Introduction to Mathematical Finance Exercise sheet 5

Exercise 5.1 The goal of this exercise is to recall a few properties of stopping times and corresponding σ -algebras. Let τ be a stopping time w.r.t. a filtration $\mathbb{F} = (\mathcal{F}_k)_{k \in \mathbb{N}_0}$. Recall that

$$\mathcal{F}_{\tau} := \{ A \in \mathcal{F} : A \cap \{ \tau \le k \} \in \mathcal{F}_k \text{ for all } k \in \mathbb{N}_0 \}.$$

- (a) Show that \mathcal{F}_{τ} is a σ -algebra, and τ is \mathcal{F}_{τ} -measurable.
- (b) Suppose σ, τ are two stopping times with $\sigma \leq \tau$ *P*-a.s. Show that $\mathcal{F}_{\sigma} \subset \mathcal{F}_{\tau}$. In particular, if $\tau \equiv k$ where $k \in \mathbb{N}_0$, $\mathcal{F}_{\tau} = \mathcal{F}_k$.
- (c) Suppose $A \in \mathcal{F}$. Show that $\tau_A := \tau \mathbb{1}_A + \infty \mathbb{1}_{A^c}$ is a stopping time if and only if $A \in \mathcal{F}_{\tau}$.
- (d) If τ, σ are two stopping times, then $\tau \vee \sigma$ and $\tau \wedge \sigma$ are stopping times, and $\mathcal{F}_{\tau} \cap \mathcal{F}_{\sigma} = \mathcal{F}_{\tau \wedge \sigma}$. Moreover, $\{\sigma \leq \tau\} \in \mathcal{F}_{\tau \wedge \sigma}$ and $\{\sigma = \tau\} \in \mathcal{F}_{\tau \wedge \sigma}$.
- (e) A mapping Y defined on $\{\tau < \infty\}$ is \mathcal{F}_{τ} -measurable if and only if for every $k \in \mathbb{N}_0, Y\mathbb{1}\{\tau \leq k\}$ is \mathcal{F}_k -measurable.

Exercise 5.2 Consider a financial market (S^0, S^1) given by the following trees, where the numbers beside the branches denote transition probabilities.

Intuitively, this means that the volatility of S^1 increases if the stock price increases in the first period. Assume that $u, r \ge 0$ and $-0.5 < d \le 0$.

- (a) Construct for this setup a multiplicative model consisting of a probability space (Ω, \mathcal{F}, P) , a filtration $\mathbb{F} = (\mathcal{F}_k)_{k=0,1,2}$, two random variables Y_1 and Y_2 and two adapted stochastic processes S^0 and S^1 such that $S_k^1 = \prod_{j=1}^k Y_j$ for k = 0, 1, 2.
- (b) For which values of u and d are Y_1 and Y_2 uncorrelated?
- (c) For which values of u and d are Y_1 and Y_2 independent?
- (d) For which values of u, r and d is the discounted stock process $X^1 = S^1/S^0$ a *P*-martingale?

Exercise 5.3 Consider a market with trading dates k = 0, ..., T, with N traded assets on the probability space (Ω, \mathcal{F}, P) and the filtration given by $\mathbb{F} = (\mathcal{F}_k)_{k=0,...,T}$, i.e., a general multiperiod market.

For any strategy ψ , we define the process $\tilde{C} = (\tilde{C}_k)_{k=0,\dots,T}$ by

$$\widetilde{C}_k(\psi) := \widetilde{V}_k(\psi) - \widetilde{G}_k(\psi).$$

(a) Show that

$$\Delta \widetilde{C}_{k+1}(\psi) = \Delta \psi_{k+1} \cdot S_k$$

for $k = 1, \dots, T - 1$.

(b) Show that ψ is self-financing if and only if

$$\widetilde{C}_k(\psi) = \widetilde{C}_0(\psi)$$

for k = 0, ..., T.

Hint: Be careful with the definitions at the first time point.

Remark: The process \tilde{C} is called the *(undiscounted)* cost process for ψ .

(c) Suppose that $D = (D_k)_{k=0,...,T}$ is an \mathbb{R} -valued strictly positive stochastic process adapted to \mathbb{F} . Define $Y_k = D_k S_k$ for k = 0, ..., T. Show that ψ is self-financing for the price process $S = (S_k)_{k=0,1,...,T}$ if and only if ψ is self-financing for the price process $Y = (Y_k)_{k=0,1,...,T}^1$.

Exercise 5.4 Let (S_t^0, S_t^1) be a model of an arbitrage-free complete financial market with two assets and a finite time horizon T. Suppose that S^0 is a numéraire asset satisfying $S_{t+1}^0 \ge S_t^0$ for all $t \ge 0$. Let C(T, K) be the initial replication cost of a European Call option with strike K and maturity T written on the risky asset S^1 . The goal of this exercise is to show that $T \to C(T, K)$ is increasing and that $K \to C(T, K)$ is decreasing and convex.

¹This shows that being self-financing is a numéraire-independent concept.

(a) We define a martingale deflator to be an adapted process Y such that $Y_t > 0$ for all $t \ge 0$ almost surely and such that the process $SY = (S_tY_t)_{t\ge 0}$ is a martingale (under the original measure P). Show that there is a one-to-one correspondence between martingale deflators and equivalent martingale measures (in finite time horizon models). Hint: Given a martingale deflator Y, consider the measure Q defined by the Radon-Nykodym derivative

$$\frac{dQ}{dP} = \frac{Y_T S_T^0}{E_P [Y_T S_T^0]}$$

and show (using Bayes formula) that Q defined this way is indeed an EMM. Conversely, given an EMM Q, consider the density process

$$Z_t = E_P \left[\frac{dQ}{dP} | \mathcal{F}_t \right]$$

and show that the process Y defined by $Y_t = \frac{Z_t}{S_t^0}$ is a martingale deflator.

Note that if Y is a martingale deflator, then so is cY for any c > 0. In what follows we will consider the unique martingale deflator such that $Y_0 = 1$.

- (b) Let Y be the unique martingale deflator such that $Y_0 = 1$. Show that Y is a P-supermartingale. Hint: for the integrability, you may use the fact that if the market model S with N assets is complete, then for each $t \ge 0$ the probability space Ω can be partitioned into no more than $N^t \mathcal{F}_t$ -measurable events of positive probability. In particular, the N-dimensional random vector S_t takes values in a set of at most N^t elements and hence is bounded.
- (c) Show that the process defined by $Y_t(S_t^1 K)^+ = (Y_t S_t^1 Y_t K)^+$ is a *P*-submartingale.
- (d) Write down the initial replication cost of a European Call option with strike K and maturity T as a function of the martingale deflator Y.
- (e) Conclude that $T \to C(T, K)$ is increasing and that $K \to C(T, K)$ is decreasing and convex.
- (f) *(Bonus)* Using the programming language of your choice, verify the above monotonicity and convexity properties of the call surface on real historical data.