left[\frac{D^{1}}{D^{0}} \right],$$

$$= \frac{(1+u)q_{u} + (1+m)q_{m} + (1+d)q_{d}}{1+r} \pi^{1},$$

$$1 = q_{u} + q_{m} + q_{d},$$

$$q_{i} \in (0,1), \quad i \in \{u, m, d\}.$$
(Martingale property)
$$(Q[\Omega] = 1)$$

$$(Q \approx P)$$

As suggested in the hint, we parametrize this set by choosing $q_m = \lambda$. Using the two equations then yields

$$q_u = \frac{(r-d) - (m-d)\lambda}{u-d},$$
$$q_d = \frac{(u-r) - (u-m)\lambda}{u-d}.$$

Now we just have to restrict λ according to the third condition. This amounts to choosing λ such that

$$q_m \in (0,1) \Leftrightarrow \lambda \in (0,1),$$

$$q_u \in (0,1) \Leftrightarrow \lambda \in \left(\frac{r-u}{m-d}, \frac{r-d}{m-d}\right),$$

$$q_d \in (0,1) \Leftrightarrow \lambda \in \left(\frac{d-r}{u-m}, \frac{u-r}{u-m}\right).$$

Since u > m > d and u > r > d this reduces to

$$\lambda \in \left(0, \min\left\{\frac{r-d}{m-d}, \frac{u-r}{u-m}\right\}\right).$$

Hence, with the identification of \mathbb{P} as a subset of $[0,1]^3$,

$$\mathbb{P} = \left\{ \left(\frac{(r-d) - (m-d)\lambda}{u-d}, \lambda, \frac{(u-r) - (u-m)\lambda}{u-d} \right) : \lambda \in \left(0, \min \left\{ \frac{r-d}{m-d}, \frac{u-r}{u-m} \right\} \right) \right\}.$$

Updated: March 11, 2020

(c) The extreme points can be found in two ways. First, one could calculate $\mathbb{P}_a(D^0)$ explicitly to obtain the closure of \mathbb{P} found above and setting the parameter λ to its smallest and largest values. More precisely,

$$\mathbb{P}_{a} = \left\{ \left(\frac{(r-d) - (m-d)\lambda}{u-d}, \lambda, \frac{(u-r) - (u-m)\lambda}{u-d} \right) : \lambda \in \left[0, \min \left\{ \frac{r-d}{m-d}, \frac{u-r}{u-m} \right\} \right] \right\}.$$

Alternatively, since \mathbb{P}_a is the intersection of the two planes $(Q[\Omega] = 1)$ and (Martingale property) in the closed, positive orthant, the extreme points lie on the boundary of this orthant. Therefore, one could find solutions to (Martingale property) and $(Q[\Omega] = 1)$ with $q_i \geq 0$ for all $i \in \{u, m, d\}$ and $q_i = 0$ for at least one $i \in \{u, m, d\}$. These points are given by

$$Q_1 = \left(\frac{r-d}{u-d}, 0, \frac{u-r}{u-d}\right), \quad \text{and} \quad Q_2 = \begin{cases} \left(0, \frac{r-d}{m-d}, \frac{m-r}{m-d}\right) & \text{if } m \ge r, \\ \left(\frac{r-m}{u-m}, \frac{u-r}{u-m}, 0\right) & \text{if } m < r. \end{cases}$$

Therefore,

$$\mathbb{P} = \{(1 - \alpha)Q_1 + \alpha Q_2 : \alpha \in (0, 1)\}.$$

We verify for $m \geq r$. The other case works analogously. For these parameters,

$$\lambda \in \left(0, \frac{r-d}{m-d}\right).$$

Let $\alpha = \lambda \frac{m-d}{r-d}$. Then $\alpha \in (0,1)$ and an element in \mathbb{P} is given by

$$(1-\alpha)Q_1 + \alpha Q_2 = \left(\frac{(r-d) - (r-d)\alpha}{u-d}, \frac{r-d}{m-d}\alpha, \frac{(u-r) - (u-r)\alpha}{u-d} + \frac{m-r}{m-d}\alpha\right)$$

$$= \left(\frac{(r-d) - (m-d)\lambda}{u-d}, \lambda, \frac{u-r}{u-d} + \underbrace{\left(\frac{m-r}{m-d} - \frac{u-r}{u-d}\right)}_{-\frac{u-m}{u-d}\frac{r-d}{m-d}}\alpha\right)$$

$$= \left(\frac{(r-d) - (m-d)\lambda}{u-d}, \lambda, \frac{u-r}{u-d} - \frac{u-m}{u-d}\lambda\right),$$

which is of the same form as in the previous exercise.

Note: When $m \neq r$, Q_1 and Q_2 are both EMMs for the binomial markets obtained when one of the three points is removed.