Introduction to Mathematical Finance Exercise sheet 8

Exercise 8.1 In Exercise 5.4, we have introduced a multiperiod binomial market. In a similar fashion, we construct a trinomial market: Fix r > -1 and let $S_k^0 = (1+r)^k$. Now define $S_0^1 = 1$ and

$$S_k^1 = \prod_{i=1}^k R_i^1, \quad k = 1, \dots, T,$$

where the R_k^1 are i.i.d. and

 $P[R_k^1 = 1 + u] = p^u, \quad P[R_k^1 = 1 + m] = p^m, \quad P[R_k^1 = 1 + d] = p^d,$

all > 0, for u > m > d and u > r > d. Note that the superscripts do not indicate powers.

Describe the set of *all* equivalent martingale measures for the S^0 -discounted prices. You may provide an answer with, e.g., T = 2. *Hint:* Use $\Omega = \{u, m, d\}^T$.

Exercise 8.2

- (a) Consider a market without arbitrage. Show that for every (European) contingent claim $H \in L^0(\Omega, \mathcal{F}_T, P)$, there exists an equivalent martingale measure Qsuch that $H \in L^1(\Omega, \mathcal{F}_T, Q)$.
- (b) Construct an example for a family of uniformly bounded random variables whose pointwise supremum is not a random variable. This illustrates why the *essential supremum* is needed in probability and measure theory, rather than the (usual) supremum.

Exercise 8.3 Let $Q \sim R$ be two equivalent probability measures on a filtered measurable space $(\Omega, (\mathcal{F}_k)_{0 \leq k \leq T}, \mathcal{F})$, and let $\sigma : \Omega \to \{0, \ldots, T\}$ be a stopping time. We define the pasting \tilde{Q} of Q and R at σ as

$$\tilde{Q}(A) := \mathbb{E}_Q \left[\mathbb{E}_R \left[\mathbb{1}_A \mid \mathcal{F}_\sigma \right] \right].$$

- (a) Show that \tilde{Q} gives a probability measure on \mathcal{F}_T .
- (b) Prove that the density process $\tilde{Z} = Z^{\tilde{Q};Q}$ of \tilde{Q} with respect to Q is given by

$$\tilde{Z}_k = \mathbb{1}_{k \le \sigma} + \frac{Z_k}{Z_\sigma} \mathbb{1}_{k > \sigma},$$

where $Z = Z^{R;Q}$ is the density process of R with respect to Q.

1/2

We say that a set \mathcal{Q} of equivalent probability measures on (Ω, \mathcal{F}) is *m*-stable if for any $Q_1, Q_2 \in \mathcal{Q}$, and any stopping time $\sigma : \Omega \to \{0, \ldots, T\}$, the pasting of Q_1 and Q_2 at σ is also in \mathcal{Q} .

(c) Prove that the set $\mathbb{P}_{loc}(X)$ is m-stable. Hint: The monotone convergence theorem guarantees that, for all $Y \ge 0$,

$$\mathbb{E}_{\tilde{Q}}[Y] = \mathbb{E}_{Q}\left[\mathbb{E}_{R}\left[Y \mid \mathcal{F}_{\sigma}\right]\right].$$

One can show (left as bonus exercise-see Lemma 6.41 in Hans Föllmer and Alexander Schied, "Stochastic Finance: An Introduction in Discrete Time", de Gruyter) that for all stopping times $\tau : \Omega \to \{0, \ldots, T\}$, and \mathcal{F}_T measurable random variable $Y \ge 0$ we have

$$\mathbb{E}_{\tilde{Q}}[Y \mid \mathcal{F}_{\tau}] = \mathbb{E}_{Q}\left[\mathbb{E}_{R}\left[Y \mid \mathcal{F}_{\sigma \lor \tau}\right] \mid \mathcal{F}_{\tau}\right].$$