

Introduction to Mathematical Finance

Exercise sheet 5

Exercise 5.1 The goal of this exercise is to recall a few properties of stopping times and corresponding \(\sigma \)-algebras. Let \(\tau \) be a stopping time w.r.t. a filtration \(\mathbb{F} = (\mathcal{F}_k)_{k \in \mathbb{N}_0} \). Recall that

\[
\mathcal{F}_\tau := \{ A \in \mathcal{F} : A \cap \{ \tau \leq k \} \in \mathcal{F}_k \text{ for all } k \in \mathbb{N}_0 \}.
\]

(a) Show that \(\mathcal{F}_\tau \) is a \(\sigma \)-algebra, and \(\tau \) is \(\mathcal{F}_\tau \)-measurable.

(b) Suppose \(\sigma, \tau \) are two stopping times with \(\sigma \leq \tau \) \(\mathbb{P} \)-a.s. Show that \(\mathcal{F}_\sigma \subset \mathcal{F}_\tau \). In particular, if \(\tau \equiv k \) where \(k \in \mathbb{N}_0 \), \(\mathcal{F}_\tau = \mathcal{F}_k \).

(c) Suppose \(A \in \mathcal{F} \). Show that \(\tau_A := \tau 1_A + \infty 1_{A^c} \) is a stopping time if and only if \(A \in \mathcal{F}_\tau \).

(d) If \(\tau, \sigma \) are two stopping times, then \(\tau \lor \sigma \) and \(\tau \land \sigma \) are stopping times, and \(\mathcal{F}_\tau \cap \mathcal{F}_\sigma = \mathcal{F}_{\tau \land \sigma} \). Moreover, \(\{ \sigma \leq \tau \} \in \mathcal{F}_{\tau \land \sigma} \) and \(\{ \sigma = \tau \} \in \mathcal{F}_{\tau \land \sigma} \).

(e) A mapping \(Y \) defined on \(\{ \tau < \infty \} \) is \(\mathcal{F}_\tau \)-measurable if and only if for every \(k \in \mathbb{N}_0 \), \(Y 1_{\{ \tau \leq k \}} \) is \(\mathcal{F}_k \)-measurable.

Exercise 5.2 Consider a financial market \((S^0, S^1) \) given by the following trees, where the numbers beside the branches denote transition probabilities.

\[
S^0 : 1 \xrightarrow{1} 1 + r \xrightarrow{1} (1 + r)(1 + r)
\]

\[
S^1 : 1 \xrightarrow{\frac{1}{2}} 1 + u \xrightarrow{\frac{1}{2}} (1 + u)(1 + 2u)
\]

\[
\xrightarrow{\frac{1}{2}} 1 + d \xrightarrow{\frac{1}{2}} (1 + d)(1 + d)
\]

\[
\xrightarrow{\frac{1}{2}} (1 + u)(1 + 2d)
\]

\[
(1 + d)(1 + u)
\]

\[
(1 + d)(1 + d)
\]
Intuitively, this means that the volatility of S^1 increases if the stock price increases in the first period. Assume that $u, r \geq 0$ and $-0.5 < d \leq 0$.

(a) Construct for this setup a multiplicative model consisting of a probability space (Ω, \mathcal{F}, P), a filtration $\mathbb{F} = (\mathcal{F}_k)_{k=0,1,2}$, two random variables Y_1 and Y_2 and two adapted stochastic processes S^0 and S^1 such that $S^1_k = \prod_{j=1}^{k} Y_j$ for $k = 0, 1, 2$.

(b) For which values of u and d are Y_1 and Y_2 uncorrelated?

(c) For which values of u and d are Y_1 and Y_2 independent?

(d) For which values of u, r and d is the discounted stock process $X^1 = S^1 / S^0$ a P-martingale?

Exercise 5.3 Consider a market with trading dates $k = 0, \ldots, T$, with N traded assets on the probability space (Ω, \mathcal{F}, P) and the filtration given by $\mathbb{F} = (\mathcal{F}_k)_{k=0,\ldots,T}$, i.e., a general multiperiod market.

For any strategy ψ, we define the process $\tilde{C} = (\tilde{C}_k)_{k=0,\ldots,T}$ by

$$\tilde{C}_k(\psi) := \tilde{V}_k(\psi) - \tilde{G}_k(\psi).$$

(a) Show that

$$\Delta \tilde{C}_{k+1}(\psi) = \Delta \psi_{k+1} \cdot S_k$$

for $k = 1, \ldots, T - 1$.

(b) Show that ψ is self-financing if and only if

$$\tilde{C}_k(\psi) = \tilde{C}_0(\psi)$$

for $k = 0, \ldots, T$.

Hint: Be careful with the definitions at the first time point.

Remark: The process \tilde{C} is called the (undiscounted) cost process for ψ.

(c) Suppose that $D = (D_k)_{k=0,\ldots,T}$ is an \mathbb{R}-valued strictly positive stochastic process adapted to \mathbb{F}. Define $Y_k = D_k S_k$ for $k = 0, \ldots, T$. Show that ψ is self-financing for the price process $S = (S_k)_{k=0,1,\ldots,T}$ if and only if ψ is self-financing for the price process $Y = (Y_k)_{k=0,1,\ldots,T}$.

Exercise 5.4 Let (S^0_t, S^1_t) be a model of an arbitrage-free complete financial market with two assets and a finite time horizon T. Suppose that S^0 is a numéraire asset satisfying $S^0_{t+1} \geq S^0_t$ for all $t \geq 0$. Let $C(T, K)$ be the initial replication cost of a European Call option with strike K and maturity T written on the risky asset S^1. The goal of this exercise is to show that $T \to C(T, K)$ is increasing and that $K \to C(T, K)$ is decreasing and convex.

\footnote{This shows that being self-financing is a numéraire-independent concept.}

Updated: March 21, 2020
(a) We define a martingale deflator to be an adapted process Y such that $Y_t > 0$ for all $t \geq 0$ almost surely and such that the process $SY = (S_t Y_t)_{t \geq 0}$ is a martingale (under the original measure P). Show that there is a one-to-one correspondence between martingale deflators and equivalent martingale measures (in finite time horizon models). Hint: Given a martingale deflator Y, consider the measure Q defined by the Radon-Nykodym derivative

$$\frac{dQ}{dP} = \frac{Y_T S_0^T}{E_P[Y_T S_0^T]}$$

and show (using Bayes formula) that Q defined this way is indeed an EMM. Conversely, given an EMM Q, consider the density process

$$Z_t = E_P \left[\frac{dQ}{dP} | F_t \right]$$

and show that the process Y defined by $Y_t = \frac{Z_t}{S_t}$ is a martingale deflator.

Note that if Y is a martingale deflator, then so is cY for any $c > 0$. In what follows we will consider the unique martingale deflator such that $Y_0 = 1$.

(b) Let Y be the unique martingale deflator such that $Y_0 = 1$. Show that Y is a P-supermartingale. Hint: for the integrability, you may use the fact that if the market model S with N assets is complete, then for each $t \geq 0$ the probability space Ω can be partitioned into no more than N^t F_t-measurable events of positive probability. In particular, the N-dimensional random vector S_t takes values in a set of at most N^t elements and hence is bounded.

(c) Show that the process defined by $Y_t(S_t^1 - K)^+ = (Y_t S_t^1 - Y_t^t K)^+$ is a P-submartingale.

(d) Write down the initial replication cost of a European Call option with strike K and maturity T as a function of the martingale deflator Y.

(e) Conclude that $T \to C(T, K)$ is increasing and that $K \to C(T, K)$ is decreasing and convex.

(f) (Bonus) Using the programming language of your choice, verify the above monotonicity and convexity properties of the call surface on real historical data.